RINGWOOD BOARD OF EDUCATION ROBERT ERSKINE ELEMENTARY SCHOOL ENERGY ASSESSMENT

FOR NEW JERSEY BOARD OF PUBLIC UTILITIES

December 2012

Prepared by:

6 Campus Drive Parsippany, NJ 07054 (973) 538-2120

CHA PROJECT NO. 24736

TABLE OF CONTENTS

1.0 EXE	ECUTIVE SUMMARY	1
2.0 INT	RODUCTION AND BACKGROUND	3
3.0 UTI	LITY	4
4.0 EXI	STING CONDITIONS & AREAS OF ENERGY OPPORTUNITY	6
4.1	Building Envelope	6
4.1.1	ECM-1a Replace Window Seals	6
4.1.2	ECM-1b Window Replacements and Reduced Glazing	7
4.1.3	ECM-2 Replace Door Seals	7
4.2	HVAC Systems	8
4.2.1	ECM-3 Replace Boilers	9
4.2.2	ECM-4 Install VFDs on Hot water Pumps	9
4.2.3	ECM-5 Replace Waste Water Pump Motors with High Efficiency Motors	10
4.2.4	ECM-6 Replace Window A/C units w/Energy Star Units	11
4.3	Control Systems	11
4.3.1	ECM-7 Add Unoccupied Set-back Schedule	12
4.4	Domestic Hot Water System	13
4.5	ECM-8 Replace Domestic Hot Water Heater with Instantaneous unit	13
4.6	Lighting/Electrical Systems	14
4.6.1	ECM-9 Lighting Replacement / Upgrades	14
4.6.2	ECM-10 Install Lighting Controls (Occupancy Sensors)	15
4.6.3	ECM-11 Lighting Replacements with Controls (Occupancy Sensors)	15
4.7	Plumbing Systems	16
4.8	Kitchen Equipment	16
4.8.1	ECM-12 Convert Electric Dish Washer Booster Heater to Natural Gas	16
4.8.2	ECM-13 Add Dedicated Hood and Fan for Oven	17
5.0 PRC	OJECT INCENTIVES	19
5.1	Incentives Overview	19
5.1.1	New Jersey Pay For Performance Program	19
5.1.2	New Jersey Smart Start Program	20

5.1.3	Direct Install Program	20
5.1.4	Energy Savings Improvement Plans (ESIP)	21
6.0 A	LTERNATIVE ENERGY SCREENING EVALUATION	22
6.1	Solar	22
6.1.1	Photovoltaic Rooftop Solar Power Generation	22
6.1.2	Solar Thermal Hot Water Plant	23
6.2	Wind	23
6.3	Geothermal	24
6.4	Combined Heat and Power Generation (CHP)	24
6.5	Biomass Power Generation	25
6.6	Demand Response Curtailment	26
7.0 E	PA PORTFOLIO MANAGER	27
8.0 C	ONCLUSIONS & RECOMMENDATIONS	

APPENDICES

- Utility Usage Analysis Equipment Inventory А
- В
- С ECM Calculations
- D
- LGEA programs Photovoltaic (PV) Rooftop Solar Power Generation EPA Portfolio Manager E
- F

REPORT DISCLAIMER

This audit was conducted in accordance with the standards developed by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) for a Level II audit. Cost and savings calculations for a given measure were estimated to within $\pm 20\%$, and are based on data obtained from the owner, data obtained during site observations, professional experience, historical data, and standard engineering practice. Cost data does not include soft costs such as engineering fees, legal fees, project management fees, financing, etc.

A thorough walkthrough of the school was performed, which included gathering nameplate information and operating parameters for all accessible equipment and lighting systems. Unless otherwise stated, model, efficiency, and capacity information included in this report were collected directly from equipment nameplates and /or from documentation provided by the owner during the site visit. Typical operation and scheduling information was obtained from interviewing staff and spot measurements taken in the field.

1.0 EXECUTIVE SUMMARY

This energy audit is performed by CHA in connection with the New Jersey Board of Public Utilities' Local Government Energy Audit Program for the Ringwood Board of Education. The purpose of this report is to identify energy savings opportunities associated with major energy consumers and inefficient practices. This report details the results of the energy audit conducted for:

Building Name	Address	Square Feet	Construction Date
Robert Erskine Elementary School	88 Erskine Road Ringwood, NJ 07456	31,700	1960

The potential annual energy and cost savings for each energy conservation measure (ECM) is shown in below in Table 1. Each individual measure's annual savings are dependent on that measure alone, there are no interactive effects calculated. There are three options shown for Lighting ECM savings; only one option can be chosen. Incentives shown (if any) are based only on the SmartStart Incentive Program. Other NJBPU or local utility incentives may also be available/ applicable and are discussed in Section 5.0.

Each measure recommended by CHA typically has a simple payback period of 15 years or less to be consistent with the requirements of the Energy Savings Improvement Plan (ESIP) which has a maximum payback period of 15 years. Occasionally, we will recommend an ECM that has a longer payback period, based on the need to replace that piece(s) of equipment, such as a boiler for example. If the recommended measures are implemented a total potential annual savings of \$12,300 may be realized with an average simple payback period of 31.0 years.

Table 1: Summary of Energy Conservation Mea	asures
---	--------

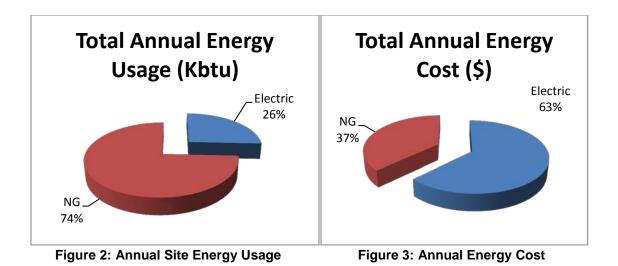
	Summary of Energy Conservation Measures										
Ener	gy Conservation Measure	Approx. Costs (\$)	Approx. Savings (\$/year)	Payback (Years) w/o Incentive	Potential Incentive (\$)*	Payback (Years) w/ Incentive	Recommended				
ECM- 1a	Replace Window Seals	18,000	1,600	11.3	0	11.3					
ECM- 1b	Window Replacements and Reduced Glazing	450,000	2,900	>20	0	>20					
ECM- 2	Replace Door Seals	1,700	200	8.5	0	8.5					
ECM- 3	Replace (2) Boilers with Condensing Boilers	316,000	3,500	>20	4,000	>20	х				
ECM- 4	Install VSDs on Hot Water Pumps (5 HP)	9,000	1,100	8.2	2,000	6.4	Х				
ECM- 5	Replace Waste Water Pump Motors with Hi Efficiency Motors	3,000	600	5.0	2,800	0.3	Х				
ECM- 6	Replace Window A/C Unit with Energy Star Equivalent Units	4,200	300	14.0	0	14.0					
ECM- 7	Unoccupied Set- Back (72-55)	17,000	900	18.9	0	18.9					
ECM- 8	Replace Domestic Hot Water Heater w/ Instantaneous Unit	11,300	200	>20	300	>20					
ECM- 9	Lighting Replacement s / Upgrades	54,000	3,000	18.0	5,100	16.5					
ECM- 10	Install Lighting Controls (occupancy sensors)	15,000	5,600	2.7	1,900	2.3					
ECM- 11	Lighting Replacement s with Lighting Controls	69,000	7,100	9.7	6,500	8.8	х				
ECM- 12	Convert Electric Dish Washer Booster Heater to NG	15,000	600	>20	0	>20					
ECM- 13	Add Dedicated Hood and Fan for Oven	12,000	200	>20	0	>20					

2.0 INTRODUCTION AND BACKGROUND

The Robert Erskine Elementary School is a 31,700 square foot building consisting of two floors. The building was constructed in 1960. The school includes the following spaces: classrooms, offices, multi-purpose room, kitchen, storage, toilet rooms and a media center. The school hours of operation are from 8:45 AM – 11:00 PM Monday through Friday, with various after-school activities and Saturdays 8:00AM to 3:00PM. The school has approximately 236 students and 45 faculty and staff members. The school has 73 computers.

Figure 1: Robert Erskine Elementary School

3.0 UTILITY


Utilities include electricity and natural gas. Electricity is delivered by Orange & Rockland Company and is currently supplied by Direct Energy. The School district participates in an energy purchasing consortium. The consortium started using Direct Energy as the electric supplier for the 2012 school year. Each year the consortium seeks out a supplier with the lowest utility cost. Natural gas is delivered by Public Service Enterprise Group (PSE&G) and supplied by Hess. The school district did not provide bills for its water usage.

For the 12-month period ending in August 2012, the utilities usage for the building was as follows:

	Electric	
Annual Usage	252,320	kWh/year
Annual Cost	38,910	\$
Blended Rate	0.154	\$/kWh
Supply Rate	0.123	\$/kWh
Demand Rate	0.953	\$/kW
Peak Demand	77.6	kW
Min. Demand	35.2	kW
Avg. Demand	68.7	kW
	Natural Gas	
Annual Usage	24,912	Therms/year
Annual Cost	23,041	\$
Rate	0.925	\$/Therm

Table 2: Actual Cost & Site Utility Usage

Electrical usage was generally higher in the summer months when window air conditioning equipment was operational. Natural gas consumption was highest in winter months for heating. See Appendix A for a detailed utility analysis.

Under New Jersey's energy deregulation law, the supply portion of the electric (or natural gas) bill is separated from the delivery portion. The supply portion is open to competition, and customers can shop around for the best price for their energy suppliers. The electric and natural gas distribution utilities will still deliver the gas/ electric supplies through their wires and pipes – and respond to emergencies, should they arise – regardless of where those supplies are purchased. Purchasing the energy supplies from a company other than your electric or gas utility is purely an economic decision; it has no impact on the reliability or safety of the service. Additional information on selecting a third party energy supplier is available here:

http://www.state.nj.us/bpu/commercial/shopping.html.

See Appendix A for a list of third-party energy suppliers licensed by the Board of Public Utilities to sell within the building's service area.

4.0 EXISTING CONDITIONS & AREAS OF ENERGY OPPORTUNITY

Energy conservation measures (ECM) are energy savings improvement recommendations that require a financial investment. These recommendations are justified by the energy and/or cost savings realized over time. Operational and maintenance measures (OMM) are low or no cost operational opportunities, which can be implemented to have positive impacts on overall building operation, comfort levels, or energy usage.

4.1 Building Envelope

The original building is built of concrete masonry units with brick veneer. The interior walls are block walls with painted plaster. There is currently no insulation in the walls of the original school.

Windows throughout the school building are operable aluminum framed single glazing windows. The windows seem to be in fair condition. During the site visit it was noted in the kickoff meeting that the windows were installed in 1960 and the infiltration from these windows was significant. The doors were installed at the same time as the windows. They are in fair condition as well. The seals around the doors have deteriorated with time and need to be replaced.

The roof of the school is a four ply built up roofing system on rigid insulation. During the site visit it was noted that the roof was in fair condition.

The following energy conservation measures were identified for building envelope improvements:

4.1.1 ECM-1a Replace Window Seals

The seals around exterior windows over time fail. This leads to unwanted infiltration of unconditioned outside air and exfiltration of conditioned air resulting in increased heating energy usage. This measure calls for the replacement of all exterior window seals.

The school electrical savings are minimal due to the only area having air-conditioning is the media center. There isn't a kW demand savings as a result. This ECM Does not qualify for Incentive from the New Jersey SmartStart Program.

The implementation cost and savings related to this ECM are presented in Appendix C and summarized below:

Budgetary		Annu	ual Utility Savir	ngs		Estimated	Total		Potential	Payback	Payback
Cost						Maintenance	Savings	ROI	Incentive*	(without	(with
	Ele	Natural Electricity Gas Total			Savings	-			Incentive)	Incentive)	
\$	kW kWh		Therms		\$	\$	\$		\$	Years	Years
18,000	0	0 0 1700 1600				0	1,600	(0.6)	0	11.3	11.3

ECM-1a Replace Window Seals

* Does not qualify for Incentive from the New Jersey SmartStart Program. See section 5.0 for other incentive opportunities.

Expected Life:	5	years			
Lifetime Savings:	0	kWh	8,500	therms	\$ 8,000

This measure is not recommended.

4.1.2 ECM-1b Window Replacements and Reduced Glazing

The facility has 4,500 square feet of window area. These windows are constructed with aluminum frames and single pane glazing. Due to age, construction type, and condition, the windows incur excess air infiltration and provide average thermal resistance to heat transfer. An assessment considered installing aluminum frame with triple pane glazing with internal blinds to decrease energy losses.

The calculation uses bin hours to estimate the occupied and unoccupied bin hours. This is converted to existing energy for the occupied and unoccupied cases using the existing window U-factor and the heating and cooling temperature. The two are summed together to create the annual utility usage for the baseline. The same steps are done to calculate the proposed utility usage. The difference in heating losses through the windows resulted in annual heating.

The school electrical savings are minimal due to the only area having air-conditioning is the media center. There isn't a kW demand savings as a result. This ECM does not qualify for Incentive from the New Jersey SmartStart Program.

The implementation cost and savings related to this ECM are presented in Appendix C and summarized as follows:

						U					
Budgetary Cost	Annual Utility Savings					Estimated Maintenance	Total Savings	ROI	Potential Incentive*	Payback (without	Payback (with
	Electricity		Natural Gas		Total	Savings	,			Incentive)	Incentive)
\$	kW	kWh	Therms		\$	\$	\$		\$	Years	Years
450,000	0 0		3,100		2,900	0	2,900	(0.8)	0	>20	>20

ECM-1b Window Replacements and Reduced Glazing

* Does not qualify for Incentive from the New Jersey SmartStart Program. See section 5.0 for other incentive opportunities.

Expected Life: <u>30</u> years Lifetime Savings: 0 kWh 93,000 therms

\$ 87,000

This measure is not recommended.

4.1.3 ECM-2 Replace Door Seals

The seals around exterior doors over time fail. This leads to unwanted infiltration of unconditioned outside air and exfiltration of conditioned air resulting in increased heating energy usage. This measure calls for the replacement of all exterior door seals.

The school electrical savings are minimal due to the only area having air-conditioning is the media center. There isn't a kW demand savings as a result. This ECM does not qualify for Incentive from the New Jersey SmartStart Program.

The implementation cost and savings related to this ECM are presented in Appendix C and summarized below:

Budgetary Cost	Annual Utility Savings					Estimated Maintenanc e	Total Saving s	ROI	Potential Incentive*	Payback (without	Payback (with
	Ele	Natural Electricity Gas Total				Savings				Incentive)	Incentive)
\$	kW	kWh	Therms		\$	\$	\$		\$	Years	Years
1,700	0					0	200	(0.5)	0	8.5	8.5

ECM-2 Replace Door Seals

* Does not qualify for Incentive from the New Jersey SmartStart Program. See section 5.0 for other incentive opportunities.

Expected Life:	5	years		
Lifetime Savings:	0	kWh	 1,000	therms

This measure is not recommended.

4.2 HVAC Systems

4.2.a Heating Hot Water System

Robert Erskine Elementary School has (2) natural gas fired hot water boilers manufactured by Cleaver Brooks. The boilers were installed in 1960 and have a heating output capacity of 2,010 MBH with a thermal efficiency estimated to be 75% due to age of boilers. The boilers operate in a lead / lag fashion and maintenance personnel alternate the lead and lag boilers. The boilers are set to fire when the temperature drops below 60F during the months of October through May. The boilers are completely shut down the remaining months. Hot water is pumped by (2) 5.0 HP pumps that also operate in lead/lag to provide heating to the building. The classrooms are heated by unit ventilators having hot water coils. The gymnasium is heated by (1) Trane heating & ventilation (HV) unit. The Unit Ventilators and HV unit are controlled by pneumatic valves, dampers and actuators. The pneumatic controls are not precise due to the age of the system.

Specifics on mechanical equipment can be found within the equipment inventory located in Appendix B.

4.2.b Direct Expansion (DX) and Split System Cooling Systems

Cooling is provided to the Media Center by retrofitting a unit ventilator to work in conjunction with condensing unit (CU) located in the courtyard of the building. There was no nameplate present and therefore no information could be obtained regarding the model or cooling capacity of the unit. Sixteen (16) spaces in the building have window A/C units that provide cooling on hot days. These units are controlled by the personnel. There is no cooling in the cafeteria or gymnasium.

\$ 1,000

Specifics on mechanical equipment can be found within the equipment inventory located in Appendix B.

The following ECMs were identified as HVAC system improvements:

4.2.1 ECM-3 Replace Boilers

Two (2) Cleaver Brooks P142-60 hot water boilers, have inputs of 2,010,000 BTU and estimated 75% efficiency based on the age of boilers. They were installed in 1960 and are in fair condition. This ECM would involve replacing the existing boilers with two (2) 2,000 MBH condensing boilers. Condensing boilers operate at higher efficiencies when producing lower water temperatures, typically in the 92-96% range. The increased system efficiency will result in lower natural gas usage. The proposed boiler replacement will involve piping and wiring modifications as well as new venting and combustion air ducting.

This ECM is eligible for an incentive up to \$4,000 from the New Jersey SmartStart Program.

The implementation cost and savings related to this ECM are presented in Appendix C and summarized below:

Budgetary		Ann	ual Utility Savi	ngs	Estimated	Total		Potential	Payback	Payback
Cost					Maintenance	Savings	ROI	Incentive	(without	(with
	Ele	ectricity	Natural Gas	Total	Savings				Incentive)	Incentive)
\$	kW	kWh	Therms	\$	\$	\$		\$	Years	Years
316,000	0 0 3,		3,800	3,500	0	3,500	(0.7)	4,000	>20	>20

ECM-3 Replace (2) Condensing Boilers

* Incentive shown is per the New Jersey SmartStart Program. See section 5.0 for other incentive opportunities

Expected Life:	25	years			
Lifetime					
Savings:	0	kWh	95,000	therms	\$ 87,500

This measure is recommended due to age of boilers.

4.2.2 ECM-4 Install VFDs on Hot water Pumps

The hot water system is served by two (2) 5 HP pumps. The pumps are constant volume with standard efficiency motors. The hot water system pumps operate at a constant speed (constant water flows) even though the building load does not require all of the flow to maintain temperatures. By adding variable speed drives (VSDs) and inverter duty premium efficiency motors, and reducing the flow (by slowing the motors down), significant electrical energy can be saved.

The calculation use a system "on" set point of 55°F and bin weather data to estimate the heating hours of the building for the year. It was calculated that the heating hours are

4,887. The assumption of this calculation is that the operating hours, motor horsepower, and capacity stay the same.

This ECM is eligible for an incentive up to \$2,000 from the New Jersey SmartStart Program.

The implementation cost and savings related to this ECM are presented in Appendix C and summarized below:

Budgetary		Annua	al Utility Saving	gs	Estimated	Total		Potential	Payback	Payback
Cost					Maintenance	Savings	ROI	Incentive*	(without	(with
	Ele	Natural Electricity Gas Total		I Savings				Incentive)	Incentive)	
\$	kW	kW kWh Therms		\$	\$	\$		\$	Years	Years
12,000	0.1 8,800 0 1,100		0 0	1,100	0.9	2,000	10.9	9.1		

ECM-4 Install VFDs on Hot water Pumps (5 HP)

* Incentive shown is per the New Jersey SmartStart Program. See section 5.0 for other incentive opportunities

Expected Life: 15 years Lifetime Savings: 132,000 kWh 0 therms

This measure is recommended.

4.2.3 ECM-5 Replace Waste Water Pump Motors with High Efficiency Motors

The hot water treatment plant uses two (2) 5 HP and two (2) 1.5 HP pumps. The pumps are constant volume with 84% efficiency motors. The hot water system pumps operate at a constant speed (constant water flows). By adding inverter duty premium efficiency motors with an estimated efficiency of 90% for the 5 HP and 86% for the 1.5 HP pumps, significant electrical energy can be saved.

The calculation uses electrical nameplate data (HP) from the motor, efficiency and the runtime hours to estimate the annual electrical usage in kWh. The proposed annual electrical usage in kWh is calculated from converting the electrical nameplate data (HP) from the motor to kW using the efficiency multiplied by the runtime hours. The difference between the two values is the energy savings.

This ECM is eligible for an incentive up to \$2,800 from the New Jersey SmartStart Program.

The implementation cost and savings related to this ECM are presented in Appendix C and summarized below:

\$ 16,500

Budgetary		Annu	ual Utility Savir	ngs		Estimated	Total		Potential	Payback	Payback
Cost						Maintenance	Savings	ROI	Incentive*	(without	(with
	Ele	Natural Electricity Gas Total				Savings				Incentive)	Incentive)
\$	kW	kW kWh Therms			\$	\$	\$		\$	Years	Years
3,000	0.5	0.5 4,400 0 600			600	0	600	2.1	2,800	5.0	0.3

ECM-5 Replace Waste Water Pump Motors with Hi Efficiency Motors

* Incentive shown is per the New Jersey SmartStart Program. See section 5.0 for other incentive opportunities

Expected Life: 15 years Lifetime Savings: 66,000 kWh 0 therms \$9,000

This measure is recommended.

4.2.4 ECM-6 Replace Window A/C units w/Energy Star Units

The school has 16 one ton window mounted A/C units. However, this measure assessed replacing the window units with newer Energy Star appliances to be installed by the maintenance staff.

The assumption of this calculation is that the operating hours and capacity stay the same. The energy saving results from operating a higher efficiency unit.

This ECM does not qualify for Incentive from the New Jersey SmartStart Program. There isn't a kW savings because the units are not operated simultaneously.

The implementation cost and savings related to this ECM are presented in Appendix C and summarized below:

Budgetary		Annı	ual Utility Savii	ngs		Estimated	Total		Potential	Payback	Payback			
Cost						Maintenance	Savings	ROI	Incentive*	(without	(with			
	Ele	Natural Electricity Gas Total				Savings				Incentive)	Incentive)			
\$	kW	kWh	Therms		\$	\$	\$		\$	Years	Years			
4,000	0	1,800	0		300	0	300	(0.2)	0	13.3	13.3			

ECM-6 Replace Window A/C units w/Energy Star Units

* Does not qualify for Incentive from the New Jersey SmartStart Program. See section 5.0 for other incentive opportunities.

Expected Life:	12	years				
Lifetime						
Savings:	21,600	kWh	0	therms	\$ 3,300	

This measure is not recommended.

4.3 Control Systems

The building does not have a direct digital control system. The hydronic heating system including the classroom unit ventilators and the steam boiler utilize pneumatic controls.

The system includes valves, actuators and dampers controlled through the use of a 5 horsepower air compressor. The pneumatic system is old and outdated, does not function correctly and has depreciated with age. The rooftop units have their own thermostats.

Typical set points range between 70 and 72° F. There is no unoccupied set point and the school is set to turn on automatically when the outside temperature drops below 60 °F during the heating season between October and May. The majority of the school is not cooled. The window air conditioning units that are used are manually controlled by teachers in those classrooms.

The following ECMs identified are improvements to the school's HVAC control system:

4.3.1 ECM-7 Add Unoccupied Set-back Schedule

School maintenance personnel indicated that the Robert Erskine Elementary School's hydronic heating system maintains indoor temperatures of 70-72 °F whenever outside temperatures dip below 60°F even during unoccupied times including nights and weekends. Significant savings could be had by through the implementation of unoccupied setback timers.

The annual natural gas usage for the facility was taking from the utility bills. According to the US Energy Information Agency (EIA), implementing a night setback system typically saves 5% of a facility's annual heating cost. This savings is multiplied by the annual natural gas and converted to monetary savings using the unit cost of the fuel obtained from the utility analysis.

Savings are seen from temperature scheduling for occupied and unoccupied hours. This ECM does not qualify for Incentive from the New Jersey SmartStart Program.

The implementation cost and savings related to this ECM are presented in Appendix C and summarized below:

Estimated Total							Payback	Payback	
А	nnual Utili	ty Savings		Maintenance	Savings	ROI	Incentive	(without	(with
Electric	Electric	Nat Gas	Total	Savings				incentive)	incentive)
kWh	kW	Therms	\$	\$	\$		\$	Years	Years
0 0 1,000 900				0	900	(0.2)	0	18.9	18.9
	Electric	Electric Electric	Electric Electric Gas kWh kW Therms	Electric Electric Gas Total kWh kW Therms \$	Annual Utility Savings Maintenance Electric Nat Gas Total kWh kW Therms	Annual Utility SavingsMaintenanceSavingsElectricNat GasTotalSavingskWhkWTherms\$\$	Annual Utility Savings Maintenance Savings ROI Electric Nat Gas Total Savings **** kWh kW Therms \$ \$	Annual Utility Savings Maintenance Savings ROI Electric Nat Gas Total Savings Nat kWh KW Therms \$ \$	Annual Utility Savings Maintenance Savings ROI Incentive (without Electric Nat Gas Total Savings * 1 incentive) kWh kW Therms \$ \$ \$ \$

ECM-7 Unoccupied Set-Back (72-55 °F)

* There is no incentive available through the New Jersey Smart Start Programs for this ECM. See section 5.0 for other incentive opportunities.

Expected Life: <u>10</u> years Lifetime Savings: <u>0</u> kWh <u>1</u>

10,000 therms

\$ 9,000

This measure is not recommended.

4.4 Domestic Hot Water System

Robert Erskine Elementary School has two domestic hot water heater located in the mechanical room and the water treatment plant office. The water heater in the mechanical room is an A.O. Smith (BT 251-880) natural gas fired commercial domestic hot water heater with a capacity of 80 gallons with 80% efficiency and an input of 240,000 BTU. This water heater is in fair condition. The domestic hot water heater serves the kitchen, toilet rooms and sinks located throughout the school. The water heater in the water treatment plant office is a Bradford White (M16U6SS-1NA1) electric commercial domestic hot water heater with a capacity of 6 gallons and an input of 120V. The domestic hot water heater serves the sinks located in the office. This water heater is in good condition

The following ECM identifies an improvement to the school's Domestic Hot Water System:

4.5 ECM-8 Replace Domestic Hot Water Heater with Instantaneous unit

The school utilizes an 80 gallon, 240,000 BTU A.O Smith BT 251-880 domestic hot water heater (DWH). The DHW is 80% efficiency and is past it useful life according to ASHRAE. This ECM assesses replacing this DWH with a more efficient tankless type domestic water heater sized to meet the DHW requirements of the building.

According to the U.S. Department of Energy, 2.5% of stored capacity is lost every hour during DHW heater standby. This value was applied to the total volume to determine annual standby losses. Proposed efficiency was based on a typical high efficiency natural gas condensing type hot water heater. The new water heater will require water and gas piping modifications, venting, and electrical connections.

This ECM is eligible for an incentive up to \$300 from the New Jersey SmartStart Program.

The implementation cost and savings related to this ECM are presented in Appendix C and summarized below:

Budgetary Cost		Aı	nnual Utility Sa	iving	s	Estimated Maintenanc e	Total Savings	ROI	Potentia I Incentiv e*	Payback (without	Payback (with
	Natural Electricity Gas Total				Total	Savings	0			Incentive)	Incentive)
\$	kW				\$	\$	\$		\$	Years	Years
11,300	0	0	200		200	0	200	(0.8)	300	>20	>20

ECM-8 Replace Domestic Hot Water Heater w/ Instantaneous unit

* Incentive shown is per the New Jersey SmartStart Install Program. See section 5.0 for other incentive opportunities.

Expected Life: <u>12</u> years Lifetime Savings: 0 kWh 2,400 therms

\$ 2.4

\$ 2,400

This measure is not recommended.

4.6 Lighting/Electrical Systems

The majority of the lighting in the elementary school is compact florescent lighting (CFLs) with electronic ballasts and incandescent lamps. The school utilizes 34 watt T-8 fluorescent tube fixtures for offices, multipurpose room, hallways, and classrooms and 60 W incandescent bulbs for storage closets and various restrooms. The building exterior utilizes a 400W metal halide wall packs that are controlled by a timer.

Robert Erskine School utilizes 55 computers throughout the building in classrooms, offices, media centers and computer labs. All of the computers have flat screen LCD monitors.

The following ECMs identified are improvements to Robert Erskine Elementary School's lighting and electrical system:

4.6.1 ECM-9 Lighting Replacement / Upgrades

The majority of the lighting in the elementary school is compact florescent lighting (CFLs) with electronic ballasts and incandescent lamps. The school utilizes 34 watt T-8 fluorescent tube fixtures for offices, multipurpose room, hallways, and classrooms and 60 W incandescent bulbs for storage closets and various restrooms.

Energy savings for this measure were calculated by applying the existing and proposed fixture wattages to estimated times of operation. The difference between energy requirements resulted in a total annual savings of 18,300 kWh with an electrical demand reduction of about 6.4 kW. These calculations are based upon 1 to 1 replacements with the fixtures. They do not take into account lumen output and square footage. A more comprehensive study may be performed to determine correct lighting levels.

Supporting calculations, including assumptions for lighting hours and annual energy usage for each fixture, are provided in Appendix C.

This ECM is eligible for an incentive up to \$4,600 from the New Jersey SmartStart Program to upgrade the T-8 lamps to high efficiency T-8s and the incandescent bulbs to compact florescent spirals.

The implementation cost and savings related to this ECM are presented in Appendix C and summarized below:

Budgetar y		Annua	al Utility Savii	ngs		Estimated	Total		Potential Incentive	Payback	Payback
Cost						Maintenance	Savings	ROI	*	(without	(with
	Ele	Natural Electricity Gas Total				Savings				Incentive)	Incentive)
\$	kW	kWh	Therms		\$	\$	\$		\$	Years	Years
54,000	6.4 18,300 0 3,000				0	3,000	(0.2)	4,600	18.0	16.5	

ECM-9 Lighting Replacement / Upgrades

Incentive shown is per the New Jersey SmartStart Program. See section 5.0 for other incentive opportunities.

Expected Life: 15 years Lifetime Savings: 274,500 kWh 0 therms

\$ 45,000

This measure is not recommended in lieu of ECM-11.

4.6.2 ECM-10 Install Lighting Controls (Occupancy Sensors)

Review of the comprehensive lighting survey determined that lighting in classrooms and various other spaces are typically operational, regardless of occupancy. Therefore, installing an occupancy sensor in these spaces to turn off lights when the areas are unoccupied was assessed.

This measure recommends installing occupancy sensors for the current lighting system. Using a process similar to that utilized in section 4.5.1, the energy savings for this measure was calculated by applying the known fixture wattages in the space to the estimated existing and proposed times of operation for each fixture. The difference between the two values resulted in an annual savings of 43,600 kWh.

There isn't a kW savings for this calculation because the same lamps are being used and the sensors are just reducing the This ECM is eligible for an incentive up to \$1,900 from the New Jersey SmartStart Program.

The implementation cost and savings related to this ECM are presented in Appendix C and summarized below:

Budgetar y		Annua	al Utility Sav	rings		Estimated	Total		Potential Incentive	Payback	Payback
Cost						Maintenance	Savings	ROI	*	(without	(with
	Natural Electricity Gas Total				Savings				Incentive)	Incentive)	
\$	kW					\$	\$		\$	Years	Years
15,000	0	45,400	0		5,600	0	5,600	6.2	1,900	2.7	2.3

ECM-10 Install Lighting Controls (Occupancy Sensors)

* Incentive shown is per the New Jersey Direct Install Program. See section 5.0 for other incentive opportunities.

Expected Life:15yearsLifetime
Savings:681,000kWh0therms\$84,000

This measure is not recommended in lieu of ECM-11.

4.6.3 ECM-11 Lighting Replacements with Controls (Occupancy Sensors)

This measure is a combination of ECM-9 and ECM-10; recommending replace/upgrade the current lighting fixtures to more efficient ones and installing occupancy sensors on the new lights. Interactive effects of the higher efficiency lights and occupancy sensors lead the energy and cost savings for this measure to not be cumulative or equivalent to the sum of replacing the lighting fixtures alone and installing occupancy sensors without the lighting upgrade. The calculated annual savings is 51,900 kWh with a demand reduction of 6.4 kW at a total of \$7,100.

This ECM is eligible for an incentive up to \$6,500 from the New Jersey SmartStart Program to install occupancy sensors, upgrade the T-8 lamps to high efficiency T-8s and the incandescent bulbs to compact florescent spirals.

The implementation cost and savings related to this ECM are presented in Appendix C and summarized below:

Budgetar y		Annu	al Utility Savi	ngs	;	Estimated	Total		Potential Incentive	Payback	Payback
Cost						Maintenance	Savings	ROI	*	(without	(with
	Natural Electricity Gas Total				Savings				Incentive)	Incentive)	
\$	kW	kWh	Therms		\$	\$	\$		\$	Years	Years
69,000	6.4 51,900 0 7,100				0	7,100	0.5	6,500	9.7	8.8	

ECM-11 Lighting Replacements with Controls (Occupancy Sensors)

* Incentive shown is per the New Jersey Direct Install Program. See section 5.0 for other incentive opportunities.

Expected Life: <u>15</u> years Lifetime Savings: 778,500 kWh 0 therms \$106,500

This measure is recommended.

4.7 Plumbing Systems

Faucets, toilets and urinals installed before the 90s consume more water than modern plumbing fixtures. On average faucets installed before the 90s have a flow rate of 3 gallons per minute (gpm), urinals consume approximately 3 gallons per flush (gpf) and toilets typically use 5.5 gpf. Newer toilets use 1.6 gpf, newer urinals consume 1.0 gpf and newer sinks use 0.5 gpm.

There are no ECMs associated with the plumbing system because the school uses well water and does not pay a utility for it.

4.8 Kitchen Equipment

Cooking equipment for the kitchen within the school runs partly on electricity and partly on natural gas. This includes the exhaust hoods, stove, oven, dishwasher, and dishwasher booster heater. There isn't any walk-in cooler / freezers on site.

The following ECMs identified are improvements to Robert Erskine Elementary School's kitchen equipment:

4.8.1 ECM-12 Convert Electric Dish Washer Booster Heater to Natural Gas

The school uses a 10.4 kW electric heater for drying dishes. This electric heater has 8 1.3 KW heating elements. The facility uses this heater for four hours per day for 180 days per year. Utilizing natural gas for the heater was assessed.

The calculation uses electrical consumption and annual electrical cost as the baseline, which was converted to natural gas for the proposed case. The difference between the two values is the energy savings.

The implementation cost and savings related to this ECM are presented in Appendix C and summarized below:

Budgetary Cost		Annu	al Utility Savi	ngs	Estimated Maintenance	Total Savings	ROI	Potential Incentive*	Payback (without	Payback (with
	Elec	Natural Electricity Gas Tot		Total	Savings	_			Incentive)	Incentive)
\$	kW	kW kWh Therms		\$	\$	\$		\$	Years	Years
15,000	25.0	4,200	(200)	600	0	600	1.6	0	>20	>20

* Does not qualify for an Incentive per the New Jersey SmartStart Program. See section 5.0 for other incentive opportunities.

Expected Life: <u>12</u> years Lifetime Savings: <u>51,400</u> kWh (2,400) therms \$7,200

This measure is not recommended.

4.8.2 ECM-13 Add Dedicated Hood and Fan for Oven

There is an oven in the kitchen that needs an independent exhaust hood. To save money a contractor tied the exhaust system for the oven into the hood exhaust for the stove. The hood exhaust utilizes a 1 HP exhaust fan that would typically run 4 hours per day but is required to run continuously for the oven. This ECM will address putting the oven on an independent exhaust system.

The calculation uses electrical nameplate data (HP) from the exhaust fan and the runtime hours to estimate the annual electrical usage in kWh. A new motor is selected for the oven exhaust based on the amount of air that can travel through an 8"D duct. The proposed annual electrical usage in kWh is calculated from converting the electrical nameplate data (HP) from the new exhaust fan multiplied by the runtime hours. The difference between the two values is the energy savings.

The implementation cost and savings related to this ECM are presented in Appendix C and summarized below:

Budgetary		Annual Utility Savings				Estimated	Total		Potential Incentive	Payback	Payback	
Cost					Maintenance	Savings	ROI	*	(without	(with		
	Electricity		Natural Gas		Total	Savings				Incentive)	Incentive)	
\$	kW kWh		Therms		\$	\$	\$		\$	Years	Years	
12,000	0.6 1,000 0		190	0	190	(0.8)	0	>20	>20			

ECM-13 Add Dedicated Hood and Fan for Oven Convert Electric

* Does not qualify for an Incentive per the New Jersey SmartStart Program. See section 5.0 for other incentive opportunities.

Expected Life:	15	years			
Lifetime					
Savings:	15,000	kWh	0	therms	\$ 2,400

This measure is not recommended.

5.0 PROJECT INCENTIVES

5.1 Incentives Overview

5.1.1 New Jersey Pay For Performance Program

The facility will be eligible for incentives from the New Jersey Office of Clean Energy. The most significant incentives are available from the New Jersey Pay for Performance (P4P) Program. The P4P program is designed for qualified energy conservation projects applied to facilities whose demand in any of the preceding 12 months exceeds 100 kW. This average minimum has been waived for buildings owned by local governments or municipalities and non-profit organizations, however. Facilities that meet this criterion must also achieve a minimum performance target of 15% energy reduction by using the EPA Portfolio Manager benchmarking tool before and after implementation of the measure(s). If the participant is a municipal electric company customer, and a customer of a regulated gas New Jersey Utility, only gas measures will be eligible under the Program. Available incentives are as follows:

Incentive #1: Energy Reduction Plan – This incentive is designed to offset the cost of services associated with the development of the Energy Reduction Plan (ERP).

- Incentive Amount: \$0.10/SF
- Minimum incentive: \$5,000
- Maximum Incentive: \$50,000 or 50% of Facility annual energy cost

The standard incentive pays \$0.10 per square foot, up to a maximum of \$50,000, not to exceed 50% of facility annual energy cost, paid after approval of application. For building audits funded by the New Jersey Board of Public Utilities, which receive an initial 75% incentive toward performance of the energy audit, facilities are only eligible for an additional \$0.05 per square foot, up to a maximum of \$25,000, rather than the standard incentive noted above.

Incentive #2: Installation of Recommended Measures – This incentive is based on projected energy savings as determined in Incentive #1 (Minimum 15% savings must be achieved), and is paid upon successful installation of recommended measures.

Electric

- Base incentive based on 15% savings: \$0.09/ per projected kWh saved.
- For each % over 15% add: \$0.005 per projected kWh saved.

• Maximum incentive: \$0.11/ kWh per projected kWh saved

<u>Gas</u>

- Base incentive based on 15% savings: \$0.90/ per projected Therm saved.
- For each % over 15% add: \$0.05 per projected Therm saved.
- Maximum incentive: \$1.25 per projected Therm saved

Incentive cap: 25% of total project cost

Incentive #3: Post-Construction Benchmarking Report – This incentive is paid after acceptance of a report proving energy savings over one year utilizing the Environmental Protection Agency (EPA) Portfolio Manager benchmarking tool.

<u>Electric</u>

- Base incentive based on 15% savings: \$0.09/ per projected kWh saved.
- For each % over 15% add: \$0.005 per projected kWh saved.
- Maximum incentive: \$0.11/ kWh per projected kWh saved

<u>Gas</u>

- Base incentive based on 15% savings: \$0.90/ per projected Therm saved.
- For each % over 15% add: \$0.05 per projected Therm saved.
- Maximum incentive: \$1.25 per projected Therm saved

Combining incentives #2 and #3 will provide a total of \$0.18/ kWh and \$1.8/therm not to exceed 50% of total project cost. Additional incentives for #2 and #3 are increased by \$0.005/kWh and \$0.05/therm for each percentage increase above the 15% minimum target to 20%, calculated with the EPA Portfolio Manager benchmarking tool, not to exceed 50% of total project cost.

	Incentives \$								
	Electric Gas Total								
Incentive #1	\$0	\$0	\$5,000						
Incentive #2	\$7,821	\$12,357	\$20,178						
Incentive #3	\$7,821	\$12,357	\$20,178						
Total	\$15,643	\$24,714	\$45,357						

Total P4P incentives are summarized below:

The current ECM's meet the minimum savings requirement of 15% for the Pay for Performance Program and therefore the building would be eligible for incentives#1, #2 and #3. See Appendix D for additional details.

5.1.2 New Jersey Smart Start Program

For this energy audit, incentives for applicable ECM's shown are calculated using the 2012 New Jersey Smart Start Incentive program. This program provides incentives for mechanical and electrical equipment upgrades. If the School District wishes to and is eligible to participate in the Energy Savings Plan (ESIP program and/or the Pay for Performance Incentive Program (P4P), It cannot participate in either the Smart Start or Direct Install Programs as well.

5.1.3 Direct Install Program

The Direct Install Program applies to facilities that have a peak electrical demand of 150 kW or less in any of the previous 12 months. Buildings must be located in New Jersey and served by one of the state's public, regulated electric utility companies.

Direct Install is funded through New Jersey's Clean Energy Program and is designed to provide capital for building energy upgrade projects to fast track implementation. The program will pay up to 70% of the costs for lighting, HVAC, motors, refrigeration, and

other equipment upgrades with higher efficiency alternatives. If a building is eligible for this funding, the Direct Install Program can reduce the implementation cost of energy conservation projects.

The program pays a maximum amount of \$75,000 per building, and up to \$250,000 per customer per year. Installations must be completed by a Direct Install participating contractor, a list of which can be found on the New Jersey Clean Energy Website at http://www.njcleanenergy.com. Contractors will coordinate with the applicant to arrange installation of recommended measures identified in a previous energy assessment, such as this document.

This school is eligible to receive funding from the Direct Install Program because the electrical demand is less than the maximum peak electrical demand of 150 kW in the last 12 month period.

5.1.4 Energy Savings Improvement Plans (ESIP)

The Energy Savings Improvement Program (ESIP) allows government agencies to make energy related improvements to their facilities and pay for the costs using the value of energy savings that result from the improvements. Under the recently enacted Chapter 4 of the Laws of 2009 (the law), the ESIP provides all government agencies in New Jersey with a flexible tool to improve and reduce energy usage with minimal expenditure of new financial resources.

ESIP allows local units to use "energy savings obligations" to pay for the capital costs of energy improvements to their facilities. This can be done over a maximum term of 15 years. Energy savings obligations are not considered "new general obligation debt" of a local unit and do not count against debt limits or require voter approval. They may be issued as refunding bonds or leases. Savings generated from the installation of energy conservation measures pay the principal of and interest on the bonds; for that reason, the debt service created by the ESOs is not paid from the debt service fund, but is paid from the general fund.

For local governments interested in pursuing an ESIP, the first step is to perform an energy audit. Pursuing a Local Government Energy Audit through New Jersey's Clean Energy Program is a valuable first step to the ESIP approach. The "Local Finance Notice" outlines how local governments can develop and implement an ESIP for their facilities (see Appendix E). The ESIP can be prepared internally if the entity has qualified staff. If not, the ESIP must be implemented by an independent contractor and not by the energy savings company producing the Energy Reduction Plan.

The ESIP approach may not be appropriate for all energy conservation and energy efficiency improvements. Local units should carefully consider all alternatives to develop an approach that best meets their needs.

6.0 ALTERNATIVE ENERGY SCREENING EVALUATION

6.1 Solar

6.1.1 Photovoltaic Rooftop Solar Power Generation

The facility was evaluated for the potential to install rooftop photovoltaic (PV) solar panels for power generation. Present technology incorporates the use of solar cell arrays that produce direct current (DC) electricity. This DC current is converted to alternating current (AC) with the use of an electrical device known as an inverter. The building's roof has sufficient room to install a solar cell array. However, there is not sufficient room to accommodate a system that will provide the entire electrical demand of the building. For this analysis we will consider a 90.0 KW system.

The PVWATTS solar power generation model was utilized to calculate PV power generation; this model is provided in Appendix E.

Installation of (PV) arrays in the state New Jersey will allow the owner to participate in the New Jersey solar renewable energy certificates program (SREC). This is a program that has been set up to allow entities with large amounts of environmentally unfriendly emissions to purchase credits from zero emission (PV) solar-producers. An alternative compliance penalty (ACP) is paid for by the high emission producers and is set each year on a declining scale of 3% per year. One SREC credit is equivalent to 1000 kilowatt hours of PV electrical production; these credits can be traded for period of 15 years from the date of installation. Payments that will be received from the PV producer will change from year to year dependent upon supply and demand. Renewable Energy Consultants is a third party SREC broker that has been approved by the New Jersey Clean Energy Program. There is no definitive way to calculate an exact price that will be received by the PV producer per SREC over the next 15 years. Renewable Energy Consultants estimates an average of \$55/ SREC for 2012 and this number was utilized in the cash flow for this report.

The system costs for PV installations were derived from contractor budgetary pricing in the state of New Jersey for estimates of total cost of system installation. It should be noted that the cost of installation is currently about \$4.00 per watt or \$4,000 per kW of installed system, for a 90 kW system. Other cost considerations will also need to be considered. PV panels have an approximate 20 year life span; however, the inverter device that converts DC electricity to AC has a life span of 10 to 12 years and will need to be replaced multiple times during the useful life of the PV system.

The implementation cost and savings related to this ECM are presented in Appendix E and summarized as follows:

Budgetary Cost	Annual Utility Savings				Total Savings	New Jersey Renewable Energy Incentive*	New Jersey Renewable SREC**	Payback (without incentive)	Payback (with incentives)
	Ele	ectricity	Natural Gas	Total					
\$	kW	kWh	Therms	\$	\$	\$	\$	Years	Years
360,000	90.0	115,200	0	17,741	17,740	0	6,336	>20	15.0

Photovoltaic (PV) Rooftop Solar Power Generation – 90.0 kW System

** Estimated Solar Renewable Energy Certificate Program (SREC) at \$55/1000 kWh

This measure is not recommended due to the long payback time. It is suggested, however, that the school continue to monitor the SREC credits and evaluate the PV installation again should the SREC credit values increase.

6.1.2 Solar Thermal Hot Water Plant

Active solar thermal systems use solar collectors to gather the sun's energy to heat water, another fluid, or air. An absorber in the collector converts the sun's energy into heat. The heat is then transferred by circulating water, antifreeze, or sometimes air to another location for immediate use or storage for later utilization. Applications for active solar thermal energy include providing hot water, heating swimming pools, space heating, and preheating air in residential and commercial buildings.

A standard solar hot water system is typically composed of solar collectors, heat storage vessel, piping, circulators, and controls. Systems are typically integrated to work alongside a conventional heating system that provides heat when solar resources are not sufficient. The solar collectors are usually placed on the roof of the building, oriented south, and tilted around the site's latitude, to maximize the amount of radiation collected on a yearly basis.

Several options exist for using active solar thermal systems for space heating. The most common method involves using glazed collectors to heat a liquid held in a storage tank (similar to an active solar hot water system). The most practical system would transfer the heat from the panels to thermal storage tanks and transfer solar produced thermal energy to use for domestic hot water production. DHW is presently produced by gas-fired water heaters and, therefore, this measure would offer natural gas utility savings.

6.2 Wind

Small wind turbines use a horizontal axis propeller, or rotor, to capture the kinetic energy of the wind and convert it into rotary motion to drive a generator which usually is designed specifically for the wind turbine. The rotor consists of two or three blades, usually made from wood or fiberglass. These materials give the turbine the needed strength and flexibility, and have the added advantage of not interfering with television signals. The structural backbone of the wind turbine is the mainframe, and includes the slip-rings that connect the wind turbine, which rotates as it points into changing wind directions, and the fixed tower wiring. The tail aligns the rotor into the wind.

To avoid turbulence and capture greater wind energy, turbines are mounted on towers. Turbines should be mounted at least 30 feet above any structure or natural feature within 300 feet of the installation. Smaller turbines can utilize shorter towers. For example, a 250-watt turbine may be mounted on a 30-50 foot tower, while a 10 kW turbine will usually need a tower of 80-120 feet. Tower designs include tubular or latticed, guyed or self-supporting. Wind turbine manufacturers also provide towers.

The New Jersey Clean Energy Program for small wind installations has designated numerous preapproved wind turbines for installation in the State of New Jersey. Incentives for wind turbine installations are based on kilowatt hours saved in the first year. Systems sized under 16,000 kWh per year of production will receive a \$3.20 per kWh incentive. Systems producing over 16,000 kWh will receive \$51,200 for the first 16,000 kWh of production with an additional \$0.50 per kWh up to a maximum cap of 750,000 kWh per year.

This measure is not recommended due to space and code requirements.

6.3 Geothermal

Geothermal heat pumps (GHP) transfer heat between the constant temperature of the earth and the building to maintain the building's interior space conditions. Below the surface of the earth throughout New Jersey the temperature remains in the low 50°F range throughout the year. This stable temperature provides a source for heat in the winter and a means to reject excess heat in the summer. With GHP systems, water is circulated between the building and the piping buried in the ground. The ground heat exchanger in a GHP system is made up of a closed or open loop pipe system. Most common is the closed loop in which high density polyethylene pipe is buried horizontally at 4-6 feet deep or vertically at 100 to 400 feet deep. These pipes are filled with an environmentally friendly antifreeze/water solution that acts as a heat exchanger. In the summer, the water picks up heat from the building and moves it to the ground. In the winter the system reverses and fluid picks up heat from the ground and moves it to the building. Heat pumps make collection and transfer of this heat to and from the building possible.

To take advantage of a GHP system, the existing mechanical equipment would have to be removed or overhauled; and either a low temperature closed loop water source heat pump system or a water to water heat pump system would have to be installed to realize the benefit of the consistent temperature of the ground.

This measure is not recommended because the extent of HVAC system renovation needed for implementation greatly outweighs the savings over the life of the equipment.

6.4 Combined Heat and Power Generation (CHP)

Combined heat and power, cogeneration, is self-production of electricity on-site with beneficial recovery of the heat byproduct from the electrical generator. Common CHP equipment includes reciprocating engine-driven, micro turbines, steam turbines, and fuel cells. Typical CHP customers include industrial, commercial, institutional, educational institutions, and multifamily residential facilities. CHP systems that are commercially viable at the present time are sized approximately 50 kW and above, with numerous options in blocks grouped around 300 kW, 800 kW, 1,200 kW and larger. Typically,

CHP systems are used to produce a portion of the electricity needed by a facility some or all of the time, with the balance of electric needs satisfied by purchase from the grid.

Any proposed CHP project will need to consider many factors, such as existing system load, use of thermal energy produced, system size, natural gas fuel availability, and proposed plant location. The facility has sufficient need for electrical generation and the ability to use most of the thermal byproduct during the winter, thermal usage during the summer months is low. Thermal energy produced by the CHP plant in the warmer months will be wasted. An absorption chiller could be installed to utilize the heat to produce chilled water; however, there is no chilled water distribution system in the building. The most viable selection for a CHP plant at this location would be a reciprocating engine natural gas-fired unit. Purchasing this system and performing modifications to the existing HVAC and electrical systems would greatly outweigh the savings over the life of the equipment.

This measure is not recommended based on the relatively low electrical and thermal usage of the school, the lack of a need for simultaneous heating and cooling and the low occupancy during the summer months.

6.5 Biomass Power Generation

Biomass power generation is a process in which waste organic materials are used to produce electricity or thermal energy. These materials would otherwise be sent to the landfill or expelled to the atmosphere. To participate in NJCEP's Customer On-Site Renewable Energy program, participants must install an on-site sustainable biomass or fuel cell energy generation system. Incentives for bio-power installations are available to support up to 1MW-dc of rated capacity.

*Class I organic residues are eligible for funding through the NJCEP CORE program. Class I wastes include the following renewable supply of organic material:

- · Wood wastes not adulterated with chemicals, glues or adhesives
- Agricultural residues (corn stover, rice hulls or nut shells, manures, poultry litter, horse manure, etc) and/or methane gases from landfills
- · Food wastes
- Municipal tree trimming and grass clipping wastes
- Paper and cardboard wastes
- · Non adulterated construction wood wastes, pallets

The NJDEP evaluates biomass resources not identified in the RPS.

Examples of eligible facilities for a CORE incentive include:

- Digestion of sewage sludge
- · Landfill gas facilities
- · Combustion of wood wastes to steam turbine
- Gasification of wood wastes to reciprocating engine
- Gasification or pyrolysis of bio-solid wastes to generation equipment

* from NJOCE Website

This measure is not recommended due to noise issues and because the facility does not have a steady waste stream to utilize as a fuel source.

6.6 Demand Response Curtailment

Presently, Electricity is delivered by Public Service Electric and Gas (PSE&G), which receives the electricity from regional power grid RFC. PSE&G is the regional transmission organization (RTO) that coordinates the movement of wholesale electricity in all or parts of 13 states and the District of Columbia including the State of New Jersey.

Utility Curtailment is an agreement with the utility provider's regional transmission organization and an approved Curtailment Service Provider (CSP) to shed electrical load by either turning major equipment off or energizing all or part of a facility utilizing an emergency generator; therefore, reducing the electrical demand on the utility grid. This program is to benefit the utility company during high demand periods and utility provider offers incentives to the CSP to participate in this program. Enrolling in the program will require program participants to drop electrical load or turn on emergency generators during high electrical demand conditions or during emergencies. Part of the program also will require that program participants reduce their required load or run emergency generators with notice to test the system.

A pre-approved CSP will require a minimum of 100 kW of load reduction to participate in any curtailment program. From July 2011 through August 2012 the facility had a peak electricity demand of 77.6 kW and a minimum of 35.2 kW. The monthly average over the observed 12 month period was 68.7 kW.

This measure is not recommended.

7.0 EPA PORTFOLIO MANAGER

The EPA Portfolio Manager benchmarking tool was used to assess the building's energy performance. Portfolio Manager provides a site and source Energy Use Intensity (EUI), as well as an Energy Star performance rating for qualifying building types. The EUIs are provided in kBtu/ft²/year, and the performance rating represents how energy efficient a building is on a scale of 1 to 100, with 100 being the most efficient. In order for a building to receive and Energy Star label, the energy benchmark rating must be at least 75. As energy use decreases from implementation of the proposed measures, the Energy Star rating will increase.

The site EUI is the amount of heat and electricity consumed by a building as reflected in utility bills. Site energy may be delivered to a facility in the form of primary energy, which is raw fuel burned to create heat or electricity, such as natural gas or oil; or as secondary energy, which is the product created from a raw fuel such as electricity or district steam. To provide an equitable comparison for different buildings with varying proportions of primary and secondary energy consumption, Portfolio Manager uses the convention of source EUIs. The source energy also accounts for losses incurred in production, storage, transmission, and delivery of energy to the site, which provide an equivalent measure for various types of buildings with differing energy sources. The results of the Portfolio Manager benchmarking tool are contained in the table below.

Building	Site EUI kBtu/ft²/yr	Source EUI Btu/ft ² /yr	Energy Star Rating (1-100)
Robert J Erskine Elementary School	106	173	28

The Robert Erskine Elementary School has an above average site EUI and therefore a below average Energy Star Rating Score of 28 (50 being the median score). This is most likely attributed to the poor windows and antiquated boilers. By implementing the measures discussed in this report, it is expected that the EUI can be reduced and the Energy Star Rating increased.

The Portfolio Manager account can be accessed by entering the username and password shown below at the login screen of the Portfolio Manager website (https://www.energystar.gov/istar/pmpam/).

A full EPA Energy Star Portfolio Manager Report is located in Appendix G.

8.0 CONCLUSIONS & RECOMMENDATIONS

The LGEA energy audit conducted by CHA at the Robert Erskine Elementary School identified potential annual savings of \$12,300 may be realized for the recommended ECMs, with a summary of the costs, savings, and paybacks as follows:

	Summary of Energy Conservation Measures									
Energy Conservation Measure		Approx. Costs (\$)	Costs Savings (Years) Incentive		Payback (Years) w/ Incentive	Recommended				
ECM -3	Replace (2) Boilers with Condensing Boilers	316,000	3,500	>20	4,000	>20	Х			
ECM -4	Install VSDs on Hot Water Pumps (5 HP)	9,000	1,100	8.2	2,000	6.4	Х			
ECM -5	Replace Waste Water Pump Motors with Hi Efficiency Motors	3,000	600	5.0	2,800	0.3	х			
ECM 11	Lighting Replacement s with Lighting Controls (occupancy sensors)	69,000	7,100	9.7	6,500	8.8	Х			

APPENDIX A

Utility Usage Analysis

Ringwood BOE 88 Erskine Road, Ringwood, NJ 07456

Annual Utilities

12-month Summary

Electric								
Annual Usage	252,320	kWh/yr						
Annual Cost	38,910	\$						
Blended Rate	0.154	\$/kWh						
Consumption Rate	0.123	\$/kWh						
Demand Rate	9.53	\$/kW						
Peak Demand	77.6	kW						
Min. Demand	35.2	kW						
Avg. Demand	68.7	kW						
	Natural Gas							
Annual Usage	24,912	Therms/yr						
Annual Cost	23,041	\$						
Rate	0.925	\$/Therm						

Ringwood BOE

88 Erskine Road, Ringwood, NJ 07456

Utility Bills: Account Numbers

Account Number

School Building

67933-10000 67 602 530 00 Robert Erskine School Robert Erskine School Robert Erskine School

Location

88 Erskine Road, Ringwood, NJ 07456 88 Erskine Road, Ringwood, NJ 07456 88 Erskine Road, Ringwood, NJ 07456

Notes

Electricity Natural Gas Water

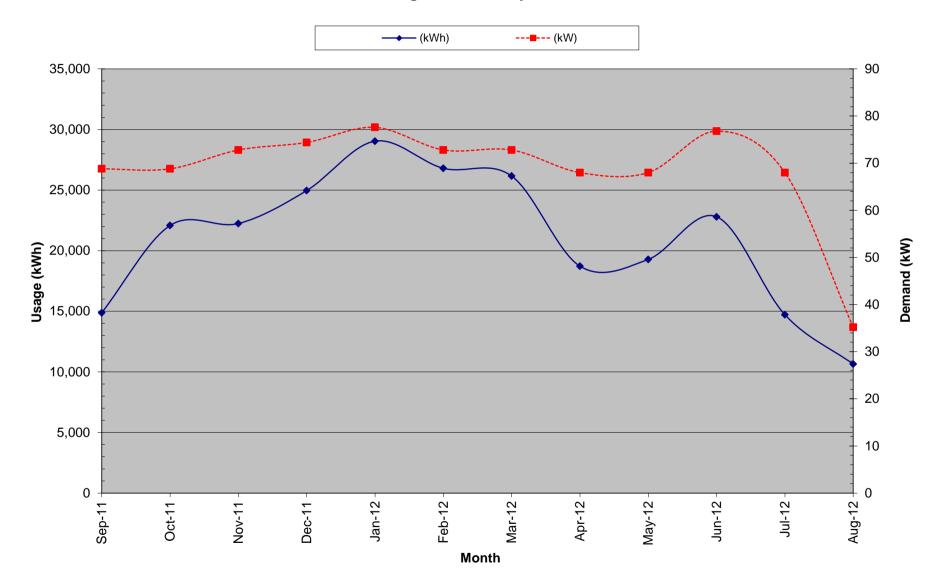
Type

Ringwood BOE 88 Erskine Road, Ringwood, NJ 07456

For Service at:	Robert Erskine School
Account No.:	67933-10000
Meter No.:	95800048
Electric Service	

Delivery -Orange & Rockland Electric Company Supplier -

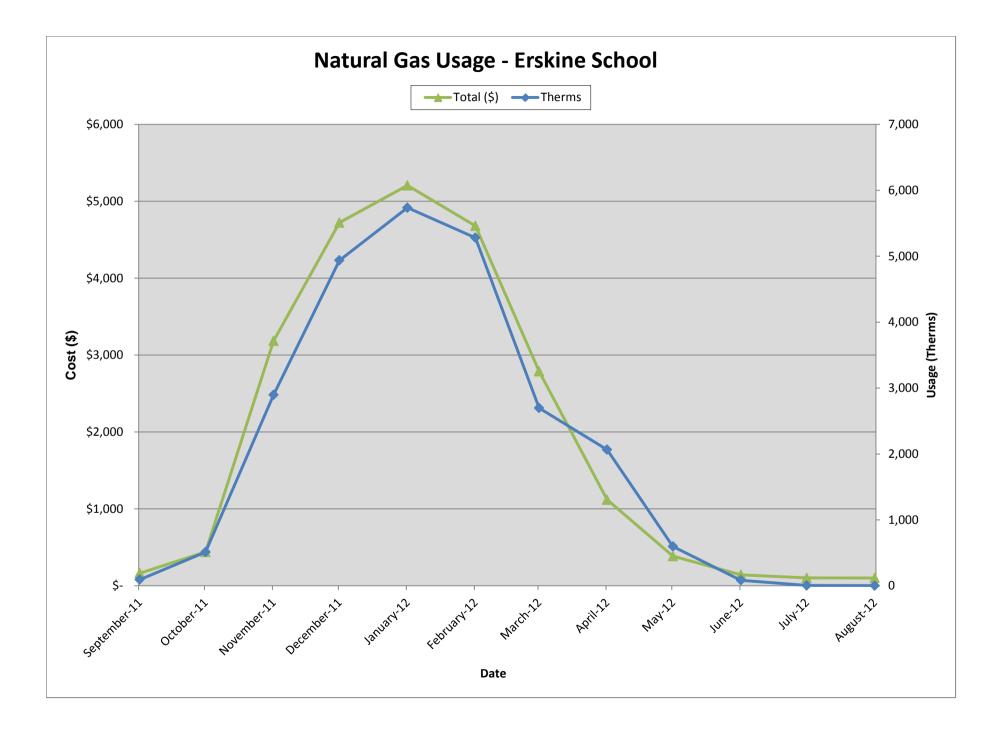
Direct Energy


			Р	Provider Charges		Usage (kWh) vs. Dema	and (kW) Charges		Unit Costs	
	Consumption	Demand	Delivery	Supplier	Total	Consumption	Demand	Blended Rate	Consumption	Demand
Month	(kWh)	(kW)	(\$)	(\$)	(\$)	(\$)	(\$)	(\$/kWh)	(\$/kWh)	(\$/kW)
September-11	14,880	68.80	2,793.24		2,793.24	2,074.86	718.38	0.19	0.14	10.44
October-11	22,080	68.80	3,291.28		3,291.28	2,618.83	672.45	0.15	0.12	9.77
November-11	22,240	72.80	3,306.34		3,306.34	2,608.00	698.34	0.15	0.12	9.59
December-11	24,960	74.40	3,637.60		3,637.60	2,922.77	714.83	0.15	0.12	9.61
January-12	29,040	77.60	4,118.23		4,118.23	3,370.46	747.77	0.14	0.12	9.64
February-12	26,800	72.80	3,826.22		3,826.22	3,127.88	698.34	0.14	0.12	9.59
March-12	26,160	72.80	3,757.75		3,757.75	3,059.41	698.34	0.14	0.12	9.59
April-12	18,720	68.00	2,854.33		2,854.33	2,205.43	648.90	0.15	0.12	9.54
May-12	19,280	68.00	2,918.65		2,918.65	2,269.75	648.90	0.15	0.12	9.54
June-12	22,800	76.80	3,511.94		3,511.94	2,743.68	768.26	0.15	0.12	10.00
July-12	14,720	68.00	2,470.54	978.87	3,449.41	2,775.31	674.10	0.23	0.19	9.91
August-12	10,640	35.20	740.94	703.73	1,444.67	1,284.30	160.37	0.14	0.12	4.56
Total (All)	252,320	77.60	\$37,227.06	\$1,682.60	\$38,909.66	\$31,060.68	\$7,848.98	\$0.15	\$0.12	\$9.53
Total (last 12-months)	252,320	77.60	\$37,227.06	\$1,682.60	\$38,909.66	\$31,060.68	\$7,848.98	\$0.15	\$0.12	\$9.53
Notes	1 Number of kWb of electric	2	3	4	5	6	7	8	9	10

1.) Number of kWh of electric energy used per month

2.) Number of kW of power measured

2.) Number of kW of power measured
3.) Electric charges from Delivery provider
4.) Electric charges from Supply provider
5.) Total charges (Delivery + Supplier)
6.) Charges based on the number of kWh of electric energy used
7.) Charges based on the number of kW of power measured
8.) Total Charges (\$) / Consumption (kWh)
9.) Consumption Charges (\$) / Consumption (kWh)
10.) Demand Charges (\$) / Demand (kW)


Electric Usage - Elementary School

Ringwood BOE 88 Erskine Road, Ringwood, NJ 07456

For Service at:	Robert Erskin	e School
Meter #:	2523428	
Natural Gas Service		Account No.
Delivery -	PSEG	67 602 530 00
Supplier -	Hess	446675/447466

Month	Total (\$)	Supply (\$)	C	Delivery (\$)	Therms	\$/Therm
September-11	\$ 163.92	\$ 51.62	\$	112.30	94.13	\$ 1.74
October-11	\$ 440.30	\$ 271.15	\$	169.15	512.42	\$ 0.86
November-11	\$ 3,184.89	\$ 1,633.47	\$	1,551.42	2,896.64	\$ 1.10
December-11	\$ 4,723.58	\$ 2,804.17	\$	1,919.41	4,938.42	\$ 0.96
January-12	\$ 5,206.02	\$ 3,189.67	\$	2,016.35	5,736.99	\$ 0.91
February-12	\$ 4,680.97	\$ 2,850.43	\$	1,830.54	5,280.92	\$ 0.89
March-12	\$ 2,788.66	\$ 1,423.61	\$	1,365.05	2,696.86	\$ 1.03
April-12	\$ 1,118.99	\$ 790.18	\$	328.81	2,065.68	\$ 0.54
May-12	\$ 386.29	\$ 206.54	\$	179.75	597.02	\$ 0.65
June-12	\$ 143.61	\$ 32.79	\$	110.82	84.21	\$ 1.71
July-12	\$ 102.51	\$ 2.29	\$	100.22	5.36	\$ 19.12
August-12	\$ 101.39	\$ 1.46	\$	99.93	3.22	\$ 31.53
Total	\$ 23,041.13				24,911.87	\$ 0.92

APPENDIX B

Equipment Inventory

New Jersey BPU Energy Audit Program CHA Project #242736 Ringwood BOE - NJBPU Robert Erskine Elementary School Original Construction Date: 1960 Renovation/Addtion Date: -

Description	QTY	Manufacturer Name	Model No.	Serial No.	Equipment Type / Utility	Capacity/Size/Efficiency	Output	Fuel Type	Motor HP	Eff.	Location	Areas/Equipment Served	Date Installed	Remaining Useful Life (years)	Other Info.
Boiler	2	Cleaverbrooks	P142-60	#1: L-22907 #2: L-28104	Heating	input 2,010,000 BTUH	-	Natural Gas	-	75.0%	MER	School	1960	-27	Fair
P-1, P-1	2	B&G	1510 BF-8	#1: 1BF069LFE11 #2: 1BF069E80	Heating	-	-	HW	5	89.5%	MER	School	2010	13	Good
P-2, P-3	2	-	-	-	Heating	-	-	HW	5	84.0%	WWTP	WWTP	-	-	Good
P-4, P-5	2	-	-	-	Heating	-	-	HW	1.5	84.0%	WWTP	WWTP	-	-	Good
DWH	1	A.O. Smith	BT 251-880	MF93-0276065-880	DHW Heater	80 Gallon, 240,000 BTUH		Natural Gas	-	80.0%	MER	School	1993	-7	Fair
DWH	1	Bradford White	M16U6SS-1NA1	FJ12427035	DHW Heater	6 Gallon, 120V	-	Electric	-	-	WWTP Office	WWTP Office	-	-	Good
Window A/C	16	GE	ASM12AK51	AM441077	Cooling	EER 10.8, 18,000 BTUH	-	Electric		-	Classrooms	Classrooms	2007	7	Good
HV-1	1	Trane	2M13 BI 4406	274093	HV	-	-	Electric	-	-	MER	Multipurpose Room	2002	20	Good
HV-2	2	Trane	UHSA-0905-8A-AAE	580L-19263	HV	-	-	Electric	-	-	Garage	School's Return	1960	-	Good
AC-1	1	Speedaire	3Z420E	-	AIR COMPRESSOR	-	-	Elect	3	-	MER	School	1960	-	Good
CU-1	1	-	-	-	DX cooling			Elect			Outside	Media Center	-	-	Good
Classroom Unit Ventilator	22	Nesbitt			HW			HW			Classrooms	Classrooms	-	-	Fair

APPENDIX C

ECM Calculations

	Summary o	f Energy Co	nservation N	Measures			
	Energy Conservation Measure	Approx. Costs (\$)	Approx. Savings (\$/year)	Payback (Years) w/o Incentive	Potential Incentive (\$)*	Payback (Years) w/ Incentive	Recommen ded For Implement ation
ECM-1a	Replace Window Seals	18,000	1,600	11	0	11	
ECM-1b	Window Replacements and Reduced Glazing	450,000	2,900	>20	0	>20	
ECM-2	Replace Door Seals	1,700	200	9	0	9	
ECM-3	Replace (2) Boilers with Condensing Boilers	316,000	3,500	>20	4,000	>20	Х
ECM-4	Install VSDs on Hot water Pumps (5 HP)	12,000	1,100	11	2,000	9	Х
ECM-5	Replace Waste Water Pump Motors with Hi Efficiency Motors	3,000	600	5	2,800	0	Х
ECM-6	Replace Window A/C units with Energy Star Window A/C units	4,200	300	14	0	14	
ECM-7	Unoccupied Set-Back (72 to 55)	17,000	900	19	0	19	
ECM-8	Replace Domestic Hot Water Heater w/ Instantaneous unit	11,300	200	>20	300	>20	
ECM-9	Lighting Replacement / Upgrades	54,000	3,000	18	4,600	16	
ECM-10	Install Lighting Controls (Occupancy Sensors)	15,000	5,600	3	1,900	2	
ECM-11	Lighting Replacements with Lighting Controls (Occupancy Sensors)	69,000	7,100	10	6,500	9	Х
ECM-12	Convert Electric Dish Washer Booster Heater to Natural Gas	15,000	600	>20	0	>20	
ECM-13	Add Dedicated Hood and Fan for Oven	12,000	190	>20	0	>20	

ECM Summary Sheet

ECM-1a	Replace W	/indow Sea	als							
Budgetary Cost	Annual Utility	-	Net Cas	Tatal	Estimated Maintenance	Total Savings	ROI	Incentive *	Payback (without	Payback (with
\$	Electric kWh	Electric kW	Nat Gas Therms	Total \$	Savings \$	\$		\$	incentive) Years	incentive) Years
↓ 18,000	0	0	1,700	Ψ 1,600		پ 1,600	(0.6)	Ф 0	11.3	11.3
Expected Life	Ţ	years	1,700	1,000	Ŭ	1,000	(0.0)	Ŭ	11.0	11.0
Lifetime Savings	-	kWh	8,500	therms		\$ 8,000				
ECM-1b	Window R	eplacemer	its and Red	luced Glaz	ing					
Budgetary	Annual Utility	Savings			Estimated	Total			Payback	Payback
Cost					Maintenance	Savings	ROI	Incentive *	(without	(with
	Electric	Electric	Nat Gas	Total	Savings				incentive)	incentive)
\$	kWh	kW	Therms	\$	\$	\$		\$	Years	Years
450,000	0	0	3,100	2,900	0	2,900	(0.8)	0	>20	>20
Expected Life		years				• • • • • • •				
Lifetime Savings	:0	kWh	93,000	therms		\$ 87,000				
ECM-2	Replace D	oor Soals								
Budgetary	Annual Utility				Estimated	Total			Payback	Payback
Cost	Annual Otility	Savings			Maintenance	Savings	ROI	Incentive *	(without	(with
	Electric	Electric	Nat Gas	Total	Savings	curinge			incentive)	incentive)
\$	kWh	kW	Therms	\$	\$	\$		\$	Years	Years
1,700	0	0	200	200	0	200	(0.5)	0	8.5	8.5
Expected Life	: 5	years			•	•		•		
Lifetime Savings	. 0	kWh	1,000	therms		\$ 1,000				
ECM-3	Replace (2	2) Boilers w	/ith Conder	nsing Boile	ers					
Budgetary	Annual Utility			U	Estimated	Total			Payback	Payback
Cost	,	<u> </u>			Maintenance	Savings	ROI	Incentive *	(without	(with
	Electric	Electric	Nat Gas	Total	Savings	Ū			incentive)	incentive)
\$	kWh	kW	Therms	\$	\$	\$		\$	Years	Years
316,000	0	0	3,800	3,500	0	3,500	(0.7)	4,000	>20	>20
Expected Life	: 25	years								
Lifetime Savings	: 0	kWh	95,000	therms		\$ 87,500				
				(
ECM-4	-		vater Pump	os (5 HP)	1			1		
Budgetary	Annual Utility	Savings			Estimated	Total	D.O.T		Payback	Payback
Cost	Ele etrie	E la atria	Net Car	Tetal	Maintenance	Savings	ROI	Incentive *	(without	(with
\$	Electric kWh	Electric kW	Nat Gas	Total ¢	Savings \$	\$		\$	incentive)	incentive) Years
ۍ 12,000	8,800	0.1	Therms 0	\$ 1,100	\$ 0	⊸ 1,100	0.4	ې 2,000	Years 10.9	9.1
		years	0	1,100	0	1,100	0.4	2,000	10.9	9.1
Expected Life Lifetime Savings		-	0	therms		\$ 16,500				
Lifetime Savings	. 152,000	K VV II	0	ulernis		φ 10,500				
ECM-5	Replace W	aste Wate	r Pump Mo	tors with H	li Efficiency M	otors				
Budgetary	Annual Utility	Savings			Estimated	Total			Payback	Payback
Cost	Ĺ	-			Maintenance	Savings	ROI	Incentive *	(without	(with
	Electric	Electric	Nat Gas	Total	Savings				incentive)	incentive)
\$	kWh	kW	Therms	\$	\$	\$		\$	Years	Years
3,000	4,400	0	0	600	0	600	2.1	2,800	5.0	0.3
Expected Life		years								
Lifetime Savings	: 66,000	kWh	0	therms		\$ 9,000				

ECM-6	Replace W	/indow A/C	units with	Energy St	ar Window A/0	C units				
Budgetary	Annual Utility	Savings			Estimated	Total			Payback	Payback
Cost					Maintenance	Savings	ROI	Incentive *	(without	(with
	Electric	Electric	Nat Gas	Total	Savings				incentive)	incentive)
\$	kWh	kW	Therms	\$	\$	\$		\$	Years	Years
4,200	1,800	0	0	300	0	300	(0.2)	0	14.0	14.0
Expected Life:		years								
Lifetime Savings	21,600	kWh	0	therms		\$ 3,300				
ECM-7	Unoccupi	ad Sot-Bac	k (72 to 55)							
Budgetary	Annual Utility		K (72 to 33)		Estimated	Total			Payback	Payback
Cost	Annual Ounty	Savings			Maintenance	Savings	ROI	Incentive *	(without	(with
0031	Electric	Electric	Nat Gas	Total	Savings	Cavings	KOI	meentive	incentive)	incentive)
\$	kWh	kW	Therms	\$	\$	\$		\$	Years	Years
17,000	0	0	1,000	900	0	900	(0.4)	0	18.9	18.9
Expected Life:	· 10	years	.,		-		(0.1)	-		
Lifetime Savings		kWh	10,000	therms		\$ 9,000				
5		•								
ECM-8	Replace D	omestic Ho	ot Water He	eater w/ Ins	stantaneous u	nit				
Budgetary	Annual Utility	Savings			Estimated	Total			Payback	Payback
Cost					Maintenance	Savings	ROI	Incentive *	(without	(with
	Electric	Electric	Nat Gas	Total	Savings				incentive)	incentive)
\$	kWh	kW	Therms	\$	\$	\$		\$	Years	Years
11,300	0	0	200	200	0	200	(0.8)	300	>20	>20
Expected Life:	: 12	years								
Lifetime Savings:	:0	kWh	2,400	therms		\$ 2,400				
ECM-9		-	nt / Upgrade	es	1			1		
Budgetary	Annual Utility	Savings			Estimated	Total			Payback	Payback
Cost		-		T ()	Maintenance	Savings	ROI	Incentive *	(without	(with
¢	Electric	Electric	Nat Gas	Total	Savings	¢		¢	incentive)	incentive)
\$	kWh	kW	Therms	\$	\$	\$	(0, 0)	\$	Years	Years
54,000	18,300	6.4	0	3,000	0	3,000	(0.2)	4,600	18.0	16.5
Expected Life	-	years	0	therms		\$ 45,000				
Lifetime Savings	274,300	KWN	0	therms		\$ 43,000				
ECM-10	Install Lig	hting Conti	rols (Occup	bancy Sens	sors)					
Budgetary	Annual Utility		<u> </u>	-	Estimated	Total			Payback	Payback
Cost		0			Maintenance	Savings	ROI	Incentive *	(without	(with
	Electric	Electric	Nat Gas	Total	Savings				incentive)	incentive)
\$	kWh	kW	Therms	\$	\$	\$		\$	Years	Years
15,000	45,400	0	0	5,600	0	5,600	6.2	1,900	2.7	2.3
Expected Life:	: 15	years								
Lifetime Savings	681,000	kWh	0	therms		\$ 84,000				
FOM 44						•				
ECM-11		-	nts with Lig	hting Con	trols (Occupar		5)		1	
Budgetary	Annual Utility	Savings			Estimated	Total			Payback	Payback
Cost					Maintenance	Savings	ROI	Incentive *	(without	(with
	Electric	Electric	Nat Gas	Total	Savings			<u>^</u>	incentive)	incentive)
\$	kWh	kW	Therms	\$	\$	\$	0.5	\$	Years	Years
69,000 Expected Life:	51,900	6.4	0	7,100	0	7,100	0.5	6,500	9.7	8.8
Exported Life	· 15	years								

Lifetime Savings: 778,500 kWh

0 therms

\$ 106,500

ECM-12 Convert Electric Dish Washer Booster Heater to Natural Gas

Budgetary Cost	Annual Utility	Savings			Estimated Maintenance	Total Savings	ROI	Incentive *	Payback (without	Payback (with
	Electric	Electric	Nat Gas	Total	Savings				incentive)	incentive)
\$	kWh	kW	Therms	\$	\$	\$		\$	Years	Years
15,000	4,200	0	(200)	600	0	600	1.6	0	>20	>20
Expected Life	e: 12	vears								,

Expected Lifetime Savings: 50,400 kWh

(2,400) therms

\$ 7,200

ECM-13 Add Dedicated Hood and Fan for Oven

Budgetary	Annual Utility	Savings			Estimated	Total			Payback	Payback
Cost					Maintenance	Savings	ROI	Incentive *	(without	(with
	Electric	Electric	Nat Gas	Total	Savings				incentive)	incentive)
\$	kWh	kW	Therms	\$	\$	\$		\$	Years	Years
12,000	1,000	0.6	0	190	0	190	(0.8)	0	>20	>20
Expected Life	: 15	years								
Lifetime Savings	15,000	kWh	0	therms		\$ 2,900				

Robert Erskine Elementary School

	Item			Say	vings			Cost	Simple		Life	NJ Smart Start	Direct Install	Direct Install	Max	Payback w/		Sim	ple Projected	l Lifetime Sa	vings		ROI	NPV	IRR
		kW	kWh	therms	cooling kWh	kgal/yr	\$		Payback	MTCDE	Expectancy	Incentives	Eligible (Y/N)*	* Incentives**	Incentives	Incentives***	kW	kWh	therms	cooling	kgal/yr	\$			
ECM-1a	Replace Window Seals	0.0	0	1,739	0	0	\$ 1,600	\$ 17,889	11.2	9.3	5.0			\$-	\$-	11.2	0.0	0	8,694	0	0	\$ 8,041	(0.6)	(\$28,143)	-22.0%
ECM-1b	Window Replacements and Reduced Glazing	0.0	0	3,144	0	0	\$ 2,900	\$ 450,076	155.2	16.8	30.0			\$ -	\$-	155.2	0.0	0	94,325	0	0	\$ 87,242	(0.8)	(\$831,857)	-8.4%
ECM-2	Replace Door Seals	0.0	0	202	0	0	\$ 200	\$ 1,723	8.6	1.1	5.0			\$ -	\$-	8.6	0.0	0	1,009	0	0	\$ 933	(0.5)	(\$2,507)	-15.8%
ECM-3	Replace (2) Boilers with Condensing Boilers	0.0	0	3,775	0	0	\$ 3,500	\$ 315,612	90.2	20.1	25.0	\$ 4,000	Y	\$ 75,000	\$ 4,000	89.0	0.0	0	94,367	0	0	\$ 87,281	(0.7)	(\$554,977)	-8.1%
ECM-4	Install VSDs on Hot water Pumps (5 HP)	0.1	8,814	0	0	0	\$ 1,100	\$ 11,651	10.6	3.7	15.0	\$ 2,000	Y	\$ 8,200	\$ 2,000	8.8	1.9	132,213	0	0	0	\$ 16,491	0.4	(\$6,271)	7.6%
ECM-5	Replace Waste Water Pump Motors with Hi Efficiency Motors	0.5	4,428	0	0	0	\$ 600	\$ 2,914	4.9	1.9	15.0	\$ 2,800	Y	\$ 2,000	\$ 2,800	0.2	7.6	66,426	0	0	0	\$ 9,044	2.1	\$6,729	524.7%
ECM-6	Replace Window A/C units with Energy Star Window A/C units	0.0	0	0	1,810	0	\$ 300	\$ 4,200	14.0	0.8	12.0			\$ -	\$-	14.0	0.0	0	0	21,722	0	\$ 3,350	(0.2)	(\$5,378)	-2.3%
ECM-7	Unoccupied Set-Back (72 to 55)	0.0	0	1,021	0	0	\$ 900	\$ 16,830	18.7	5.4	10.0			\$ -	\$-	18.7	0.0	0	10,214	0	0	\$ 9,447	(0.4)	(\$25,716)	-10.0%
ECM-8	Replace Domestic Hot Water Heater w/ Instantaneous unit	0.0	0	184	0	0	\$ 200	\$ 11,319	56.6	1.0	12.0	\$ 300	Y	\$ 7,900	\$ 300	55.1	0.0	0	2,203	0	0	\$ 2,037	(0.8)	(\$19,784)	-18.1%
ECM-9	Lighting Replacement / Upgrades	6.4	18,345	0	0	0	\$ 3,000	\$ 54,281	18.1	7.7	15.0	\$ 4,600	Y	\$ 38,000	\$ 4,600	16.6	95.5	275,175	0	0	0	\$ 44,793	(0.2)	(\$63,144)	-1.2%
ECM-10	Install Lighting Controls (Occupancy Sensors)	0.0	45,398	0	0	0	\$ 5,600	\$ 14,580	2.6	19.1	15.0	\$ 1,890	Y	\$ 10,200	\$ 1,890	2.3	0.0	680,964	0	0	0	\$ 105,010	6.2	\$39,895	43.9%
ECM-11	Lighting Replacements with Lighting Controls (Occupancy Sensors)	6.4	51,856	0	0	0	\$ 7,100	\$ 68,861	9.7	21.8	15.0	\$ 6,490	Y	\$ 48,200	\$ 6,490	8.8	95.5	777,846	0	0	0	\$ 106,672	0.5	(\$40,635)	7.6%
ECM-12	Convert Electric Dish Washer Booster Heater to Natural Gas	25.0	4,193	(179)	0	0	\$ 600	\$ 14,985	25.0	0.8	12.0			\$ -	\$-	25.0	299.5	50,319	(2,147)	0	0	\$ 38,446	1.6	(\$23,735)	-9.8%
ECM-13	Add Dedicated Hood and Fan for Oven	0.6	1,007	0	0	0	\$ 190	\$ 12,441	65.5	0.4	15.0			\$-	\$-	65.5	8.4	15,107	0	0	0	\$ 2,819	(0.8)	(\$22,317)	-14.5%
	Total (Does Not Include ECM-9 & ECM-10)	32.0	69,292	9,886	1,810	0	\$ 19,000	\$ 916,060	48.2	82.6	14.2	\$ 15,590		\$ 141,300	\$ 15,590		404.5	1,026,804	208,666	21,722	0	\$368,983	(0.6)	(\$1,566,339)	-13.2%
	Total Measures with Payback <15	7.0	65,099	3,775	0	0	\$ 12,300	\$ 399,038	32.4	47.5	13.0	\$ 15,290		\$ 58,400	\$ 11,290	31.5	105.0	976,485	1,009	0	0	\$133,139	(0.7)	(\$637,202)	-10.8%

Utility	/ Costs	Yearly Usage	MTCDE	Building Area	Annual U	tility Cost
\$ 0.154	\$/kWh blended		0.00042021	31,700	Electric	Natural Gas
\$ 0.123	\$/kWh supply	252,320	0.00042021		\$38,909.66	\$23,041.13
\$ 9.53	\$/kW	77.60	0			
\$ 0.92	\$/Therm	24,912	0.00533471			
\$ -	\$/kgals	-	0			

Note: pricing is for energy calculations only -do not use for procurement

ECM-1: Replace Window Seals

Existing: Windows are not properly sealed. This can lead to increased energy consumption due to infiltration/exfiltration and heat gain/loss. Proposed: Install weather strip or caulking to properly seal windows

Linear Feet of window Edge	3,118.0 LF	Cooling System Efficiency	kV	V/ton Heating System Efficiency
Area of window glass	4,500.8 SF	Ex Occupied Clng Temp.	70 *F	Heating On Temp.
Existing Infiltration Factor	1.5 cfm/LF	Ex Unoccupied Clng Temp.	70 *F	Ex Occupied Htg Temp.
Proposed Infiltration Factor	0.45 cfm/LF	Cooling Occ Enthalpy Setpoint	27.5 Bt	u/lb Ex Unoccupied Htg Temp.
Existing U Value	0.60 Btuh/SF/°F	Cooling Unocc Enthalpy Setpoint	27.5 Bt	u/lb Electricity
Proposed U Value	0.60 Btuh/SF/°F			Natural Gas

					EXISTING	G LOADS	PROPOSE	ED LOADS	COOLIN	G ENERGY	HEATING E	ENERGY
					Occupied	Unoccupied	Occupied	Unoccupied				
					Window	Window	Window	Window	Existing	Proposed		Proposed
Avg Outdoor		Existing	Occupied	Unoccupied	Infiltration &	Infiltration &	Infiltration &	Infiltration &	Cooling	Cooling	Existing	Heating
Air Temp. Bins	Avg Outdoor Air	Equipment Bin	Equipment Bin	Equipment Bin	Heat Load	Heat Load	Heat Load	Heat Load	Energy	Energy	Heating Energy	Energy
°F	Enthalpy	Hours	Hours	Hours	BTUH	BTUH	BTUH	BTUH	kWh	kWh	Therms	Therms
A		В	C	D	E	F	G	Н	I	J	К	L
102.5	50.1	0	0	0	-475,651	-475,651	-230,460	-230,460	0	0	0	0
97.5	42.5	6	2	4	-315,698	-315,698	-168,972	-168,972	0	0	0	0
92.5	39.5	45	16	29	-252,558	-252,558	-136,528	-136,528	0	0	0	0
87.5	36.6	146	52	94	-191,523	-191,523	-104,715	-104,715	0	0	0	0
82.5	34.0	298	106	192	-136,802	-136,802	-74,797	-74,797	0	0	0	0
77.5	31.6	476	170	306	-86,291	-86,291	-46,141	-46,141	0	0	0	0
72.5	29.2	662	237	426	-35,779	-35,779	-17,485	-17,485	0	0	0	0
67.5	27.0	740	264	476	0	0	0	0	0	0	0	0
62.5	24.5	765	273	492	0	0	0	0	0	0	0	0
57.5	21.4	733	262	471	0	0	0	0	0	0	0	0
52.5	18.7	668	239	430	88,395	88,395	73,777	73,777	0	0	738	616
47.5	16.2	659	235	424	113,651	113,651	94,856	94,856	0	0	937	782
42.5	14.4	685	245	441	138,907	138,907	115,935	115,935	0	0	1,190	993
37.5	12.6	739	264	475	164,163	164,163	137,014	137,014	0	0	1,517	1,266
32.5	10.7	717	256	461	189,419	189,419	158,093	158,093	0	0	1,698	1,418
27.5	8.6	543	194	349	214,674	214,674	179,172	179,172	0	0	1,458	1,217
22.5	6.8	318	114	205	239,930	239,930	200,251	200,251	0	0	954	796
17.5	5.5	245	88	158	265,186	265,186	221,330	221,330	0	0	813	678
12.5	4.1	156	56	100	290,442	290,442	242,409	242,409	0	0	567	473
7.5	2.6	92	33	59	315,698	315,698	263,488	263,488	0	0	363	303
2.5	1.0	36	13	23	340,953	340,953	284,567	284,567	0	0	153	128
-2.5	0.0	19	7	12	366,209	366,209	305,647	305,647	0	0	87	73
-7.5	-1.5	8	3	5	391,465	391,465	326,726	326,726	0	0	39	33
TOTALS		8,760	3,129	5,631					0	0	10,515	8,776
Existing Window	v Infiltration		4,677	cfm					Savings	1,739	Therms	\$ 1,60
Existing Window	v Heat Transfer		0	Btuh/°F					_	0) kWh	\$ -
Proposed Windo	ow Infiltration		1,403	cfm						•	·	\$ 1,60
•	ow Heat Transfer		2,700	Btuh/°F							•	· · ·
			Width	Height			Infiltration Rate	U Value	Infiltration	Heat Transfer	7	
Window ID	Location	Quantity			Linear Feet (LE)	Area (SE)					1	

Window ID	Location	Quantity	ntity Width Height Lin		Linear Feet (LF)	ear Feet (LF) Area (SF)		U Value	Infiltration	Heat Transfer
WINDOW ID	LOCATION	Quantity				Alea (SF)	(CFM/LF)	(Btuh/SF/°F)	(CFM)	(Btuh/°F)
1	Exterior Wall	88	5.6	7.3	2273.3	3603.1	1.5		3410.0	0.0
2	Exterior Wall	12	3.5	3.8	176.0	161.0	1.5		264.0	0.0
3	Exterior Wall	34	3.3	6.5	668.7	736.7	1.5		1003.0	0.0
Total		134	12.4	17.7	3,118.0	4,500.8	1.50	0.00	4677.0	0.0

80%	
55	*F
70	*F
70	*F
0.154	\$/kWh
0.92	\$/therm

\$ \$

Multipliers	
Material:	1.10
Labor:	1.35
Equipment:	1.10

ECM-1: Replace Window Seals - Cost

Description	QTY	UNIT	UNIT COSTS			SUB	STOTAL CO	STS	TOTAL	REMARKS
Description	QII	UNIT	MAT.	LABOR	EQUIP.	MAT.	LABOR	EQUIP.	COST	REMARKS
Window Seals	134	ea	\$ 60.00	\$ 50.00		\$ 8,844	\$ 9,045	\$-	\$ 17,889	RS Means 2012
					\$-	\$-	\$-	\$-	\$-	
						\$-	\$-	\$-	\$-	
						\$-	\$-	\$-	\$-	
						\$-	\$-	\$-	\$-	
						\$-	\$-	\$-	\$-	
						\$-	\$-	\$-	\$-	
						\$-	\$-	\$-	\$-	
						\$-	\$-	\$-	\$-	

\$1	7,889	Subtotal
\$	-	
\$	-	
\$	-	
\$1	7,889	Total

ECM-1: Window Replacements and Reduced Glazing

Existing: Windows are not properly sealed. This can lead to increased energy consumption due to infiltration/exfiltration and heat gain/loss. Proposed: Install weather strip or caulking to properly seal windows

Linear Feet of window Edge	3,118.0 LF	Cooling System Efficiency	kW/ton	Heating System Efficiency
Area of window glass	4,500.8 SF	Ex Occupied Clng Temp.	70 *F	Heating On Temp.
Existing Infiltration Factor	1.5 cfm/LF	Ex Unoccupied Clng Temp.	70 *F	Ex Occupied Htg Temp.
Proposed Infiltration Factor	0.45 cfm/LF	Cooling Occ Enthalpy Setpoint	27.5 Btu/lb	Ex Unoccupied Htg Temp.
Existing U Value	0.60 Btuh/SF/°F	Cooling Unocc Enthalpy Setpoint	27.5 Btu/lb	Electricity
Proposed U Value	0.45 Btuh/SF/°F			Natural Gas

					EXISTIN	GLOADS	PROPOSE	DLOADS	COOLING	G ENERGY	HEATING E	ENERGY
					Occupied	Unoccupied	Occupied	Unoccupied				
					Window	Window	Window	Window	Existing	Proposed		Proposed
Avg Outdoor		Existing	Occupied	Unoccupied	Infiltration &	Infiltration &	Infiltration &	Infiltration &	Cooling	Cooling	Existing	Heating
Air Temp. Bins	Avg Outdoor Air	Equipment Bin	Equipment Bin	Equipment Bin	Heat Load	Heat Load	Heat Load	Heat Load	Energy	Energy	Heating Energy	Energy
°F	Enthalpy	Hours	Hours	Hours	BTUH	BTUH	BTUH	BTUH	kWh	kWh	Therms	Therms
A		В	С	D	E	F	G	Н	I	J	К	L
102.5	50.1	0	0	0	-475,651	-475,651	-208,519	-208,519	0	0	0	0
97.5	42.5	6	2	4	-315,698	-315,698	-150,406	-150,406	0	0	0	0
92.5	39.5	45	16	29	-252,558	-252,558	-121,338	-121,338	0	0	0	0
87.5	36.6	146	52	94	-191,523	-191,523	-92,901	-92,901	0	0	0	0
82.5	34.0	298	106	192	-136,802	-136,802	-66,358	-66,358	0	0	0	0
77.5	31.6	476	170	306	-86,291	-86,291	-41,077	-41,077	0	0	0	0
72.5	29.2	662	237	426	-35,779	-35,779	-15,797	-15,797	0	0	0	0
67.5	27.0	740	264	476	0	0	0	0	0	0	0	0
62.5	24.5	765	273	492	0	0	0	0	0	0	0	0
57.5	21.4	733	262	471	0	0	0	0	0	0	0	0
52.5	18.7	668	239	430	88,395	88,395	61,962	61,962	0	0	738	518
47.5	16.2	659	235	424	113,651	113,651	79,666	79,666	0	0	937	657
42.5	14.4	685	245	441	138,907	138,907	97,369	97,369	0	0	1,190	834
37.5	12.6	739	264	475	164,163	164,163	115,073	115,073	0	0	1,517	1,063
32.5	10.7	717	256	461	189,419	189,419	132,776	132,776	0	0	1,698	1,191
27.5	8.6	543	194	349	214,674	214,674	150,480	150,480	0	0	1,458	1,022
22.5	6.8	318	114	205	239,930	239,930	168,183	168,183	0	0	954	669
17.5	5.5	245	88	158	265,186	265,186	185,887	185,887	0	0	813	570
12.5	4.1	156	56	100	290,442	290,442	203,590	203,590	0	0	567	397
7.5	2.6	92	33	59	315,698	315,698	221,294	221,294	0	0	363	255
2.5	1.0	36	13	23	340,953	340,953	238,997	238,997	0	0	153	108
-2.5	0.0	19	7	12	366,209	366,209	256,701	256,701	0	0	87	61
-7.5	-1.5	8	3	5	391,465	391,465	274,404	274,404	0	0	39	27
TOTALS		8,760	3,129	5,631					0	0	10,515	7,370
Existing Window	/ Infiltration		4,677	cfm					Savings	3,144	Therms	\$ 2,90
Existing Window			0	Btuh/°F						C) kWh	\$-
Proposed Windo	w Infiltration		1,403	cfm								\$ 2,90
Proposed Windo			2,025	Btuh/°F							•	
Window ID	Lesstian	Quentitu	Width	Height	Lineer Feet (LF)		Infiltration Rate	U Value	Infiltration	Heat Transfer	7	

Window ID	Location	Quantity	Width (ft)	Height (ft)	Linear Feet (LF)	Area (SF)	Infiltration Rate (CFM/LF)	U Value (Btuh/SF/°F)	Infiltration (CFM)	Heat Transfer (Btuh/°F)
1	Exterior Wall	88	5.6	7.3	2273.3	3603.1	1.5		3410.0	0.0
2	Exterior Wall	12	3.5	3.8	176.0	161.0	1.5		264.0	0.0
3	Exterior Wall	34	3.3	6.5	668.7	736.7	1.5		1003.0	0.0
Total		134	12.4	17.7	3,118.0	4,500.8	1.50	0.00	4677.0	0.0

80%	
55	*F
70	*F
70	*F
0.154	\$/kWh
0.92	\$/therm

\$ \$

Multipliers	
Material:	1.10
Labor:	1.35
Equipment:	1.10

ECM-1: Window Replacements and Reduced Glazing - Cost

Description	QTY	UNIT	L	UNIT COSTS SUBTOTAL		SUBTOTAL COSTS TOTAL		TOTAL COST	REMARKS	
Description	QII	UNIT	MAT.	LABOR	EQUIP.	MAT.	LABOR	EQUIP.	TOTAL COST	REIWARRS
Windows	4500.8	\$ / SF	\$ 45.45	\$ 37.04		\$ 225,038	\$ 225,038	\$-	\$ 450,076	Vendor Quote Per SF
					\$-	\$-	\$-	\$-	\$-	
						\$-	\$-	\$-	\$-	
						\$-	\$-	\$-	\$-	
						\$-	\$-	\$-	\$-	
						\$-	\$-	\$-	\$-	
						\$-	\$-	\$-	\$-	
						\$-	\$ -	\$-	\$-	
						\$-	\$ -	\$ -	\$-	

\$ 450,076	Subtotal
\$ -	
\$ -	
\$ -	
\$ 450,076	Total

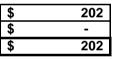
ECM-2: Replace Door Seals

Existing: Lack of door seals result in excessive heat loss and infiltration Proposed: Install door seals and/or weather-stripping to reduce air infiltration

Heating System Efficiency Cooling System Efficiency Linear Feet of Door Edge Existing Infiltration Factor* Proposed Infiltration Factor*

80% 0.00 kW/ton 84 1.5 cfm/LF 0.45 cfm/LF Ex Occupied Clng Temp. Ex Unoccupied Clng Temp. Cooling Occ Enthalpy Setpoint Cooling Unocc Enthalpy Setpoint 70 *F 70 *F 27.5 Btu/lb 27.5 Btu/lb

Ex Occupied Htg Temp. Ex Unoccupied Htg Temp. Electricity Natural Gas


*Infiltration Factor per Carrier Handbook of Air Conditioning System Design

based on average door seal gap calculated below.

					EXISTING	G LOADS	PROPOSED LOADS		COOLING ENERGY		HEATING E	NERGY
					Occupied	Unoccupied	Occupied	Unoccupied				
Avg Outdoor Air Temp.	Ava Outdoor	Existing Equipment Bin	Occupied Equipment Bin	Unoccupied Equipment Bin	Door Infiltration	Door Infiltration	Door Infiltration	Door Infiltration	Existing Cooling Energy	Proposed Cooling Energy	Existing Heating Energy	Proposed Heating Energy
Bins °F	Air Enthalpy	Hours	Hours	Hours	Load BTUH	Load BTUH		Load BTUH	kWh	kWh	therms	therms
Α		В	С	D	E	F	G	н	Ι	J	к	L
102.5	44.7	0	0	0	-9,752	-9,752	-2,926	-2,926	(0	0	0
97.5	42.7	6	2	4	-8,618	,	-2,586	-2,586	C	0 0	0	0
92.5	40.7	45	16	29	-7,484		-2,245	-2,245	C	0 0	0	0
87.5	39.7	146	52	94	-6,917	-6,917	-2,075	-2,075	C	0 0	0	0
82.5	37.7	298	106	192	-5,783	-5,783	-1,735	-1,735	C	0	0	0
77.5	35.7	476	170	306	-4,649	-4,649	-1,395	-1,395	C	0	0	0
72.5	33.7	662	237	426	-3,515			-1,055	C	0 0	0	0
67.5	31.3	740	264	476	340		102	102	C	0 0	3	1
62.5	29.7	765	273	492	1,021	1,021	306	306	C	0 0	10	3
57.5	28	733	262	471	1,701	1,701	510	510	C	0 0	16	5
52.5	25.2	668	239	430	2,381	2,381	714	714	C	0 0	20	6
47.5	21.8	659	235	424	3,062		919	919	C	0 0	25	8
42.5	18.8	685	245	441	3,742		1,123	1,123	C	0 0	32	10
37.5	16.9	739	264	475	4,423		1,327	1,327	C	Ũ	41	12
32.5	14.5	717	256	461	5,103		1,531	1,531	C	0 0	46	14
27.5	12.7	543	194	349	5,783		1,735	1,735	C	0 0	39	12
22.5	10.9	318	114	205	6,464	6,464	1,939	1,939	C	0 0	26	8
17.5	8.8	245	88	158	7,144	7,144	2,143	2,143	C	0	22	7
12.5	7.2	156	56	100	7,825		2,347	2,347	0	0	15	5
7.5	5.6	92	33	59	8,505			2,552	0	9	10	3
2.5	4.1	36	13	23	9,185		2,756	2,756	0	•	4	1
-2.5	2.7	19	(12	9,866	,	2,960	2,960	0	•	2	1
-7.5	1.3	8	3	5	10,546	10,546	3,164	3,164	0		1	0
TOTALS		8,760	3,129	5,631					C	0	312	94

Existing Door Infiltration Existing Unoccupied Door Infiltration Proposed Door Infiltration Proposed Unoccupied Door Infiltration 126 cfm 126 cfm 38 cfm 38 cfm Savings 218 therms 0 kWh

70	*F
70	*F
\$	\$/kWh
\$ 0.92	\$/therm

Multipliers	
Material:	1.10
Labor:	1.35
Equipment:	1.10

ECM-2: Replace Door Seals - Cost

Description	QTY	UNIT	UNIT COSTS			SUBTOTAL COSTS				TOTAL	REMARKS	
Description	QII		MAT		LABOR	EQUIP.	1	MAT.	LABOR	EQUIP.	COST	REMARKS
Door Seals (3'x7')	14	ea	\$:	35	\$ 50						\$-	RS Means 2012
36" Door Threshold Seal	14	ea	\$ 50.0	00	\$ 45.00	\$-	\$	770	\$ 851	\$-	\$ 1,621	RS Means 2012
Side and Top Door Seal	14	ft	\$ 3.0	00	\$ 3.00	\$-	\$	46	\$57	\$-	\$ 103	RS Means 2012
						\$-	\$	-	\$-	\$-	\$-	
							\$	-	\$-	\$-	\$-	
							\$	-	\$-	\$-	\$-	
							\$	-	\$-	\$-	\$-	
							\$	-	\$-	\$-	\$-	
							\$	-	\$-	\$-	\$-	
							\$	-	\$ -	\$-	\$-	
							\$	-	\$-	\$-	\$-	

\$ 1,723	Subtotal
\$ -	
\$ -	
\$ -	
\$ 1,723	Total

ECM-3: Replace (2) Boilers with Condensing Boilers

Existing Fuel	Nat.Gas	•
Proposed Fuel	Nat.Gas	•

ltem	Value	<u>Units</u>	Formula/Comments
Baseline Fuel Cost	\$ 0.92	/ Therm	
Proposed Fuel Cost	<mark>\$ 0.92</mark>	/ Therm	
Baseline Fuel Use	20,428	Therms	Based on historical utility data
Existing Boiler Plant Efficiency	75%		Estimated or Measured
Baseline Boiler Load	1,532,080	Mbtu/yr	Baseline Fuel Use x Existing Efficiency x 100 Mbtu/Therms
Baseline Fuel Cost	\$ 18,894		
Proposed Boiler Plant Efficiency	92%		New Boiler Efficiency
Proposed Fuel Use	16,653	Therms	Baseline Boiler Load / Proposed Efficiency / 100 Mbtu/Therms
Proposed Fuel Cost	\$ 15,402		

*Note to engineer: Link savings back to summary sheet in appropriate column.

BOILER REPLACEMENT SAVINGS SUMMARY							
	Electric	Electric	Nat Gas				
	Demand	Usage	Usage	Maint.	Total Cost		
	(kW)	(kWh)	(Therms)	(\$)	(\$)		
Savings	0	0	3,775	\$0	\$3,491		

Multipliers	
Material:	1.10
Labor:	1.35
Equipment:	1.10

ECM-3: Replace (2) Boilers with Condensing Boilers - Cost

Description	QTY	UNIT	U	NIT COSTS	5	SUE	STOTAL CO	STS		REMARKS
Description	QII		MAT.	LABOR	EQUIP.	MAT.	LABOR	EQUIP.	TOTAL COST	
Boiler demo	2	EA	\$-	\$ 7,500		\$-	\$ 20,250	\$-	\$ 20,250	RS Means 2012
2,000 MBH NG Condensing Boiler	2	EA	\$ 32,000	\$ 25,000		\$ 70,400	\$ 67,500	\$-	\$ 137,900	Vendor Quote
Flue Installation	2	LS	\$ 10,000	\$ 5,000		\$ 22,000	\$ 13,500	\$-	\$ 35,500	RS Means 2012
Pump	2	EA	\$ 2,500	\$ 1,500		\$ 5,500	\$ 4,050	\$-	\$ 9,550	RS Means 2012
Miscellaneous Electrical	2	LS	\$ 1,500	\$ 3,000		\$ 3,300	\$ 8,100	\$-	\$ 11,400	RS Means 2012
Miscellaneous HW Piping	2	LS	\$ 5,000	\$ 5,000		\$ 11,000	\$ 13,500	\$-	\$ 24,500	RS Means 2012
						\$-	\$-	\$-	\$-	
						\$-	\$-	\$-	\$-	
						\$-	\$-	\$-	\$-	
						\$-	\$-	\$-	\$-	
						\$-	\$-	\$-	\$-	

\$ 239,100	Subtotal
\$ 23,910.00	10% Contingency
\$ 52,602.00	20% Contractor O&P
\$ -	
\$ 315,612	Total

ECM-4: Install VFDs on Hot water Pumps (5 HP)

Variable Inputs	
Blended Electric Rate	\$0.15
Heating System "On" Point	55
VFD Efficiency	98.5%

ECM Description Summary

	PUMP SCHEDULE												
Pump ID	Qty	HP	Total HP	Existing Motor Motor Eff.	New Motor Motor Eff.	Exist. Motor kW Note 1	New Motor kW Note 2						
P-1, P-2	1	5.0	5.0	89.5%	93.0%	3.33	3.21						
					Total:	3.33	3.21						

				SAVINGS AN	IALYSIS				
OAT - DB	OAT - WB	Annual	Heating	Pump	Existing	Proposed	Speed	Proposed	Proposed
Avg	Avg	Hours in	Hours	Load	Pump	Pump	efficiency	Pump	Savings
Temp F	Temp F	Bin	Bin	%	kWh	kW	%	kWh	kWh
(A)	(B)	(C)	(D) =IF(A>TP,0,C)	(E) =0.5+0.5* (50-A)/(50-10))	(F) =D*AA	(G) =BB*E^2.5/CC	(H)	(l) =D*G	(J) =F-H
See Note 3	See Note 3	See Note 3		See Note 4		See Note 5			
97.5 92.5 87.5 82.5 77.5	75 74 72 69 67	6 45 146 298 476	0 0 0 0 0	0% 0% 0% 0%	0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0	0.0% 0.0% 0.0% 0.0% 0.0%	0 0 0 0 0	0 0 0 0
72.5	64	662	0	0%	0	0.0	0.0%	0	0
67.5	62	740	0	0%	0	0.0	0.0%	0	0
62.5	58	765	0	0%	0	0.0	0.0%	0	0
57.5	53	733	0	0%	0	0.0	0.0%	0	0
52.5	47	668	668	53%	2,228	0.7	84.1%	524	1,705
47.5	43	659	659	58%	2,198	0.8	88.8%	628	1,570
42.5	38	685	685	64%	2,285	1.1	92.7%	785	1,499
37.5	34	739	739	69%	2,465	1.3	95.9%	1,010	1,455
32.5	30	717	717	75%	2,392	1.6	98.2%	1,159	1,232
27.5	25	543	543	81%	1,811	1.9	99.8%	1,033	778
22.5	20	318	318	86%	1,061	2.2	100.0%	713	348
17.5	16	245	245	92%	817	2.6	100.0%	642	175
12.5	11	156	156	97%	520	3.0	99.7%	475	45
7.5	6	92	92	100%	307	3.3	99.0%	303	4
2.5	2	36	36	100%	120	3.3	99.0%	118	2
-2.5 -7.5	-3 -8	19 8	19 8	100% 100% 100%	63 27	3.3 3.3	99.0% 99.0%	63 26	1 0
		8,760	4,887		16,294			7,480	8,814

Notes:

1) Existing motor power was determined using...

2) New motor power is the same as existing motor power adjusted for the new efficiency, if a new motor is proposed.

3) Weather data from NOAA for ...
4) The pump load is estimated at 100% at X deg. OAT and 50% at X deg. OAT and varies linearly in between.
5) The required VFD motor draw is based on a 2.5 power relationship to load.

	HW PUMP VFD - SAVINGS SUMMARY											
	Electric	Electric	Nat Gas		Total							
	Demand	Usage	Usage	Maint.	Cost							
	(kW)	(kWh)	(Therms)	(\$)	(\$)							
Savings	0	8,814	0	\$0	\$1,359							

Multipliers	
Material:	1.10
Labor:	1.35
Equipment:	1.00

ECM-4: Install VFDs on Hot water Pumps (5 HP) - Cost

Description	QTY	UNIT		l	JNIT	COSTS	6	SUE	втот	TAL CO	STS	Т	OTAL	REMARKS
Description	QII	UNIT	Ν	MAT.	LA	BOR	EQUIP.	MAT.	LA	ABOR	EQUIP.	(COST	INEMARKS
5.0 VFD	2	ea	\$	1,706	\$	431		\$ 3,754	\$	1,162	\$-	\$	4,916	RS Means 2012
5.0 Motor	2	ea	\$	373	\$	79		\$ 820	\$	213	\$-	\$	1,033	RS Means 2012
Electrical - misc.	2	ea	\$	200	\$	150		\$ 440	\$	405	\$-	\$	845	RS Means 2012
Pipe pressure sensor/transmitter	1	ea	\$	850	\$	500		\$ 935	\$	675	\$-	\$	1,610	RS Means 2012
Misc. piping modification	1	ea	\$	200	\$	150		\$ 220	\$	203	\$-	\$	423	RS Means 2012
								\$ -	\$	-	\$-	\$	-	
								\$ -	\$	-	\$-	\$	-	

\$ 8,826	Subtotal
\$ 883	10% Contingency
\$ 1,942	20% Contractor O&P
\$ -	
\$ 11,651	Total

Der	nand
C	ost
\$/kW	-month
\$	9.53

										[Demand			Energy									Multipli	ers	1	
											Cost			Cost								Materia	Labor	Equipment		
CM-5: Replace	Waste Water P	ump Motors	s with Hi	Efficiency N	<u>lotors</u>						\$/kW-mon \$ 9.5			\$/kWh \$ 0.12								1.10	1.35	1.10		
avings Analys	is									I	ψ 0.0			ψ 0.12	I				Cost Esti	mates		1.10	1.00	1.10	3	
							New																	_		
		Existing			Existing		Load	New	New	Demand	Demand		kWh	\$ kWh	Total \$	Estim		Payback		Unit Co			Subtotal (
Description	Location	HP	Factor	Efficiency _a	kW	HP _b	Factor	Efficiency _a	kW	Savings	Savings	\$ Hours	Savings	Savings	Savings	Co	ost	Years	Materials	Labor	Equipment	Material	s Labor	Equipment	Total Cost	Remarks
	WWTP	5	0.8	0.840	3.6	5	0.8	0.897	3.3	0.224	\$ 2	6 8,760	1,963	\$ 242	\$ 267	7 \$	943	3.5	\$ 550	\$ 250	\$-	\$ 60	5 \$ 338	3 \$ -	\$ 943	RS Means 2012
	WWTP	5	0.8	0.840	3.6	5	0.8	0.897	3.3	0.224	\$ 2	6 8,760	1,963	\$ 242	\$ 267	7 \$	943	3.5	\$ 550	\$ 250	\$-	\$ 60	5 \$ 338	3 \$ -	\$ 943	RS Means 2012
	WWTP	1.5	0.8	0.840	11	2	0.8	0.863	1.0	0.029	\$	3 8,760			\$ 34		515	15.1		\$ 150			2 \$ 203			RS Means 2012
		1.0	0.0	0.040		2	0.0	0.000	1.0	0.020	Ψ	0,700	201	φ 01	<u>ψ</u> 0-			10.1	ψ 204	<u> </u>	Ψ					
	WWTP	1.5	0.8	0.840	1.1	2	0.8	0.863	1.0	0.029	\$	3 8,760			\$ 34	1 \$	515	15.1	\$ 284	\$ 150	\$-	\$ 31	2 \$ 203	3 \$ -	\$ 515	RS Means 2012
	Total	13			9.2	13			8.7	0.51	\$5	8	4,428	\$ 545	\$ 603	3 \$ 2	2,914									

Notes

a Existing and new efficiencies should be entered if known. If not known, use provided curve fit based on "DOE Survey Installed Average" and NEMA Premium values, respectively.

b Same as existing HP unless resized to better match load

ECM-6: Replace Window A/C units with Energy Star Units

ECM Description Summary

By replacing older DX window unit air conditioners with newer equipment which have EER ratings, significant electrical energy can be saved. It is recommended these units be replaced by more modern Energy Star rated window units.

ASSUMPTIO	NS		Comments
Electric Cost	\$0.154	/ kWh	
Average run hours per Week	60	Hours	Unit is manually turned on (even if after hours)
Space Balance Point	55	F	
Space Temperature Setpoint	70	deg F	setpoint
Avg. BTU / Hr Rating of existing RTU	18,000	Btu / Hr	(typical size for cooling spaces in this type of building)
Average EER	9.4		

Item	Value	<u>Units</u>	<u>Comments</u>
Total Number of Units	16		
Existing Annual Electric Usage	12,445	kWh	
Proposed EER	11.0		New Energy Star Unit (per Energy webpage)
Proposed Annual Electric Usage	10,635	kWh	Unit will cycle on w/ temp of room. Possible operating time shown below

ANNUAL SAVI	NGS	
Annual Savings	1,810	kWh
Annual Cost Savings	\$279	

OAT - DB		Cooling Hrs		Assumed
Bin	Annual	at Temp Above	Assumed % of	hrs of
Temp F	Hours	balance point	time of operation	Operation
102.5	0	0	100%	0
97.5	6	2	89%	2
92.5	45	16	79%	13
87.5	146	52	68%	36
82.5	298	106	58%	62
77.5	476	170	47%	81
72.5	662	237	37%	87
67.5	740	264	26%	70
62.5	765	273	16%	43
57.5	733	262	5%	14
52.5	668	0	0%	0
47.5	659	0	0%	0
42.5	685	0	0%	0
37.5	739	0	0%	0
32.5	717	0	0%	0
27.5	543	0	0%	0
22.5	318	0	0%	0
17.5	245	0	0%	0
12.5	156	0	0%	0
7.5	92	0	0%	0
2.5	36	0	0%	0
-2.5	19	0	0%	0
-7.5	8	0	0%	0
Total	8,760	1,383	29%	406

Multipliers	
Material:	1.10
Labor:	1.35
Equipment:	1.10

ECM-6: Replace Window A/C units with Energy Star Units Cost

Description	QTY	UNIT	L	JNIT COST	S	SUB	TOTAL CO	STS	TOTAL	REMARKS
Description	QII	UNIT	MAT.	LABOR	EQUIP.	MAT.	LABOR	EQUIP.	COST	REMARKS
18,000 MBH Energy Star A/C unit	16	EA	\$ 220	\$-	\$-	\$ 3,872	\$-	\$-	\$ 3,872	RS Means 2012
						\$-	\$-	\$-	\$-	

\$	3,872	Subtotal	
\$3	309.76	8% tax	
\$	-		
\$	-		
\$	4,200	Total	

ECM-7: Unoccupied Set-Back (72 to 55)

EXISTING CONDITIONS								
Existing Facility Total Electric usage		252,320	kWh					
Existing Facility Natural Gas Usage		20,428	Therms					
Cost of Electricty	\$	0.15	\$/kWh					
Cost of Natural Gas	\$	0.92	\$/Therm					
SAVINGS								
TOD Electric savings		0	kWh ¹					
TOD Natural Gas savings		1,021	Therms ²					
Total Cost Savings	\$	945						

Assumptions

- 1
- 0% Approximate electric savings due to night setback
- 2
- 5% Approximate natural gas savings due to night setback

Multipliers	
Material:	1.10
Labor:	1.35
Equipment:	1.10

ECM-7: Unoccupied Set-Back (72 to 55) - Cost

Description	QTY	UNIT	ι	JNIT COST	S	SUE	STOTAL CO	STS	TOTAL COST	DEMARKS	
Description	QII	UNIT	MAT.	LABOR	EQUIP.	MAT.	LABOR	EQUIP.	TOTAL COST	REMARKS	
Connect Existing DDC to Cetralized System	1	ea	\$ 300	\$ 200	\$-	\$ 330	\$ 270	\$-	\$ 600	Vendor Quote	
Reprogram DDC	1	ea	\$-	\$ 9,000	\$-	\$-	\$ 12,150	\$-	\$ 12,150	Engineering Estimate	

\$ 12,750	Subtotal
\$ 1,275.00	10% Contingency
\$ 2,805.00	20% Contractor O&P
\$ -	
\$ 16,830	Total

ECM-8: Replace Domestic Hot Water Heater w/ Instantaneous unit

Summary

* Replace Existing NG 80 gallon DHWH w/ Instantaneous, Condensing, NG DHW Heater

ltem	Value	<u>Units</u>	Formula/Comments
Occupied days per week	5	days/wk	
Water supply Temperature	60	°F	Termperature of water coming into building
Hot Water Temperature	120	۴F	
Hot Water Usage per day	567	gal/day	Calculated from usage below
Annual Hot Water Energy Demand	56,627	MBTU/yr	Energy required to heat annual quantity of hot water to setpoint
Existing Tank Size	80	Gallons	Per manufacturer nameplate
Hot Water Temperature	120	°F	Per building personnel
Average Room Temperature	70	°F	
Standby Losses (% by Volume)	2.5%		(2.5% of stored capacity per hour, per U.S. Department of Energy)
Standby Losses (Heat Loss)	0.8	MBH	
Annual Standby Hot Water Load	7,300	MBTU/yr	
Total Annual Hot Water Demand (w/ standby losses)	63,927	Mbtu/yr	Building demand plus standby losses
Existing Water Heater Efficiency	80%		Per Manufacturer
Total Annual Energy Required	79,909	Mbtu/yr	
Total Annual Natural Gas Required	799.1	Therms /yr	Per Utility Bills
New Tank Size	0	Gallons	tankless
Hot Water Temperature	120	°F	
Average Room Temperature	70	°F	
Standby Losses (% by Volume)	2.5%		(2.5% of stored capacity per hour, per U.S. Department of Energy)
Standby Losses (Heat Loss)	0.0	MBH	
Annual Standby Hot Water Load	0	MBTU/yr	
Prop Annual Hot Water Demand (w/ standby losses)	56,627	MBTU/yr	
Proposed Avg. Hot water heater efficiency	92%		Based on condensing tankless DHW Heater
Proposed Total Annual Energy Required	61,551	MBTU/yr	
Proposed Fuel Use	616	Therms /yr	Standby Losses and inefficient DHW heater eliminated
Proposed Fuel Savings	184	Therms /yr	
Propane Utility Unit Cost	\$1.03	\$/Therm	
Existing Operating Cost of DHW	\$823	\$/yr	
Proposed Operating Cost of DHW	\$634	\$/yr	
Annual Utility Cost Savings	\$189	\$/yr	

Multipliers	
Material:	1.10
Labor:	1.35
Equipment:	1.10

ECM-8: Replace Domestic Hot Water Heater w/ Instantaneous unit - Cost

Description	QTY	UNIT	UNIT COSTS			SUBTOTAL COSTS				TOTAL	REMARKS
Description	QTT	UNIT	MAT.	LABOR	EQUIP.	MAT	Γ.	LABOR	EQUIP.	COST	REWARKS
Gas-Fired DHW Heater Removal	1	LS		\$ 500		\$	-	\$ 67	5 \$ -	\$ 675	RS Means 2012
Rannai Tankless Gas-Fired DHW Heater	2	LS	\$ 1,000	\$ 1,000		\$ 2,2	200	\$ 2,70)\$-	\$ 4,900	Vendor Quote
Venting	2	LS	\$ 500	\$ 500		\$ 1,1	00	\$ 1,35)\$-	\$ 2,450	RS Means 2012
Miscellaneous Electrical	1	LS	\$ 300			\$ 3	330	\$	- \$ -	\$ 330	RS Means 2012
Miscellaneous Piping and Valves	1	LS	\$ 200			\$ 2	220	\$	- \$ -	\$ 220	RS Means 2012
						\$	-	\$	- \$ -	\$ -	
						\$	-	\$	- \$ -	\$ -	
						\$	-	\$	- \$ -	\$ -	
						\$	-	\$	- \$ -	\$ -	

\$ 8,575	Subtotal
\$ 858	10% Contingency
\$ 1,887	20% Contractor O&P
\$ -	
\$ 11,319	Total

TITLE: PROJECT: SITE:	Convert Electric Dish Washer Booster Heater to Natural Gas Ringwood BOE - NJBPU Robert Erskine Elementary School	
DESCRIPTION:	When fuel costs are less expensive than electric, converting from electric to fuel heating results in reduce cost.	
GIVEN:	Electrical Energy Cost=\$0.123\$/kWhElectrical Demand Cost=\$9.53\$/kWFuel Energy Cost=\$0.92\$/Therm (Nat'l Gas)Image: state st	
ASSUMPTION:	Efficiency (Fuel)=80%Efficiency (Electric)=100%Operating Months per Year=10Scheduled Usage=70%Utilization Factor (Demand)=30%	
FORMULA:	Energy Use (Kwh) = (Capacity(Kw)) x (Hours of Operation/Year) x (Scheduled Usage) / (Efficiency) Fuel Use (Unit) = (Electrical Use(Kwh)) x (3413 btu/kw) x (Electrical Efficiency) / (Fuel Efficiency) / (Heating Value of Fuel) Energy Demand (Kw) = (Capacity (Kw)) x (Months/Year) x (Demand Utilization Factor) Electrical Energy Cost (\$) = (Energy Cost (Kwh) x (\$/Kwh)) + (Demand (Kw) x (\$/Kw)) Fuel Energy Cost (\$) = ((Fuel Use(Unit) x Fuel Cost(\$/Unit))	
CALCULATION:	CapacityHours/YearScheduled UsageEfficiencyElectric Usage = (10.4)x(720)x(70%)/(100%) = 5,242 Kwh	
	Electrical Use ConversionEfficiency (Electric) Efficiency (Fuel) ConversionFuel Usage = ($5,242$)x($3,413$) x (100%)/(80%)/($100,000$) = 224 Therm	
	CapacityMonths/YearUtilization FactorElectric Demand =(10.4)*(10)*(30%) =31 Kw	
	Kwh \$/kwh Kw \$/Kw Existing Energy Cost = (5,242)*(\$0.123)+(31)*(\$9.53) = \$ 942	2
	Therm \$/fuel unit	
	Proposed Energy Cost = (224)*($\$0.925$) = \$ 207	7
Result	Existing Annual Use=5,242 Kwh31 Kw\$ 942Proposed Annual Use=224 Therm\$ 207	
1009	% Annual Savings= 5,242 Kwh 31 Kw \$ 736 Savings as Percent of Existing = (224) Therm 78%	
80	% Annual Savings= 4,193 Kwh 25 Kw \$ 588 Savings as Percent of Existing = (179) Therm 62%	

COMMENTS:

1.10
1.35
1.10

Convert Electric Dish Washer Booster Heater to Natural Gas - Cost

Description	n QTY			JNIT COSTS		SUB	TOTAL	COST	S		тоот					
Description	QIT	UNIT	MAT.	LABOR	EQUIP.	MAT.	LABO	RE	EQUIP.	IOTAL COST		TOTAL COST		TOTAL COST		REMARKS
New Booster Heater	1	ea	\$ 5,400.00	\$6,700.00		\$ 5,940	\$ 9,04	5\$	-	\$ 14	4,985	RS Means 2012				
					\$-	\$ -	\$	- \$	-	\$	-					
						\$ -	\$	- \$	-	\$	-					
						\$ -	\$	- \$	-	\$	-					
						\$ -	\$	- \$	-	\$	-					
						\$ -	\$	- \$	-	\$	-					
						\$ -	\$	- \$	-	\$	-					
						\$ -	\$	- \$	-	\$	-					
						\$ -	\$	- \$	-	\$	-					

\$ 14,985	Subtotal
\$ -	
\$ -	
\$ -	
\$ 14,985	Total

ECM-13: Add Dedicated Hood and Fan for Oven

EXISTING CONDITIONS			
	L	.ength	Width
Dimension of Kitchen Hood (ft)		6	3.3
Linear Feet of Kitchen Hood		19	Feet
CFM of Kitchen Hood		1,867	CFM ¹
Existing Electric Requirements of Hood		1	HP
Existing Electric Requirements of Hood		0.746	kW ²
Hours of Operation		1,800	Hours
Existing Annual Electric Usage		1,343	kWh
Cost of Electricity	\$	0.15	\$/kWh
Cost of Annual Electric Usage	\$	207.07	\$

PROPOSED CONDITIONS		
CFM of Kitchen Hood for Oven	250	CFM ³
Proposed Electric Requirements of Hood	0.25	HP
Proposed Electric Requirements of Hood	0.187	kW ²
Existing Annual Electric Usage	336	kWh
Cost of Annual Electric Usage	\$ 51.77	\$

SAVINGS		
Annual Electric savings	1,007	kWh
Total Cost Savings	\$ 155.30	

Assumptions

- 1 100 CFM per Linear Foot of Hood
- 2 0.746 Conversion from HP to kW
- 3 250 Based on 8'D Duct Tying Into Exhaust Ductwork

Multipliers	
Material:	1.10
Labor:	1.35
Equipment:	1.10

ECM-13: Add Dedicated Hood and Fan for Oven - Cost

Description	QTY	UNIT	L	SUBTOTAL COSTS				TOTAL	REMARKS		
Description	QII	UNIT	MAT.	LABOR	EQUIP.	MAT.	L	ABOR	EQUIP.	COST	REMARKS
Exhaust Hood	1	EA	\$ 1,300	\$ 1,700		\$ 1,43) \$	2,295	\$-	\$ 3,72	5 RS Means 2012
Exhaust Fan & Curb	1	EA	\$ 500	\$ 1,000		\$ 55) \$	1,350	\$-	\$ 1,90	0 RS Means 2012
Ductwork	1	EA	\$ 500	\$ 1,000		\$ 55) \$	1,350	\$-	\$ 1,90	0 RS Means 2012
Miscellaneous Electric Wiring	1	EA	\$ 500	\$ 1,000		\$ 55) \$	1,350	\$-	\$ 1,90	0 RS Means 2012
						\$	- \$	-	\$-	\$	-
						\$	- \$	-	\$-	\$	-
						\$	- \$	-	\$-	\$	-
						\$	- \$	-	\$ -	\$	-

\$ 9,425	Subtotal
\$ 943	10% Contingency
\$ 2,074	20% Contractor O&P
\$ -	
\$ 12,441	Total

New Jersey Pay For Performance Incentive Program

Note: The following calculation is based on the New Jersey Pay For Performance Incentive Program per April, 2012. Building must have a minimum average electric demand of 100 kW. This minimum is waived for buildings owned by local governements or non-profit organizations.

Values used in this calculation are for measures with a positive return on investment (ROI) only.

Total Building Area (Square Feet)	31,700
Is this audit funded by NJ BPU (Y/N)	Yes
Board of Public Utilites (BPU)	

Incentive #1								
\$0.10	\$/sqft							
	\$0.10							

	Annual Utilities						
	kWh Therms						
Existing Cost (from utility)	\$38,910	\$23,041					
Existing Usage (from utility)	252,320	24,912					
Proposed Savings	71,102	9,886					
Existing Total MMBtus	3,352						
Proposed Savings MMBtus	1,231						
% Energy Reduction	36.7%						
Proposed Annual Savings	\$19,000						

	Min (Savings = 15%) \$/kWh \$/therm		Increase (Sa	vings > 15%)	Max Inc	entive	Achieved Incentive		
			\$/kWh	\$/therm	\$/kWh \$/therm		\$/kWh	\$/therm	
Incentive #2	\$0.09	\$0.90	\$0.005	\$0.05	\$0.11	\$1.25	\$0.11	\$1.25	
Incentive #3	\$0.09	\$0.90	\$0.005	\$0.005 \$0.05		\$1.25	\$0.11	\$1.25	

	Incentives \$								
	Elec	Gas	Total						
Incentive #1	\$0	\$0	\$5,000						
Incentive #2	\$7,821	\$12,357	\$20,178						
Incentive #3	\$7,821	\$12,357	\$20,178						
Total All Incentives	\$15,643	\$24,714	\$45,357						

Total Project Cost	\$916,060				
		Allowable Incentive			
% Incentives #1 of Utility Cost*	8.1%	\$5,000			
% Incentives #2 of Project Cost**	2.2%	\$20,178			
% Incentives #3 of Project Cost**	2.2%	\$20,178			
Total Eligible Incentives***	\$45,357				
Project Cost w/ Incentives	\$870	0,704			

Project Payback (years)									
w/o Incentives	w/ Incentives								
48.2	45.8								

* Maximum allowable incentive is 50% of annual utility cost if not funded by NJ BPU, and %25 if it is.

** Maximum allowable amount of Incentive #2 is 25% of total project cost.

Maximum allowable amount of Incentive #3 is 25% of total project cost.

*** Maximum allowable amount of Incentive #1 is \$50,000 if not funded by NJ BPU, and \$25,000 if it is.

Maximum allowable amount of Incentive #2 & #3 is \$1 million per gas account and \$1 million per electric account; maximum 2 million per project

Energy Audit of Robert Erskine Elementary School CHA Project No. 24736

ECM-9 Lighting Replacements

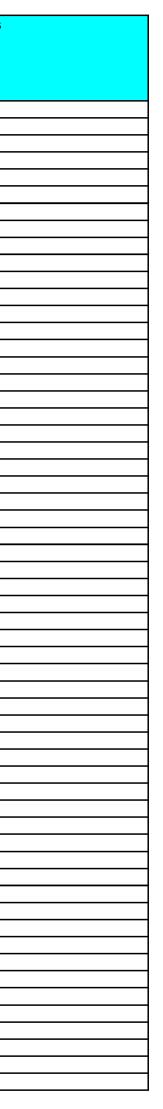
Budgetary		Annual Ut	lity Savings		Estimated	Total	New Jersey	Payback	Payback
								(without	
Cost					Maintenance	Savings	Incentive	incentive)	(with incentive)
					Savings				
\$	kW	kWh	therms	\$	\$	\$	\$	Years	Years
\$54,281	6.4	18,345	0	\$2,985	0	\$2,985	\$4,600	18.2	16.6

*Incentive based on New Jersey Smart Start Prescriptive Lighting Measures

ECM-10 Install Occupancy Sensors

Budgetary		Annual Ut	ility Savings		Estimated	Total	New Jersey	Payback	Payback
								(without	
Cost					Maintenance	Savings	Incentive	incentive)	(with incentive)
					Savings				
\$	kW	kWh	therms	\$	\$	\$	\$	Years	Years
\$14,580	0.0	45,398	0	\$5,584	0	\$5,584	\$1,890	2.6	2.3

*Incentive based on New Jersey Smart Start Prescriptive Lighting Measures


ECM-11 Lighting Replacements with Occupancy Sensors

Budgetary		Annual Uti	ility Savings		Estimated	Total	New Jersey	Payback	Payback
								(without	
Cost					Maintenance	Maintenance Savings		incentive)	(with incentive)
					Savings				
\$	kW	kWh	therms	\$	\$	\$	\$	Years	Years
\$68,861	6.4	51,856	0	\$7,107	0	\$7,107	\$6,490	9.7	8.8

*Incentive based on New Jersey Smart Start Prescriptive Lighting Measures

Energy Audit of Robert Erskine Elementary School CHA Project No. 24736

	dit of Robert Erskine Elementary School <i>act No. 24736</i> I <mark>ghting</mark>				Cost of Electricity:		<mark>33</mark> \$/kWh 3 <mark>3</mark> \$/kW					
					EXISTIN	G CONDITIONS						
			No. of			Watts per				Retrofit		
	Area Description	Usage	Fixtures	Standard Fixture Code	Fixture Code	Fixture	kW/Space	Exist Control	Annual Hours	Control	Annual kWh	
Field	Unique description of the location - Room number/Room	Describe Usage Type	No. of	Lighting Fixture Code	Code from Table of Standard Fixture		(Watts/Fixt) * (Fixt	Pre-inst. control	Estimated	Retrofit contro		Notes
Code	name: Floor number (if applicable)	using Operating Hours	fixtures before the		Wattages	Table of Standard	No.)	device	annual hours for		(Annual Hours)	
			retrofit			Fixture Wattages			the usage group			
201	101 Classroom	Classrooms	4	T 32 R F 3 (ELE)	F43ILL/2	90	0.36	SW	3000	C-0CC	1,080	
71	101 Classroom	Classrooms	1	I 60	I60/1	60	0.06	SW	3000	C-0CC	180	
201	102 Classroom	Classrooms	4	T 32 R F 3 (ELE)	F43ILL/2	90	0.36	SW	3000	0.000	1,080	
71 196	102 Classroom 102 Classroom	Classrooms Classrooms	1	I 60 W 32 C F 4 (ELE)	I60/1 F44ILL	60 112	0.06	SW SW	3000 3000	C-OCC 220-2	180 336	
130	103 Faculty Room	Break/Lunch Rooms	2	S 32 P F 2 (ELE)	F441LL	60	0.12	SW	3000	C-0CC	360	
196	103 Faculty Room	Break/Lunch Rooms	2	W 32 C F 4 (ELE)	F44ILL	112	0.22	SW	3000	C-0CC	672	
13	103 Faculty Room Women TR	Bath Room	1	S 32 P F 2 (ELE)	F42LL	60	0.06	SW	2000	C-0CC	120	
199	103 Faculty Room Women TR	Bath Room	1	W 32 C F 1 (ELÉ)	F41LL	32	0.03	SW	2000	C-OCC	64	
13	103 Faculty Room Men TR	Bath Room	1	S 32 P F 2 (ELE)	F42LL	60	0.06	SW	2000	C-0CC	120	
199	103 Faculty Room Men TR	Bath Room	1	W 32 C F 1 (ELE)	F41LL	32	0.03	SW	2000	C-0CC	64	
196	Nurse Office	Offices	4	W 32 C F 4 (ELE)	F44ILL	112	0.45	SW	3000	0.000	1,344	
201 201	Nurse Office Copier Room	Offices Offices	2	T 32 R F 3 (ELE) T 32 R F 3 (ELE)	F43ILL/2 F43ILL/2	90 90	0.18	SW SW	3000 3000	0.00C 0.00C	540 540	
201	Office	Offices	2	T 32 R F 3 (ELE)	F43ILL/2 F43ILL/2	90	0.18	SW	3000	0000	540	
201	Main Office	Offices	6	T 32 R F 3 (ELE)	F43iLL/2 F43iLL/2	90	0.18	SW	3000	0000	1,620	
201	Principal Office	Offices	4	T 32 R F 3 (ELE)	F43ILL/2	90	0.36	SW	3000	C-0CC	1,080	
71	Principal Office	Offices	1	160	160/1	60	0.06	SW	3000	C-0CC	180	
201	Stairs	Hallways	2	T 32 R F 3 (ELE)	F43ILL/2	90	0.18	SW	3000	C-OCC	540	
13	Stairs	Hallways	1	S 32 P F 2 (ELE)	F42LL	60	0.06	SW	3000	C-0CC	180	
196	Corridor	Hallways	14	W 32 C F 4 (ELE)	F44ILL	112	1.57	SW	3000	C-0CC	4,704	
71	Boy's TR	Bath Room	2	160	I60/1	60	0.12	SW	2000	C-0CC	240	
71	Girl's TR	Bath Room	2		I60/1	60	0.12	SW	2000	0.000	240	
13 196	Cust Room All Purpose Room	Storage Areas Gynasium	20	S 32 P F 2 (ELE) W 32 C F 4 (ELE)	F42LL F44ILL	60 112	0.18	SW SW	1000 3000	C-OCC C-OCC	180 6,720	
201	Kitchen	Cafeteria	12	T 32 R F 3 (ELE)	F44ILL F43ILL/2	90	1.08	SW	3000	0000	3,240	
74	Kitchen	Cafeteria	2	150	150/1	50	0.10	SW	3000		300	
13	Boiler Room	Mechanical Room	7	S 32 P F 2 (ELE)	F42LL	60	0.42	SW	1000		420	
196	Storage / Garage	Classrooms	3	W 32 C F 4 (ELÉ)	F44ILL	112	0.34	SW	3000	C-OCC	1,008	
13	Storage / Garage	Bath Room	2	S 32 P F 2 (ELE)	F42LL	60	0.12	SW	2000	C-OCC	240	
13	201 Classroom	Bath Room	13	S 32 P F 2 (ELE)	F42LL	60	0.78	SW	2000	C-0CC	1,560	
13	203 Classroom	Classrooms	13	S 32 P F 2 (ELE)	F42LL	60	0.78	SW	3000	C-0CC	2,340	
13	205 Classroom	Classrooms	13	S 32 P F 2 (ELE)	F42LL	60	0.78	SW	3000	C-0CC	2,340	
13	207 Classroom 208 Classroom	Classrooms Classrooms	13	S 32 P F 2 (ELE) S 32 P F 2 (ELE)	F42LL F42LL	60 60	0.78	SW SW	3000 3000	C-OCC 220-2	2,340 2,340	
13 13	206 Classroom 206 Classroom	Classrooms	13	S 32 P F 2 (ELE) S 32 P F 2 (ELE)	F42LL F42LL	60	0.78	SW	3000	C-000	2,340	
13	200 Classroom 204 Classroom	Classrooms	13	S 32 P F 2 (ELE)	F42LL	60	0.78	SW	3000	C-0CC	2,340	
13	202 Classroom	Classrooms	13	S 32 P F 2 (ELE)	F42LL	60	0.78	SW	3000	C-0CC	2,340	
13	209 Classroom	Classrooms	13	S 32 P F 2 (ELE)	F42LL	60	0.78	SW	3000	C-0CC	2,340	
13	211 Classroom	Classrooms	21	S 32 P F 2 (ELE)	F42LL	60	1.26	SW	3000	C-OCC	3,780	
13	213 Classroom	Classrooms	21	S 32 P F 2 (ELE)	F42LL	60	1.26	SW	3000	C-0CC	3,780	
13	215 Classroom	Classrooms	20	S 32 P F 2 (ELE)	F42LL	60	1.20	SW	3000	C-0CC	3,600	
13	217 Classroom	Classrooms	20	S 32 P F 2 (ELE)	F42LL	60	1.20	SW	3000	0.000	3,600	
13	219 Classroom 219 TR	Classrooms Both Boom	19	S 32 P F 2 (ELE)	F42LL	60	1.14	SW	3000	000-0	3,420	
71 13	219 TR 221 Classroom	Bath Room Classrooms	1	I 60 S 32 P F 2 (ELE)	I60/1 F42LL	60 60	0.06	SW SW	2000 3000	0.00C 0.00C	120 3,420	
13	221 Classroom 223 Classroom	Classrooms	31	S 32 P F 2 (ELE) S 32 P F 2 (ELE)	F42LL F42LL	60	1.14	SW	3000	0000	5,580	
71	223 Classicolli 223 TR	Bath Room	1	160	160/1	60	0.06	SW	2000	C-0CC	120	
13	225 Classroom	Classrooms	6	S 32 P F 2 (ELE)	F42LL	60	0.36	SW	3000	C-OCC	1,080	
71	225 TR	Bath Room	1	160	160/1	60	0.06	SW	2000	C-OCC	120	
13	214 Classroom	Classrooms	20	S 32 P F 2 (ELE)	F42LL	60	1.20	SW	3000	C-OCC	3,600	
13	212 Classroom	Classrooms	20	S 32 P F 2 (ELE)	F42LL	60	1.20	SW	3000	C-0CC	3,600	
13	210 Classroom	Classrooms	20	S 32 P F 2 (ELE)	F42LL	60	1.20	SW	3000	0.000	3,600	
13	Storage Boyle TP	Storage Areas	1	S 32 P F 2 (ELE)	F42LL	60	0.06	SW	1000	0.000	60	
13	Boy's TR	Bath Room Bath Room	2	S 32 P F 2 (ELE)	F42LL	60 60	0.12	SW SW	2000	220-2	240 240	
13 196	Girl's TR Hallway	Hallways	2	S 32 P F 2 (ELE) W 32 C F 4 (ELE)	F42LL F44ILL	60 112	0.12	SW	2000 3000	C-OCC 220-2	6,720	
	Total	Taiways	472			112	32.71	300	3000		95,072	
	10441		412			1	52.71	l	1	I	33,012	

Energy Audit of Robert Erskine Elementary School CHA Project No. 24736 ECM-9 Lighting Replacements

		EXISTING CONDITIONS				RETROFIT CONDITIONS																
	Area Description	No. of Fixtures Standard Fixture Code	Fixture Code	Watts per Fixture	kW/Space	Exist Control	Annual Hours	Annual kWh	Number of Fixture	s Standard Fixture Code	Fixture Code	Watts per Fixture	kW/Space	Retrofit Control	Annual Hours	Annual kWh	Annual kWh Saved	Annual kW Saved	Annual \$ Saved	NJ Smart Star Retrofit Cost Lighting Incenti	Simple Payback t With Out ve Incentive	Simple Payback
Field Code U	nique description of the location - Room number/Roo name: Floor number (if applicable)	M No. of fixtures "Lighting Fixture Code" Example 2T before the retrofit 40 R F(U) = 2'x2' Troff 40 w Recess. Floor 2 lamps U shape	Code from Table of Standard Fixture Wattages	Value from Table of Standard Fixture Wattages	(Watts/Fixt) * (Fix No.)	t Pre-inst. control device	Estimated daily hours for the usage group	(kW/space) * (Annual Hours)	No. of fixtures afte the retrofit	r "Lighting Fixture Code" Example 2T 40 R F(U) = 2'x2' Troff 40 w Recess. Floor 2 lamps U shape	Code from Table of Standard Fixture Wattages	Value from Table of Standard Fixture Wattages	(Watts/Fixt) * (Number of Fixtures)	Retrofit contro device	annual hours	(Annual k	Original Annual ‹Wh) - (Retrofit Annual kWh)	(Original Annual kW) - (Retrofit Annual kW)	(kWh Saved) * (\$/kWh)	Cost for Prescriptive renovations to lighting system Measures	Length of time for renovations cost to be recovered	Length of time for renovations cost to be recovered
201	101 Classroom	4 T 32 R F 3 (ELE)	F43ILL/2	90	0.4	SW	3000	1,080) 4	0	F43SSILL	72 72	0.3	SW	3,000	864	216	0.1	\$ 34.80	\$ 425.00 \$40	12.2	11.1
71 201	101 Classroom 102 Classroom	1 I 60 4 T 32 R F 3 (ELE)	I60/1 F43ILL/2	<u> </u>	0.1	SW	3000	180) 1	CF 26	CFQ26/1-L F43SSIU	27	0.0	SW	3,000	81	99	0.0	\$ 15.95 \$ 34.80	\$ 6.75 \$0 \$ 425.00 \$40	0.4	0.4
71	102 Classroom	1 1 60	I60/1	60	0.4	SW	3000	1,080) 4	CF 26	CFQ26/1-L	27	0.0	SW	3,000	81	<u></u>	0.0	\$ 34.80 \$ 15.95	\$ 425.00 \$40 \$ 6.75 \$0	0.4	0.4
196	102 Classroom	1 W 32 C F 4 (ELE)	F44ILL	112	0.1	SW	3000	336	δ 1	0	F44SSILL	96	0.1	SW	3,000	288	48	0.0	\$ 7.73	¢	18.3	17.0
13 196	103 Faculty Room 103 Faculty Room	2 S 32 P F 2 (ELE) 2 W 32 C F 4 (ELE)	F42LL F44ILL	60	0.1	SW	3000 3000	360	$\frac{2}{2}$	0	F42SSILL F44SSILL	48	0.1	SW	3,000	288	72	0.0	\$ 11.60 \$ 15.47	÷	<u> </u>	18.1
13	103 Faculty Room Women TR	1 S 32 P F 2 (ELE)	F441LL	60	0.2	SW	2000	120) 1	0	F42SSILL	48	0.2	SW	2,000	96	24	0.0	\$ 13.47 \$ 4.32	¢ ¢	26.5	24.2
199	103 Faculty Room Women TR	1 W 32 C F 1 (ELÉ)	F41LL	32	0.0	SW	2000	64	1	0	F41SSILL	26	0.0	SW	2,000	52	12	0.0	\$ 2.16	· · · · ·	49.1	44.5
13 199	103 Faculty Room Men TR 103 Faculty Room Men TR	1 S 32 P F 2 (ELE) 1 W 32 C F 1 (ELE)	F42LL F41LL	60	0.1	SW SW	2000	120) 1	0	F42SSILL F41SSILL	48	0.0	SW SW	2,000	96	24	0.0	\$ 4.32 \$ 2.16	· · · · · ·	<u> </u>	24.2
195	Nurse Office	4 W 32 C F 4 (ELE)	F44ILL	112	0.0	SW	3000	1,344	4	0	F44SSILL	96	0.4	SW	3,000	1,152	192	0.0	\$ 30.94	÷ ::::::::::::::::::::::::::::::::::::	18.3	17.0
201	Nurse Office	2 T 32 R F 3 (ELE)	F43ILL/2	90	0.2	SW	3000	540) 2	0	F43SSILL	72	0.1	SW	3,000	432	108	0.0	\$ 17.40	¢ 212.00 ¢20	12.2	11.1
201 201	Copier Room Office	2 T 32 R F 3 (ELE) 2 T 32 R F 3 (ELE)	F43ILL/2 F43ILL/2	90	0.2	SW	3000 3000	540 540	$\frac{2}{2}$	0	F43SSILL F43SSILL	72	0.1	SW SW	3,000	432	108 108	0.0	\$ 17.40 \$ 17.40	\$ 212.50 \$20 \$ 212.50 \$20	12.2	11.1
201	Main Office	6 T 32 R F 3 (ELE)	F43ILL/2	90	0.5	SW	3000	1,620	, ε	0	F43SSILL	72	0.4	SW	3,000	1,296	324	0.1	\$ 52.20	\$ 637.50 \$60	12.2	11.1
201	Principal Office	4 T 32 R F 3 (ELE)	F43ILL/2	90	0.4	SW	3000	1,080) 4	0	F43SSILL	72	0.3	SW	3,000	864	216	0.1	\$ 34.80	¢ 120100 ¢10	12.2	11.1
71 201	Principal Office Stairs	1 I 60 2 T 32 R F 3 (ELE)	I60/1 F43ILL/2	<u> </u>	0.1	SW	3000 3000	180 540	1	CF 26	CFQ26/1-L F43SSILL	27	0.0	SW	3,000	<u>81</u> 432	99	0.0	\$ 15.95 \$ 17.40	\$ 6.75 \$0 \$ 212.50 \$20	0.4	0.4
13	Stairs	1 S 32 P F 2 (ELE)	F42LL	60	0.1	SW	3000	180) 1	0	F42SSILL	48	0.0	SW	3,000	144	36	0.0	\$ 5.80	\$ 114.75 \$10	19.8	18.1
196	Corridor	14 W 32 C F 4 (ELE)	F44ILL	112	1.6	SW	3000	4,704		0	F44SSILL	96	1.3	SW	3,000	4,032	672	0.2	\$ 108.27		18.3	17.0
71	Boy's TR Girl's TR	2 160	I60/1	<u> </u>	0.1	SW	2000	240		CF 26	CFQ26/1-L CFQ26/1-L	27	0.1	SW	2,000	108	132	0.1	\$ 23.78 \$ 23.78	\$ 13.50 \$0 \$ 13.50 \$0	0.6	0.6
13	Cust Room	3 S 32 P F 2 (ELE)	F42LL	60	0.1	SW	1000	180	$\frac{2}{3}$	0	F42SSILL	48	0.1	SW	1,000	108	36	0.0	\$ 23.78 \$ 8.54	\$ 344.25 \$30	40.3	36.8
196	All Purpose Room	20 W 32 C F 4 (ELÉ)	F44ILL	112	2.2	SW	3000	6,720) 20	0	F44SSILL	96	1.9	SW	3,000	5,760	960	0.3	\$ 154.68	φ 2,000.00 φ200	18.3	17.0
201	Kitchen Kitchen	12 T 32 R F 3 (ELE)	F43ILL/2	90	1.1	SW	3000	3,240		0	F43SSILL	72	0.9	SW	3,000	2,592	648	0.2	\$ 104.41	¢ 1,210100 ¢120	12.2	11.1
74 13	Boiler Room	7 S 32 P F 2 (ELE)	F42LL	<u> </u>	0.1	SW	3000 1000	300	-	CF 26	CFQ26/1-L F42SSILL	48	0.1	SW	3,000	336	<u>138</u> 84	0.0	\$ 22.23 \$ 19.94	+	<u> </u>	1.8
196	Storage / Garage	3 W 32 C F 4 (ELÉ)	F44ILL	112	0.3	SW	3000	1,008		0	F44SSILL	96	0.3	SW	3,000	864	144	0.0	\$ 23.20	\$ 425.25 \$30	18.3	17.0
13	Storage / Garage	2 S 32 P F 2 (ELE)	F42LL	60	0.1	SW	2000	240		0	F42SSILL	48	0.1	SW	2,000	192	48	0.0	\$ 8.65 \$ 50.00	+	26.5	24.2
13 13	201 Classroom 203 Classroom	13 S 32 P F 2 (ELE) 13 S 32 P F 2 (ELE)	F42LL F42LL	60 60	0.8	SW SW	2000 3000	1,560 2,340		0	F42SSILL F42SSILL	48	0.6	SW SW	2,000	1,248	<u> </u>	•-=	\$ 56.22 \$ 75.40	\$ 1,491.75 \$130 \$ 1,491.75 \$130	<u> </u>	24.2
13	205 Classroom	13 S 32 P F 2 (ELE)	F42LL	60	0.8	SW	3000	2,340) 13	0	F42SSILL	48	0.6	SW	3,000	1,872	468	0.2	\$ 75.40	. , .	19.8	18.1
13	207 Classroom	13 S 32 P F 2 (ELE)	F42LL	60	0.8	SW	3000	2,340) 13	0	F42SSILL	48	0.6	SW	3,000	1,872	468	0.2	\$ 75.40	•	19.8	18.1
13 13	208 Classroom 206 Classroom	13 S 32 P F 2 (ELE) 13 S 32 P F 2 (ELE)	F42LL F42LL	<u> </u>	0.8	SW	3000 3000	2,340			F42SSILL F42SSILL	48	0.6	SW	3,000	1,872	468	0.2	\$ 75.40 \$ 75.40	\$ 1,491.75 \$130 \$ 1,491.75 \$130	<u> </u>	18.1
13	204 Classroom	13 S 32 P F 2 (ELE)	F42LL	60	0.8	SW	3000	2,340		0	F42SSILL	48	0.6	SW	3,000	1,872	468	0.2		\$ 1,491.75 \$130	19.8	18.1
13	202 Classroom	13 S 32 P F 2 (ELE)	F42LL	60	0.8	SW	3000	2,340		0	F42SSILL	48	0.6	SW	3,000	1,872	468	0.2	\$ 75.40	÷	19.8	18.1
13 13	209 Classroom 211 Classroom	13 S 32 P F 2 (ELE) 21 S 32 P F 2 (ELE)	F42LL F42LL	60	0.8	SW	3000 3000	2,340 3.780			F42SSILL F42SSILL	48	0.6	SW	3,000	1,872	468	0.2	\$ 75.40 \$ 121.81	Ŧ)Ŧ	<u> </u>	18.1
13	213 Classroom	21 S 32 P F 2 (ELE)	F42LL	60	1.3	SW	3000	3,780		0	F42SSILL	48	1.0	SW	3,000	3,024	756	0.0		\$ 2,409.75 \$210	19.8	18.1
13	215 Classroom	20 S 32 P F 2 (ELE)	F42LL	60	1.2	SW	3000	3,600	_	0	F42SSILL	48	1.0	SW	3,000	2,880	720	0.2	+	\$ 2,295.00 \$200 \$ 0,005.00 \$200	19.8	18.1
13 13	217 Classroom 219 Classroom	20 S 32 P F 2 (ELE) 19 S 32 P F 2 (ELE)	F42LL F42LL	<u> </u>	1.2	SW SW	3000 3000	<u> </u>		0	F42SSILL F42SSILL	48	1.0	SW SW	3,000	2,880	720 684	0.2	\$ 116.01 \$ 110.21	, , ,	<u> </u>	18.1
71	219 TR	1 160	160/1	60	0.1	SW	2000	120		CF 26	CFQ26/1-L	27	0.0	SW	2,000	54	66	0.0	\$ 11.89	· · · · · ·	0.6	0.6
13	221 Classroom	19 S 32 P F 2 (ELE)	F42LL	60	1.1	SW	3000	3,420		0	F42SSILL	48	0.9	SW	3,000	2,736	684	0.2		\$ 2,180.25 \$190	19.8	18.1
<u>13</u> 71	223 Classroom 223 TR	31 S 32 P F 2 (ELE) 1 I 60	F42LL	<u> </u>	1.9	SW	3000 2000	5,580		0 CF 26	F42SSILL CFQ26/1-L	48	1.5	SW	3,000	4,464	<u>1,116</u> 66	0.4	\$ 179.81 \$ 11.89	. , .	<u> </u>	18.1
13	225 Classroom	6 S 32 P F 2 (ELE)	F42LL	60	0.1	SW	3000	1,080	, ,	0	F42SSILL	48	0.0	SW	3,000	864	216	0.1	\$ 34.80	¢ 01.10 ¢0	19.8	18.1
71	225 TR	1 1 60	I60/1	60	0.1	SW	2000	120	, ,	CF 26	CFQ26/1-L	27	0.0	SW	2,000	54	66	0.0	\$ 11.89	φ 8110 φ0	0.6	0.6
13	214 Classroom 212 Classroom	20 S 32 P F 2 (ELE) 20 S 32 P F 2 (ELE)	F42LL F42LL	<u> </u>	1.2	SW	3000 3000	3,600	-	0	F42SSILL F42SSILL	48	1.0	SW	3,000	2,880	720	0.2	\$ 116.01 \$ 116.01	\$ 2,295.00 \$200 \$ 2,295.00 \$200	<u> </u>	18.1
13 13	212 Classroom 210 Classroom	20 S 32 P F 2 (ELE) 20 S 32 P F 2 (ELE)	F42LL F42LL	60	1.2	SW	3000	3,600		0	F42SSILL F42SSILL	48	1.0	SW	3,000	2,880	720	0.2	\$ 116.01	, , ,	19.8	18.1
13	Storage	1 S 32 P F 2 (ELE)	F42LL	60	0.1	SW	1000	60) 1	0	F42SSILL	48	0.0	SW	1,000	48	12	0.0	\$ 2.85	\$ 114.75 \$10	40.3	36.8
13	Boy's TR Girl's TR	2 S 32 P F 2 (ELE)	F42LL	60	0.1	SW	2000	240) 2	0	F42SSILL F42SSILL	48	0.1	SW	2,000	192	48	0.0	\$ 8.65 \$ 8.65	¢	26.5	24.2
13 196	Hallway	2 S 32 P F 2 (ELE) 20 W 32 C F 4 (ELE)	F42LL F44ILL	<u> </u>	0.1	SW SW	2000 3000	240 6,720	-	0	F42SSILL F44SSILL	96	0.1	SW SW	2,000 3,000	5,760	48 960	0.0	\$ 8.65 \$ 154.68	+	<u> </u>	24.2 17.0
Tot	al	472	···		32.7			95,072	472			3,055	26.3			76,727	18,345	6.4	\$2,985	\$54,281 \$4,600	1	1
																	d Savings		6.4	\$728		
																	Savings		18,345	\$2,256		
																Total s	savings			\$2,985	18.2	16.6

Energy Audit of Robert Erskine Elementary School CHA Project No. 24736 ECM-10 Install Occupancy Sensors

Area Description No. of Fixtures Standard Fixture Code Fixture Field Code Unique description of the location - Room number/Room No. of fixtures Lighting Fixture Code Code from Table of name: Floor number (if applicable) before the retrofit Fixture Wattages
 4
 T 32 R F 3 (ELE)

 1
 I 60

 4
 T 32 R F 3 (ELE)

 1
 I 60
 101 Classroom 101 Classroom 102 Classroom 102 Classroom F43ILL 160/1

 201

 71

 201

 71

 196

 13

 196

 13

 199

 13

 199

 13

 199

 13

 199

 13

 199

 13

 199

 13

 190

 201

 201

 201

 201

 201

 201

 13

 196

 71

 13

 196

 71

 13

 196

 201

 71

 73

 196

 201

 74

 F43ILL 160/1 1 F44ILL F42LL F42LL F42LL F41LL F42LL F41LL F43ILL/ F43ILL/ F43ILL/ 102 Classroom W 32 C F 4 (ELE) S 32 P F 2 (ELE) 103 Faculty Room 2 103 Faculty Room W 32 C F 4 (ELE) 2 103 Faculty Room Women TR S 32 P F 2 (ELE) 1 103 Faculty Room Women TR W 32 C F 1 (ELE) 1 S 32 P F 2 (ELE) W 32 C F 1 (ELE) W 32 C F 4 (ELE) T 32 R F 3 (ELE) 103 Faculty Room Men TR 103 Faculty Room Men TR 1 1 4 Nurse Office Nurse Office 2 Copier Room Office Main Office Principal Office Principal Office Stairs T 32 R F 3 (ELE) 2 T 32 R F 3 (ELE) T 32 R F 3 (ELE) F43ILL F43ILL 2 6 T 32 R F 3 (ELE) F43ILL 4 1 2 T 32 R F 3 (ELE) F43ILL 1 S 32 P F 2 (ELE) Stairs F42LL F44ILL I60/1 I60/1 F42LL F44ILL F43ILL/ I50/1 F42LL F44ILL F42LL Corridor Boy's TR Girl's TR W 32 C F 4 (ELÉ) 14 2 I 60 2 I 60 S 32 P F 2 (ELE) Cust Room 3 All Purpose Room W 32 C F 4 (ELE) 20 T 32 R F 3 (ELE) Kitchen 12 Kitchen 2 l 50

 13

 196

 13

 13

 13

 13

 13

 13

 13

 13

 13

 13

 13

 13

 13

 13

 13

 13

 13

 13

 13

 13

 13

 13

 13

 13

 13

 13

 13

 </tbr>
 Boiler Room S 32 P F 2 (ELE) 7 S 32 P F 2 (ELE) W 32 C F 4 (ELE) S 32 P F 2 (ELE) Storage / Garage Storage / Garage 201 Classroom 203 Classroom 3 2 13 13 13 13 13 13 13 F42LL F42LL 205 Classroom 207 Classroom F42LL F42L 208 Classroom F42L 206 Classroom 204 Classroom F42LL 13 S 32 P F 2 (ELE) F42LL 13 202 Classroom 209 Classroom S 32 P F 2 (ELE) S 32 P F 2 (ELE) 13 F42LL 13 F42LL F42LL F42LL F42LL F42LL F42LL F42LL 211 Classroom S 32 P F 2 (ELE) 21 213 Classroom 215 Classroom 217 Classroom 219 Classroom 219 TR 221 Classroom 223 Classroom 223 TR 21 S 32 P F 2 (ELE) 13 13 13 13 S 32 P F 2 (ELE) 20 20
 19
 S 32 P F 2 (ELE)

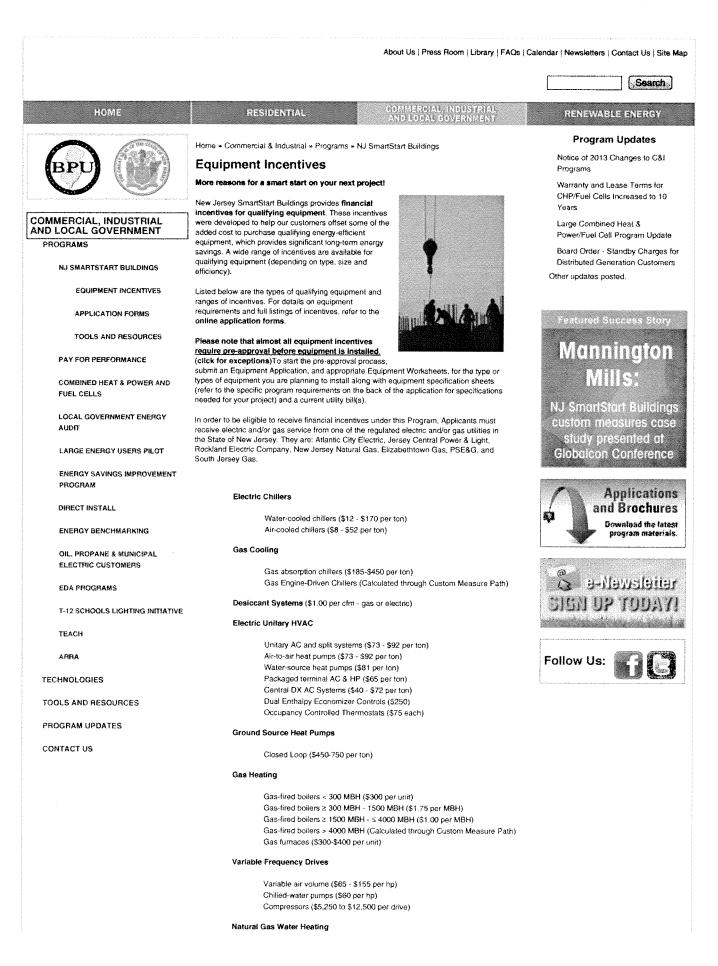
 1
 I 60

 19
 S 32 P F 2 (ELE)
 160/1 F42LL F42LL S 32 P F 2 (ELE) 31 160/ 1 l 60 223 TR 225 Classroom 225 TR 214 Classroom 212 Classroom 210 Classroom Storage Boy's TR Girl's TR Hallway S 32 P F 2 (ELE) 6 F42LL 1 160 60 1 20 20 20 1 S 32 P F 2 (ELE) F42L F42L F42L F42L F42LL F42LL F44ILL S 32 P F 2 (ELE) 2 S 32 P F 2 (ELE) W 32 C F 4 (ELE) 2 20 Total 472

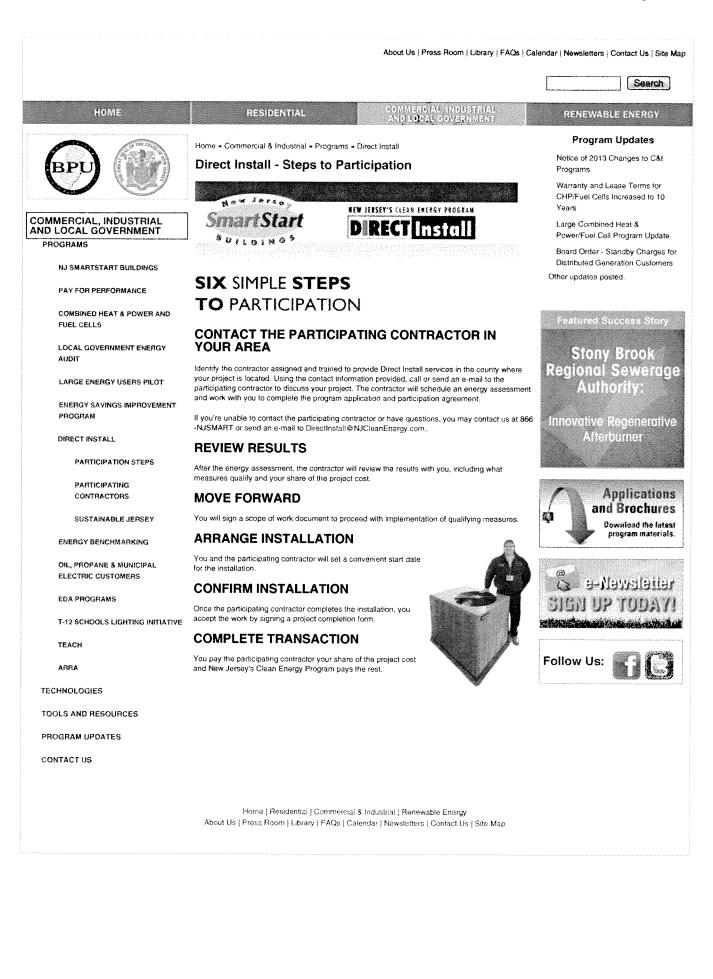
ire Code le of Standard	Watts per																		
	watts per										Deter						NJ Smart Start		
	Fixture	kW/Space	Exist Control	Annual Hours	Annual kWh	Number of Fixtures	Standard Fixture Code	Fixture Code	Watts per Fixture	kW/Space	Retrofit Control	Annual Hours	Annual kWh	Annual kWh Saved	Annual kW Saved Annual \$ Saved	Retrofit Cost	Lighting Incentive	With Out Incentive	Simple Payback
s	Value from	(Watts/Fixt) * (Fixt		Estimated annua		No. of fixtures after		Code from Table of	Value from	(Watts/Fixt) *	Retrofit contro		(kW/space) *	(Original Annual		Cost for		Length of time	Length of time for
-	Table of	No.)	control device		(Annual Hours)		2T 40 R F(U) = 2'x2' Troff 40 w	Standard Fixture	Table of	(Number of	device	annual hours	(Annual Hours)	kWh) - (Retrofit	kW) - (Retrofit (\$/kWh)	renovations to		for renovations	renovations cost to
	Standard Fixture			usage group			Recess. Floor 2 lamps U shape	Wattages	Standard Fixture	Fixtures)		for the usage group		Annual kWh)	Annual kW)	lighting system		cost to be recovered	be recovered
	Wattages								Wattages			group						lecovered	
I3ILL/2	90	0.4	SW	3000	1,080.0		T 32 R F 3 (ELE)	F43ILL/2	90	0.4	C-0CC		576.0	504.0			\$35.00	4.4	3.8
60/1	60	0.1	SW	3000	180.0			I60/1	60	0.1	200-0	1600	96.0	84.0		-	\$35.00	26.1	22.7
I3ILL/2	90 60	0.4	SW SW	<u> </u>	1,080.0 180.0) 4	T 32 R F 3 (ELE)	F43ILL/2	90 60	0.4	C-OCC C-OCC		576.0 96.0	504.0 84.0	0.0 \$61.99 0.0 \$10.33		\$35.00 \$35.00	4.4 26.1	3.8 22.7
44ILL	112	0.1	SW	3000	336.0		W 32 C F 4 (ELE)	F44ILL	112	0.1	C-0CC		179.2	156.8	0.0 \$19.29		\$35.00	14.0	12.2
42LL	60	0.1	SW	3000	360.0		S 32 P F 2 (ELE)	F42LL	60	0.1	000-0	2000	240.0	120.0	0.0 \$14.76		\$35.00	18.3	15.9
44ILL 742LL	112 60	0.2	SW SW	<u> </u>	672.0 120.0		W 32 C F 4 (ELE) S 32 P F 2 (ELE)	F44ILL F42LL	<u> </u>	0.2	C-OCC 220-2	2000	448.0 72.0	224.0 48.0	0.0 \$27.55 0.0 \$5.90		\$35.00 \$35.00	9.8 45.7	8.5 39.8
41LL	32	0.0	SW	2000	64.0		W 32 C F 1 (ELE)	F42LL F41LL	32	0.0	C-0CC	1200	38.4	25.6	0.0 \$3.15	\$270.00	\$35.00	85.7	74.6
42LL	60	0.1	SW	2000	120.0		S 32 P F 2 (ELE)	F42LL	60	0.1	C-OCC	1200	72.0	48.0	0.0 \$5.90	\$270.00	\$35.00	45.7	39.8
41LL	32	0.0	SW	2000	64.0		W 32 C F 1 (ELE)	F41LL	32	0.0	0.000	1200	38.4	25.6	0.0 \$3.15		\$35.00	85.7	74.6
44ILL 3ILL/2	<u>112</u> 90	0.4	SW SW	<u> </u>	1,344.0 540.0		W 32 C F 4 (ELE) T 32 R F 3 (ELE)	F44ILL F43ILL/2	<u> </u>	0.4	C-OCC 220-2	2000 2000	896.0 360.0	448.0 180.0	0.0 \$55.10 0.0 \$22.14		\$35.00 \$35.00	4.9	4.3 10.6
31LL/2	90	0.2	SW	3000	540.0		T 32 R F 3 (ELE)	F43ILL/2	90	0.2	C-0CC		360.0	180.0	0.0 \$22.14		\$35.00	12.2	10.6
I3ILL/2	90	0.2	SW	3000	540.0		T 32 R F 3 (ELE)	F43ILL/2	90	0.2	C-OCC	2000	360.0	180.0	0.0 \$22.14		\$35.00	12.2	10.6
31LL/2 31LL/2	90 90	0.5	SW SW	<u> </u>	1,620.0	6	T 32 R F 3 (ELE) T 32 R F 3 (ELE)	F43ILL/2 F43ILL/2	90 90	0.5	C-OCC C-OCC	2000 2000	1,080.0 720.0	540.0 360.0	0.0 \$66.42 0.0 \$44.28		\$35.00 \$35.00	4.1 6.1	3.5 5.3
160/1	60	0.4	SW	3000	180.0) 4	1 60	I60/1	60	0.4	C-0CC	2000	120.0	60.0			\$35.00	36.6	31.8
I3ILL/2	90	0.2	SW	3000	540.0) 2	T 32 R F 3 (ELE)	F43ILL/2	90	0.2	C-OCC	1600	288.0	252.0	0.0 \$31.00	\$270.00	\$35.00	8.7	7.6
42LL	60	0.1	SW	3000	180.0		S 32 P F 2 (ELE)	F42LL	60	0.1	C-0CC	1600	96.0	84.0			\$35.00	26.1	22.7
44ILL 160/1	<u>112</u> 60	1.6 0.1	SW SW	<u> </u>	4,704.0		W 32 C F 4 (ELE) I 60	F44ILL I60/1	<u> </u>	1.6 0.1	C-OCC C-OCC	1600 1200	2,508.8 144.0	2,195.2 96.0	0.0 \$270.01 0.0 \$11.81		\$35.00 \$35.00	1.0 22.9	0.9 19.9
160/1	60	0.1	SW	2000	240.0	1	160	160/1	60	0.1	C-0CC	1200	144.0	96.0	· ·		\$35.00	22.9	19.9
42LL	60	0.2	SW	1000	180.0	÷	S 32 P F 2 (ELE)	F42LL	60	0.2	C-OCC	250	45.0	135.0	0.0 \$16.61		\$35.00	16.3	14.2
44ILL	<u>112</u> 90	2.2	SW SW	<u> </u>	6,720.0 3,240.0		W 32 C F 4 (ELE) T 32 R F 3 (ELE)	F44ILL F43ILL/2	<u> </u>	2.2	C-0CC	1600 3000	3,584.0	3,136.0			\$35.00 \$0.00	0.7	0.6
I3ILL/2 I50/1	50	0.1	SW	3000	300.0		1 50	I50/1	50	0.1		3000					\$0.00 \$0.00		1
42LL	60	0.4	SW	1000	420.0) 7	S 32 P F 2 (ELE)	F42LL	60	0.4		1000			0.0	\$0.00	\$0.00		
44ILL	112	0.3	SW	3000	1,008.0		W 32 C F 4 (ELE)	F44ILL	112	0.3	0.000		537.6	470.4			\$35.00	4.7	4.1
42LL 42LL	60 60	0.1	SW SW	2000	240.0		S 32 P F 2 (ELE) S 32 P F 2 (ELE)	F42LL F42LL	60 60	0.1	C-OCC C-OCC	1200 1200	144.0 936.0	96.0 624.0			\$35.00 \$35.00	22.9 3.5	19.9 3.1
42LL	60	0.8	SW	3000	2,340.0		S 32 P F 2 (ELE)	F42LL	60	0.8	C-0CC	1600	1,248.0	1,092.0			\$35.00	2.0	1.7
42LL	60	0.8	SW	3000	2,340.0		S 32 P F 2 (ELE)	F42LL	60	0.8	C-OCC	1600	1,248.0	1,092.0	0.0 \$134.32	\$270.00	\$35.00	2.0	1.7
42LL	60 60	0.8	SW SW	3000	2,340.0		S 32 P F 2 (ELE)	F42LL	60 60	0.8	000-0	1600	1,248.0 1,248.0	1,092.0	0.0 \$134.32 0.0 \$134.32		\$35.00	2.0	1.7 1.7
42LL 42LL	60	0.8	SW	<u> </u>	2,340.0		S 32 P F 2 (ELE) S 32 P F 2 (ELE)	F42LL F42LL	60	0.8	C-OCC C-OCC	1600 1600	1,248.0	1,092.0 1,092.0	\$10 HOL		\$35.00 \$35.00	2.0	1.7
42LL	60	0.8	SW	3000	2,340.0		S 32 P F 2 (ELE)	F42LL	60	0.8	C-0CC	1600	1,248.0	1,092.0		\$270.00	\$35.00	2.0	1.7
42LL	60	0.8	SW	3000	2,340.0		S 32 P F 2 (ELE)	F42LL	60	0.8	C-0CC	1600	1,248.0	1,092.0		\$270.00	\$35.00	2.0	1.7
42LL 42LL	60 60	0.8	SW SW	3000 3000	2,340.0		S 32 P F 2 (ELE) S 32 P F 2 (ELE)	F42LL F42LL	60 60	0.8	C-OCC C-OCC	1600 1600	1,248.0 2,016.0	1,092.0 1,764.0			\$35.00 \$35.00	2.0	1.7 1.1
42LL	60	1.3	SW	3000	3,780.0		S 32 P F 2 (ELE)	F42LL	60	1.3	C-0CC	1600	2,016.0	1,764.0			\$35.00	1.2	1.1
42LL	60	1.2	SW	3000	3,600.0		S 32 P F 2 (ELE)	F42LL	60	1.2	C-OCC	1600	1,920.0	1,680.0			\$35.00	1.3	1.1
42LL	60	1.2	SW SW	<u> </u>	3,600.0 3,420.0		S 32 P F 2 (ELE) S 32 P F 2 (ELE)	F42LL F42LL	60 60	1.2	C-OCC C-OCC	<u>1600</u> 1600	1,920.0 1,824.0	1,680.0 1,596.0			\$35.00 \$35.00	1.3	1.1 1.2
42LL 60/1	60 60	1.1 0.1	SW	2000	3,420.0		5 32 P F 2 (ELE) I 60	F42LL 	60	<u> </u>	00-0 00-0	1200	1,824.0 72.0	48.0			\$35.00 \$35.00	<u>1.4</u> 45.7	39.8
42LL	60	1.1	SW	3000	3,420.0		S 32 P F 2 (ELE)	F42LL	60	1.1	C-0CC	1600	1,824.0	1,596.0	0.0 \$196.31	\$270.00	\$35.00	1.4	1.2
42LL	60	1.9	SW	3000	5,580.0		S 32 P F 2 (ELE)	F42LL	60	1.9	0000		2,976.0	2,604.0	0.0 \$320.29	\$270.00	\$35.00	0.8	0.7
60/1 42LL	60 60	0.1	SW SW	2000 3000	120.0 1,080.0		I 60 S 32 P F 2 (ELE)	I60/1 F42LL	60 60	0.1	C-OCC C-OCC	1200 1600	72.0 576.0	48.0 504.0			\$35.00 \$35.00	45.7 4.4	39.8 3.8
160/1	60	0.4	SW	2000	1,080.0		160	F42LL 	60	0.4	<u> </u>	1200	72.0	48.0			\$35.00 \$35.00	45.7	39.8
42LL	60	1.2	SW	3000	3,600.0) 20	S 32 P F 2 (ELE)	F42LL	60	1.2	C-OCC	1600	1,920.0	1,680.0	0.0 \$206.64	\$270.00	\$35.00	1.3	1.1
42LL	60	1.2	SW	3000	3,600.0		S 32 P F 2 (ELE)	F42LL	60	1.2	0.000	1600	1,920.0	1,680.0	0.0 \$206.64		\$35.00	1.3	1.1
42LL 42LL	60 60	<u> </u>	SW SW	<u> </u>	3,600.0		S 32 P F 2 (ELE) S 32 P F 2 (ELE)	F42LL F42LL	60 60	<u> </u>	C-OCC C-OCC	1600 250	1,920.0 15.0	1,680.0 45.0	0.0 \$206.64 0.0 \$5.54		\$35.00 \$35.00	1.3 48.8	1.1 42.5
42LL	60	0.1	SW	2000	240.0) 2	S 32 P F 2 (ELE)	F42LL	60	0.1	C-0CC	1200	144.0	96.0	0.0 \$11.81	\$270.00	\$35.00	22.9	19.9
42LL	60	0.1	SW	2000	240.0) 2	S 32 P F 2 (ELE)	F42LL	60	0.1	C-OCC	1200	144.0	96.0	0.0 \$11.81	\$270.00	\$35.00	22.9	19.9
44ILL	112	2.2	SW	3000	6,720.0		W 32 C F 4 (ELE)	F44ILL	112	2.2	C-0CC	1600	3,584.0	3,136.0			\$35.00	0.7	0.6
		32.7	1		95,072	472				33			49,674 Demar	41,438 Id Savings	0 5,097 0.0	\$14,580 \$0	1,890		<u> </u>
														Savings		\$0 \$5,584			<u> </u>
														Savings		\$5,584		2.6	2.3

Energy Audit of Robert Erskine Elementary School CHA Project No. 24736 ECM-11 Lighting Replacements with Occupancy Sensors

			EXISTING CON	IDITIONS				• • • • • • • • • • • • • • • • • • •			RETROFIT	CONDITIONS		•					COST & SAVINGS ANALYSIS					
			Watts per									Watte por		Retrofit			Annual kWh			NJ Smart Start Simple Pa Lighting With 0		Simple Payback With Out		
	Area Description	No. of Fixtures Standard Fixture Code	Fixture Code	Fixture	kW/Space	Exist Control	Annual Hours	Annual kWh	Number of Fixtu	ures Standard Fixture Code	Fixture Code	Watts per Fixture	kW/Space	Control	Annual Hours	s Annual kWh	Saved	Annual kW Saved	Annual \$ Saved	Retrofit Cost	Incentive	Incentive	Simple Payba	
Code Unique des	escription of the location - Room number/Room	No. of fixtures Lighting Fixture Code	Code from Table of Standard	Value from	(Watts/Fixt) * (Fixt	t Pre-inst.	Estimated daily	(kW/space) *	No. of fixtures a	fter Lighting Fixture Code	Code from Table of	Value from	(Watts/Fixt) *	Retrofit contro	Estimated	(kW/space) *	(Original Annual		(kWh Saved) *	Cost for	Prescriptive	Length of time	Length of time	
	name: Floor number (if applicable)	before the retrofit	Fixture Wattages	Table of	No.)	control device	hours for the	(Annual Hours)	the retrofit		Standard Fixture	Table of	(Number of	device	annual hours	`	kWh) - (Retrofit	kW) - (Retrofit	(\$/kWh)	renovations to	Lighting	for renovations	renovations co	
				Standard			usage group				Wattages	Standard Fixture	Fixtures)		for the usage	Hours)	Annual kWh)	Annual kW)		lighting system	Measures	cost to be	be recovered	
				Wattages								Wattages			group							recovered		
	101 Classroom	4 T 32 R F 3 (ELE)	F43ILL/2	9	0 0.4	SW	3000	1,08	30 4	0	F43SSILL	72	0.3	C-OCC	1,600	<mark>0</mark> 461	619	9 0.1	\$ 84.40	+		8.2	7.3	
	101 Classroom	1 I 60 4 T 32 R F 3 (ELE)	I60/1	6	0.1	SW	3000	18	30 1	CF 26	CFQ26/1-L	27	0.0	220-2	1,600	0 43	10	7 0.0	\$ 20.60	\$ 276.75 \$ 005.00		13.4	11.7	
	102 Classroom 102 Classroom	1 I 60	F43ILL/2 I60/1	9	0 0.4	SW SW	3000	1,08	30 <u>4</u> 30 <u>1</u>	0 CF 26	F43SSILL CFQ26/1-L	<u>72</u> 27	0.3	<u> </u>	1,60	0 461 0 43	•	9 0.1 7 0.0	\$ 84.40 \$ 20.60	\$ 695.00 \$ 276.75		8.2 13.4	11.7	
	102 Classroom	1 W 32 C F 4 (ELE)	F44ILL	11	2 0.1	SW	3000	33	36 1	0	F44SSILL	96	0.1	C-0CC	1,600	0 154	182	2 0.0	\$ 24.26	\$ 411.75	\$ 45	17.0	15.1	
	103 Faculty Room	2 S 32 P F 2 (ELE)	F42LL	6	0 0.1	SW	3000	36	60 2	0	F42SSILL	48	0.1	0.000	2,000	0 192	168	8 0.0	\$ 23.41	\$ 499.50	\$ 55	21.3	19.0	
	103 Faculty Room 103 Faculty Room Women TR	2 W 32 C F 4 (ELE) 1 S 32 P F 2 (ELE)	F44ILL F42LL	11	2 0.2	SW	3000	6 <i>1</i>	$\frac{72}{20}$ 1	0	F44SSILL F42SSILL	<u> </u>	0.2	C-OCC C-OCC	2,000	0 384 0 58	288	8 0.0	\$ 39.08 \$ 9.05	\$ 553.50 \$ 384.75	\$ 55 \$ 45	14.2 42.5	12.8	
	103 Faculty Room Women TR	1 W 32 C F 1 (ELE)	F41LL	3	0.0	SW	2000		64 1	0	F41SSILL	26	0.0	C-OCC	1,200	0 31	33	3 0.0	\$ 4.72	\$ 376.25	\$	79.7	70.2	
	103 Faculty Room Men TR	1 S 32 P F 2 (ELE)	F42LL	6	0.1	SW	2000	12	20 1	0	F42SSILL	48	0.0	C-0CC	1,200	<mark>0</mark> 58	62	2 0.0	\$ 9.05	\$ 384.75	\$ 45	42.5	37.6	
) ;	103 Faculty Room Men TR Nurse Office	1 W 32 C F 1 (ELE) 4 W 32 C F 4 (ELE)	F41LL F44ILL	3	2 0.0 2 0.4	SW	2000		54 <u>1</u>	0	F41SSILL	26	0.0	220-2	1,200	0 31	3	3 0.0	\$ 4.72	\$ 376.25	\$ 45	<u> </u>	9.7	
	Nurse Office	2 T 32 R F 3 (ELE)	F44ILL F43ILL/2	9	2 0.4	SW	3000	54		0	F44SSILL F43SSILL	<u> </u>	0.4	C-0CC 0.00-0	2,000	0 768 0 288	252	6 0.1 2 0 0	\$ 78.17 \$ 35.11	\$ 837.00 \$ 482.50	÷ · ·	10.7	9.7	
	Copier Room	2 T 32 R F 3 (ELE)	F43ILL/2	9	0 0.2	SW	3000	54	40 2	0	F43SSILL	72	0.1	C-OCC	2,000	0 288	252	2 0.0	\$ 35.11	\$ 482.50	\$	13.7	12.2	
	Office	2 T 32 R F 3 (ELE)	F43ILL/2	9	0 0.2	SW	3000	54	10 2	0	F43SSILL	72	0.1	0.000	2,000	0 288	252	2 0.0	\$ 35.11	\$ 482.50	\$ 55	13.7	12.2	
	Main Office Principal Office	6 T 32 R F 3 (ELE) 4 T 32 R F 3 (ELE)	F43ILL/2 F43ILL/2	9	0 0.5	SW	3000	1,62	$\frac{20}{6}$	0	F43SSILL F43SSILL	72	0.4	00-0 00-0	2,000	0 864 0 576	750	6 0.1 4 0 1	\$ 105.34 \$ 70.23	\$ 907.50 \$ 695.00	Ŧ	<u>8.6</u> 9.9	7.7	
	Principal Office	1 160	140122/2	6	0.1	SW	3000	1,00	30 <u>4</u> 30 1	CF 26	CFQ26/1-L	27	0.0	000-0 00-0	2,000	0 54		6 0.0	\$ 19.27	\$ 035.00 \$ 276.75	T -	14.4	12.5	
	Stairs	2 T 32 R F 3 (ELE)	F43ILL/2	9	0 0.2	SW	3000	54	40 2	0	F43SSILL	72	0.1	C-0CC	1,600	0 230	310	0.0	\$ 42.20	\$ 482.50		11.4	10.1	
	Stairs Corridor	1 S 32 P F 2 (ELE) 14 W 32 C F 4 (ELE)	F42LL F44ILL	6	0.1	SW	3000	18	30 1 14 14	0	F42SSILL	48	0.0	220-2	1,600	0 77	103	3 0.0	\$ 14.07 \$ 220.71	\$ 384.75	÷	27.4	24.2	
	Boy's TR	14 W 32 C F 4 (ELE) 2 I 60	I60/1	6	2 1.6	SW	2000	4,70	74 14	0 CF 26	F44SSILL CFQ26/1-L	<u>96</u> 27	0.1	C-0CC C-0CC	1,60	$\frac{0}{0}$ 2,150	2,554	4 0.2 5 0.1	\$ <u>339.71</u> \$ 29.10	\$ 2,254.50 \$ 283.50	· ·	<u>6.6</u> 9.7	8.5	
	Girl's TR	2 160	160/1	6	0 0.1	SW	2000	24	40 2	CF 26	CFQ26/1-L	27	0.1	C-0CC	1,200	0 65	17:	5 0.1	\$ 29.10	\$ 283.50		9.7	8.5	
	Cust Room	3 S 32 P F 2 (ELE)	F42LL	6	0 0.2	SW	1000	18	30 3	0	F42SSILL	48	0.1	0.000	250	0 36	144	+ 0.0	\$ 21.83	\$ 614.25		28.1	25.2	
	All Purpose Room Kitchen	20 W 32 C F 4 (ELE) 12 T 32 R F 3 (ELE)	F44ILL F43IL1/2	11	2 2.2	SW	3000	6,72	20 20	0	F44SSILL F43SSILL	96	1.9	C-OCC	1,60	0 3,072 0 2,592	3,648	8 0.3	\$ 485.30 \$ 104.41	\$ 3,105.00 \$ 1,275.00	+	6.4	5.9	
	Kitchen	2 150	150/1	5	0 0.1	SW	3000	30	0 2	CF 26	CFQ26/1-L	27	0.1		3,000	0 162	138	8 0.0	\$ 22.23	\$ 40.50		1.8	1.8	
	Boiler Room	7 S 32 P F 2 (ELE)	F42LL	6	0.4	SW	1000	42	20 7	0	F42SSILL	48	0.3		1,000	0 336	84	4 0.1	\$ 19.94	\$ 803.25		40.3	36.8	
	Storage / Garage	3 W 32 C F 4 (ELE) 2 S 32 P F 2 (ELE)	F44ILL F42LL	11	2 0.3	SW	3000	1,00)8 <u>3</u>	0	F44SSILL F42SSILL	<u> </u>	0.3	220-2	1,600	0 461 0 115	54	7 0.0	\$ 72.79 \$ 18.10	\$ 695.25 \$ 400.50		9.6 27.6	8.7	
	Storage / Garage 201 Classroom	13 S 32 P F 2 (ELE)	F42LL F42LL	6	0 0.1	SW	2000	1.56	io 2 io 13	0	F42SSILL F42SSILL	48	0.1	C-000 C-000	1,20	0 115 0 749	81	1 0.2	\$ 10.10 \$ 117.62	\$ 499.50 \$ 1.761.75	\$	15.0	13.6	
	203 Classroom	13 S 32 P F 2 (ELE)	F42LL	6	0.8	SW	3000	2,34	40 13	0	F42SSILL	48	0.6	C-0CC	1,600	0 998	1,342	2 0.2	\$ 182.86	\$ 1,761.75	\$ 165	9.6	8.7	
	205 Classroom	13 S 32 P F 2 (ELE)	F42LL	6	0.8	SW	3000	2,34	10 13	0	F42SSILL	48	0.6	0.000	1,600	0 998	1,342		\$ 182.86	\$ 1,761.75	\$ 165	9.6	8.7	
	207 Classroom 208 Classroom	13 S 32 P F 2 (ELE) 13 S 32 P F 2 (ELE)	F42LL F42LL	6	0 0.8 0 0.8	SW	3000	2,32	10 10	0	F42SSILL F42SSILL	<u>48</u> 48	0.6	<u> </u>	1,600	0 998 0 998	1,342		\$ 182.86 \$ 182.86	\$ 1,761.75 \$ 1,761.75		9.6	8.7	
	206 Classroom	13 S 32 P F 2 (ELE)	F42LL	6	0 0.8	SW	3000	2,34	40 13	0	F42SSILL	48	0.6	C-OCC	1,600	0 998	1,01	2 0.2	\$ 182.86	\$ 1,761.75		9.6	8.7	
	204 Classroom	13 S 32 P F 2 (ELE)	F42LL	6	0.8	SW	3000	2,34	FO 13	0	F42SSILL	48	0.6	000-0	1,600	0 998	1,342		\$ 182.86	\$ 1,761.75		9.6	8.7	
	202 Classroom 209 Classroom	13 S 32 P F 2 (ELE) 13 S 32 P F 2 (ELE)	F42LL F42LL	6	0 0.8	SW	3000	2,34	10 10	0	F42SSILL F42SSILL	48	0.6	230-3	1,600	0 998	1,342		\$ 182.86 \$ 182.86	\$ 1,761.75 \$ 1.761.75		9.6	8.7	
	211 Classroom	21 S 32 P F 2 (ELE)	F42LL	6	0 0.8 0 1.3	SW	3000	3.78	30 21	0	F42SSILL F42SSILL	40	1.0	<u> </u>	1,60	0 990 0 1.613	2.16	2 0.2	\$ 295.38	\$ 2,679.75	÷	9.0	8.2	
	213 Classroom	21 S 32 P F 2 (ELE)	F42LL	6	50 1.3	SW	3000	3,78	30 21	0	F42SSILL	48	1.0	C-0CC	1,600	0 1,613	2,16	0.0	\$ 295.38	\$ 2,679.75		9.1	8.2	
	215 Classroom	20 S 32 P F 2 (ELE)	F42LL	6		SW	3000	3,60	0 20	0	F42SSILL	48	1.0	0.000	1,600	0 1,536	2,064		\$ 281.32	\$ 2,565.00 \$ 2,565.00	\$ 235	9.1	8.3	
	217 Classroom 219 Classroom	20 S 32 P F 2 (ELE) 19 S 32 P F 2 (ELE)	F42LL F42LL	6	60 <u>1.2</u> 60 1.1	SW SW	3000	3,60	20 20 19		F42SSILL F42SSILL	<u>48</u> 48	<u> </u>	00-0 00-0	1,60	0 1,536 0 1,459	2,064		\$ 281.32 \$ 267.25	\$ 2,565.00 \$ 2,450.25	a 235 \$ 225	<u>9.1</u> 9.2	8.3	
	219 TR	1 160	I60/1	6	0.1	SW	2000	12	201	CF 26	CFQ26/1-L	27	0.0	C-0CC	1,200	0 32	1,00	8 0.0	\$ 14.55	\$ 276.75	\$ 35	19.0	16.6	
	221 Classroom	19 S 32 P F 2 (ELE)	F42LL	6	60 1.1	SW	3000	3,42	20 19	0	F42SSILL	48	0.9	000-0	1,600	0 1,459	1,96 ⁻	1 0.2	\$ 267.25	\$ 2,450.25		9.2	8.3	
	223 Classroom 223 TR	31 S 32 P F 2 (ELE)	F42LL 160/1	6	60 1.9 60 0.1	SW SW	3000	5,58		0	F42SSILL	<u>48</u> 27	1.5	230-3	1,600	0 2,381	-1 -	9 0.4	\$ 436.04 \$ 14.55	\$ 3,827.25 \$ 276.75		<u>8.8</u> 19.0	8.0	
	223 TR 225 Classroom	6 S 32 P F 2 (ELE)	160/1	6	0 0.1 0 0.4	SW	3000	1,08	1	0	CFQ26/1-L F42SSILL	48	0.0	230-3 230-3	1,20	<u> </u>	00	9 0.1	\$ 14.55 \$ 84.40	\$ 276.75 \$ 958.50		19.0	10.0	
	225 TR	1 1 60	I60/1	6	0 0.1	SW	2000	12	20 1	CF 26	CFQ26/1-L	27	0.0	C-0CC	1,200	0 32		8 0.0	\$ 14.55	\$ 276.75		19.0	16.6	
	214 Classroom	20 S 32 P F 2 (ELE)	F42LL	6		SW	3000	3,60	0 20	0	F42SSILL	48	1.0	0.000	1,60	0 1,536	2,064		\$ 281.32	\$ 2,565.00	÷	9.1	8.3	
	212 Classroom 210 Classroom	20 S 32 P F 2 (ELE) 20 S 32 P F 2 (ELE)	F42LL F42LL	6	60 <u>1.2</u> 60 <u>1.2</u>	SW	3000	3,60	20		F42SSILL F42SSILL	<u>48</u> 48	1.0	C-OCC C-OCC	1,60	0 1,536 0 1,536	2,064		\$ 281.32 \$ 281.32	\$ 2,565.00 \$ 2,565.00		<u>9.1</u> 9.1	8.3	
	Storage	1 \$ 32 P F 2 (ELE)	F42LL	6	io 1.2	SW	1000	3,00	20 50 1	0	F42SSILL F42SSILL	48	0.0	000-000 00-000	25	0 12	1	8 0.0	\$ 7.28	\$ 2,505.00 \$ 384.75		52.9	46.	
	Boy's TR	2 S 32 P F 2 (ELE)	F42LL	6	0.1	SW	2000	24	10 2	0	F42SSILL	48	0.1	C-OCC	1,200	0 115	12	5 0.0	\$ 18.10	\$ 499.50	\$ 55	27.6	24.0	
	Girl's TR Hallway	2 S 32 P F 2 (ELE) 20 W 32 C F 4 (ELE)	F42LL F44ILL	6	0 0.1	SW	2000	24	40 <u>2</u>	0	F42SSILL F44SSILL	48	0.1	230-3	1,200	0 115	12	5 0.0 8 0.3	\$ 18.10 \$ 485.30	\$ 499.50 \$ 3.105.00	Ŧ	27.6 6.4	24.6	
Total	пантау	472			32.7	500	3000	95,072	20 20 472		F4400ILL	90	1.9 26.3		1,600	43,216	3,040	6.4	\$ 485.30 7,107	\$ 3,105.00 68.861	\$ 235 \$6,490	0.4	5.9	
						1		00,012	716				20.0		1		nd Savings	0.7	6.4	\$728	ψυ,του	<u> </u>		
																	Savings		51,856	\$6,378				
																Tota	I Savings			\$7,107		9.7	8.8	


APPENDIX D

Local Government Energy Audit Programs


I. SMART START

Page 1 of 2

II. DIRECT INSTALL

III. PAY FOR PERFORMANCE (P4P)

2012 PAY FOR PERFORMANCE PROGRAM Existing Buildings Incentive Structure

Incentive #1: Energy Reduction Plan

This incentive is designed to offset the cost of services associated with the development of the Energy Reduction Plan (ERP) and is paid upon ERP approval. Incentive is contingent on implementation of recommended measures outlined in the ERP.

Incentive #2: Installation of Recommended Measures

Minimum Performance Target:.....15%

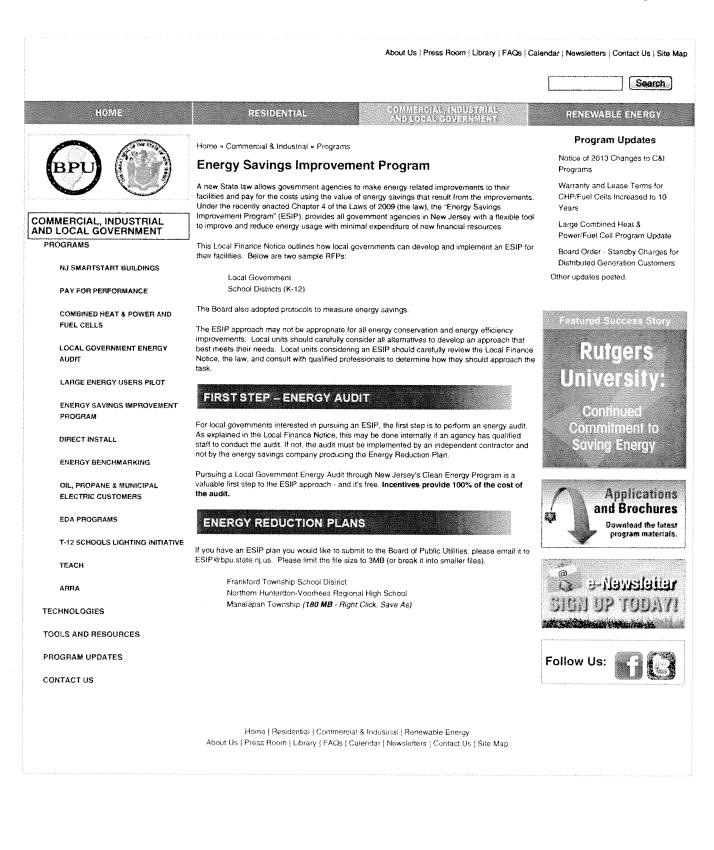
Electric Incentives

Base Incentive based on 15% savings:\$0.09 per projected kWh saved For each % over 15% add:.....\$0.005 per projected kWh saved Maximum Incentive:\$0.11 per projected kWh saved

Gas Incentives

Base Incentive based on 15% savings:\$0.90 per projected Therm saved For each % over 15% add:......\$0.05 per projected Therm saved Maximum Incentive:\$1.25 per projected Therm saved

Incentive Cap:25% of total project cost


This incentive is based on projected energy savings outlined in the ERP. Incentive is paid upon successful installation of recommended measures.

Incentive #3: Post-Construction Benchmarking Report

Minimum Performance Target:15%								
Electric Incentives Base Incentive based on 15% savings:\$0.09 per actual kWh saved For each % over 15% add:\$0.005 per actual kWh saved Maximum Incentive:\$0.11 per actual kWh saved	<u>Gas Incentives</u> Base Incentive based on 15% savings:\$0.90 per actual Therm saved For each % over 15% add:\$0.05 per actual Therm saved Maximum Incentive:							
Incentive Cap:								

This incentive will be released upon submittal of a Post-Construction Benchmarking Report that verifies that the level of savings actually achieved by the installed measures meets or exceeds the minimum performance threshold. To validate the savings and achievement of the Energy Target, the EPA Portfolio Manager shall be used. Savings should be rounded to the nearest percent. Total value of Incentive #2 and Incentive #3 may not exceed 50% of the total project cost. Incentives will be limited to \$1 million per gas and electric account per building; maximum of \$2 million per project. See Participation Agreement for details.

IV. ENERGY SAVINGS IMPROVEMENT PLAN (ESIP)

department of community affa

neonle places progres

division of local government services

LFN 2011-17

June 16, 2011

Chris Christie Governor Kim Guadagno Lt. Governor Thomas H. Neff Director

Contact Information

Director's Office

V. 609.292.6613

F. 609.292.9073

Local Government Research

V. 609.292.6110

F. 609.292.9073

Financial Regulation and Assistance

V. 609.292.4806

F. 609.984.7388

Local Finance Board

V. 609.292.0479

F. 609.633.6243

Local Management Services

V. 609.292.7842

F. 609.633.6243

Authority Regulation

V. 609.984.0132

F. 609.984.7388

Mail and Delivery

101 South Broad St. PO Box 803 Trenton, New Jersey 08625-0803 Web: <u>www.nj.gov/dca/lgs</u> E-mail: <u>dlgs@dca.state.nj.us</u>

Distribution

Municipal and Freeholder Clerks Municipal and County Chief Financial Officers

Local Authority and Fire District Officials

School Business Administrators

Local Procurement Officials

Update on Implementing Energy Savings Improvement Programs

Lori Grifa

Commissioner

This Local Finance Notice provides guidance concerning Energy Savings Improvement Program (ESIP) matters that affect local units covered under the Local Public Contracts Law (LPCL, N.J.S.A. 40A:11) and the Public School Contracts Law (PSCL, N.J.S.A. 18A:18A).

The Notice covers a model ESCO (Energy Services Company) Request for Proposal document and provides information on using the "Do-It-Yourself" process for implementing an ESIP. This Notice supplements Local Finance Notice 2009-11 concerning ESIPs.

Model ESCO Request for Proposal Document

General Issues

The Division of Local Government Services and the Board of Public Utilities have completed development of a model ESCO Request for Proposal Document. It is designed to assist all organizations (contracting units) covered by the LPCL and PSCL hire an energy services company (ESCO) to develop and implement an Energy Savings Plan (ESP) as part of an Energy Savings Improvement Program as authorized under N.J.S.A. 40A:11-4.6 and 18A:18A-4.6.

Specifically, the document serves as the starting point for these government agencies to select an ESCO through the competitive contracting procedure (N.J.S.A. 40A:11-4.1 et seq. and 18A:18A-4.1 et seq.).

Notwithstanding the efforts of the State agencies to ensure that the RFP is consistent with all relevant procurement procedures, laws, and regulations, there are several issues contracting unit personnel should keep in mind:

- 1) Local legal advisors should review the document to ensure it is consistent with any allowable local practices and legal considerations.
- 2) The individual responsible for managing the project should review the entire RFP in order to be able to answer questions and ensure the document meets local needs.
- 3) Forms have been carefully designed to meet the need of this specific process. Care should be taken if proposed forms are removed and replaced with ones normally used by the contracting unit.

The RFP also uses a formal process for potential proposers to submit questions and requests for clarifications. Appendix B is a form for the submission of these requests and is referred to throughout the text.

Contracting units are also reminded the Competitive Contracting process does not allow for negotiating proposals. While legal elements of the contract (project development agreement) may require legal determinations and modifications, the process does not allow for negotiation of price or related substantive elements and any element that would have provided less than a level playing field for proposers.

Contracting units are also cautioned that setting qualification standards that arbitrarily limit competition is inconsistent with public bidding requirements.

Office of State Comptroller Filing: Contracting units are also reminded of their obligations to meet <u>State Comptroller requirements for public contracts</u>. In accordance with N.J.S.A 52:15C-10, contracting units must notify OSC as early as practicable, but no later than 30 days before advertisement, of any negotiation or solicitation of a contract that may exceed \$10 million. Contracting units must also provide post-award notification for any contract for an amount exceeding \$2 million. Notification must be given within 20 days of the award.

Substantive Edits:

Several sections are highlighted in green. These sections should be carefully edited to meet contracting unit needs. This has important application to evaluation criteria in Section D. Once finalized, the green highlight should be removed.

Section B-16; Insurance should be reviewed by the contracting unit's Risk Management professionals to be sure the standards are appropriate to the contracting unit and the work to be done.

The following Sections also require local decisions and editing:

- A-3: # of copies of proposal and # of CDs to be submitted
- A-4: Web posting address, if desired
- A-5: If extra credit is to be provided on evaluation scoring for attending site walk through
- B-11: Delete LPCL or PSCL section as appropriate
- B-34: Use only if PSCL
- C-1: Explanation of type of audit information
- C-3(k): Include if ESCO is to provide financing option
- Use of Appendix F and Proposal Requirements #8: These forms are related to submission of Political Contribution Disclosure forms. Only PSCL agencies are required to use these forms as pursuant to Public School Fiscal Accountability Procedures (N.J.A.C. 6A23A-6.3). The forms and references to it should be removed for all LPCL users.

Under the ESIP DIY approach, there would be no conflict in a properly procured single organization conducting the audit, developing the ESP, then preparing plans and specifications. This does not apply when using the ESCO approach, where the auditor and ESCO must be independent.

Once construction plans and specifications are complete, the contracting unit would then conduct the bidding process as it would any public works construction project: manage the project as it sees fit (the firm that did the plans could also serve as construction manager), and then contract as necessary for commissioning and final third party verification. The two verification steps (the ESP and verifying implementation) must be performed by an organization independent of the ones preparing the ESP, overseeing construction and commissioning.

By following this process, the contracting unit can then apply to the Local Finance Board for the issuance of ESIP-based energy saving obligations or enter into appropriate lease financing.

The ESIP approach to energy improvement provides a range of options for contracting units to accrue energy savings while improving the environment, taking advantage of low-cost financing and state and federal incentives. DLGS and the BPU encourage comments and questions (through the ESIP web page) on this new opportunity so we can improve it as time goes on.

Approved: Thomas H. Neff, Director, Division of Local Government Services

Page	Shortcut text	Internet Address
1, 4	Local Finance Notice 2009-11	http://www.nj.gov/dca/lgs/lfns/09lfns/2009-11.doc
2	ESIP webpage	http://www.nj.gov/dca/lgs/lpcl/esip.htm
2	email comments	mailto:lpcl@dca.state.nj.us
2	to register (via email	mailto:lpcl@dca.state.nj.us
2	GovConnect Local Procurement	http://www.nj.gov/dca/surveys/ppsurvey.htm
3	State Comptroller requirements.	http://www.nj.gov/comptroller/compliance/index.html

Table of Web Links

Floctric Incor

2012 PAY FOR PERFORMANCE PROGRAM Existing Buildings Incentive Structure

Incentive #1: Energy Reduction Plan

Incentive Amount:	.\$0.10 per sq ft
Minimum Incentive:	.\$5,000
Maximum Incentive::	. \$50,000 or 50% of facility annual energy cost (whichever is less)

This incentive is designed to offset the cost of services associated with the development of the Energy Reduction Plan (ERP) and is paid upon ERP approval. Incentive is contingent on implementation of recommended measures outlined in the ERP.

Incentive #2: Installation of Recommended Measures

	Minimum Performance Target:15%
<u>ntives</u>	Gas Incentives

Licettic incentives	Gas Incentives
Maximum Incontinue	Base Incentive based on 15% savings:\$0.90 per projected Therm saved For each % over 15% add:\$0.05 per projected Therm saved Maximum Incentive:\$1.25 per projected Therm saved
Incentive Cap:	

This incentive is based on projected energy savings outlined in the ERP. Incentive is paid upon successful installation of recommended measures.

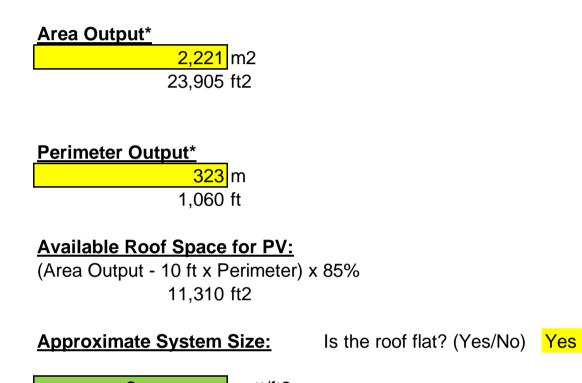
Incentive #3: Post-Construction Benchmarking Report

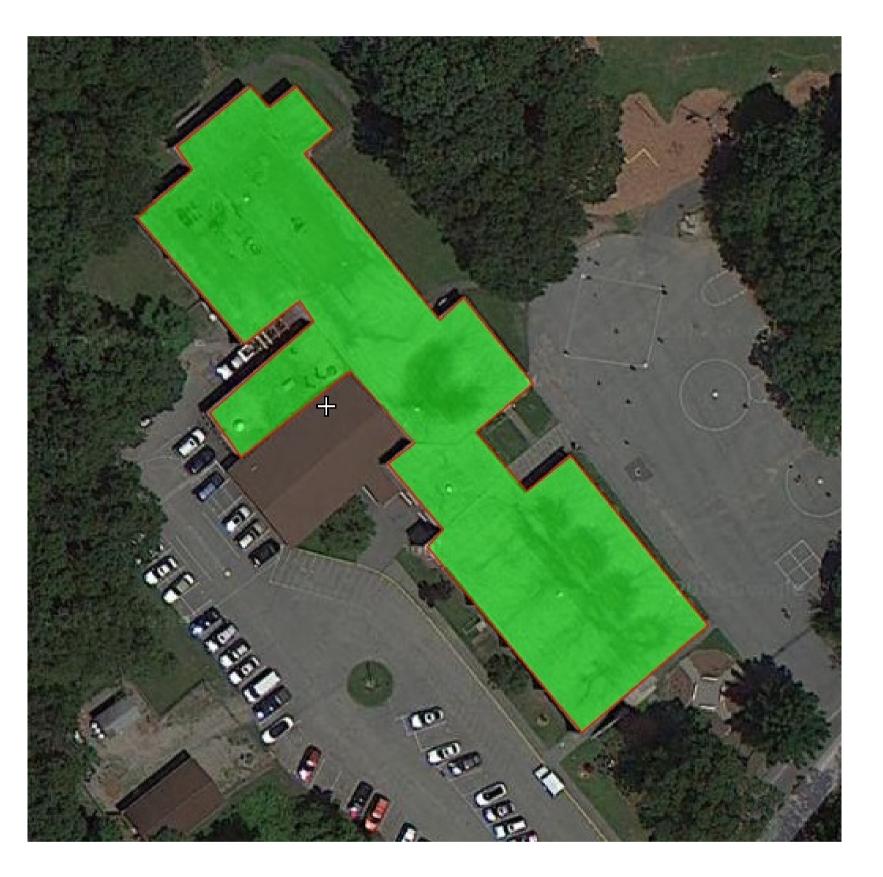
Minimum Performance Target:	
<u>Electric Incentives</u> Base Incentive based on 15% savings:\$0.09 per actual kWh saved For each % over 15% add:	Gas Incentives Base Incentive based on 15% savings:\$0.90 per actual Therm saved For each % over 15% add:\$0.05 per actual Therm saved Maximum Incentive:\$1.25 per actual Therm saved
Incentive Cap:	

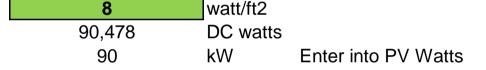
This incentive will be released upon submittal of a Post-Construction Benchmarking Report that verifies that the level of savings actually achieved by the installed measures meets or exceeds the minimum performance threshold. To validate the savings and achievement of the Energy Target, the EPA Portfolio Manager shall be used. Savings should be rounded to the nearest percent. Total value of Incentive #2 and Incentive #3 may not exceed 50% of the total project cost. Incentives will be limited to \$1 million per gas and electric account per building; maximum of \$2 million per project. See Participation Agreement for details.

APPENDIX E

Photovoltaic Analysis


Ringwood BOE - NJBPU Robert Erskine Elementary School


Cost of Electricity\$0.15/kWhElectricity Usage252,320kWh/yrSystem Unit Cost\$4,000/kW


Photovoltaic (PV) Solar Power Generation - Screening Assessment

Budgetary Cost	Annual Utility Savings			Estimated Maintenance	Total Savings	Federal Tax Credit	New Jersey Renewable ** SREC	Payback (without incentive)	Payback (with incentive)	
					Savings	Carnigo				
\$	kW	kWh	therms	\$	\$	\$	\$	\$	Years	Years
\$360,000	90.0	115,200	0	\$17,741	0	\$17,741	\$0	\$6,336	20.3	15.0

** Estimated Solar Renewable Energy Certificate Program (SREC) SREC for 15 Years= \$55 /1000kwh

PV Watts Inputs*		Enter into PV Watts (always 20 if flat, if
Array Tilt Angle	20	pitched - enter estimated roof angle)
Array Azimuth	180	Enter into PV Watts (default)
Zip Code	07456	Enter into PV Watts
DC/AC Derate Factor	0.83	Enter info PV Watts

PV Watts Output

115,200 annual kWh calculated in PV Watts program

% Offset Calc

Usage	252,320 (from utilities)
PV Generation	115,200 (generated using PV Watts)
% offset	46%

* http://www.freemaptools.com/area-calculator.htm **http://www.flettexchange.com

(Type comments here to appear on printout; maximum 1 row of 90 characters.)

Station Identific		Results						
Cell ID:	0268369			Solar	AC	Energy		
State:	New York		Month	Radiation (kWh/m²/day)	Energy (kWh)	Value (\$)		
Latitude:	41.3 ° N		1	2.60	6197	954.34		
Longitude:	74.2 ° W		2	3.55	7661	1179.79		
PV System Specification	S		3	4.71	10829	1667.67		
DC Rating:	90.0 kW		4	5.12	10991	1692.61		
DC to AC Derate Factor:	0.830		5	5.79	12615	1942.71		
AC Rating:	74.7 kW	٦I	6	6.17	12676	1952.10		
Array Type:	Fixed Tilt		7	5.86	12217	1881.42		
Array Tilt:	20.0 °		8	5.43	11381	1752.67		
Array Azimuth:	180.0 °		9	4.90	10122	1558.79		
Energy Specifications			10	4.02	8917	1373.22		
Cost of Electricity:	15.4 ¢/kWh	1	11	2.75	6004	924.62		
		-4	12	2.39	5592	861.17		
			Year	4.45	115200	17740.80		
		_						
Output Hourly Performance	ce Data		Output Results as Text					
(Gridded data is monthly, hourly outp		Saving Text from a Browser						
Run PVWATTS v.2 for anoth		Run PVWATTS v.1						

Please send questions and comments to Webmaster Disclaimer and copyright notice.

RReDC home page (*http://rredc.nrel.gov*)

APPENDIX F

EPA Portfolio Manager

STATEMENT OF ENERGY PERFORMANCE **Robert Erskine School**

Building ID: 3320577 For 12-month Period Ending: August 31, 20121 Date SEP becomes ineligible: N/A

Date SEP Generated: October 19, 2012

Facility Robert Erskine School 88 Erskine Road Ringwood, NJ 07456

Facility Owner Ringwood BOE 121 Carletondale Road Ringwood, NJ 07456

Primary Contact for this Facility Warren Mitchell 121 Carletondale Road Ringwood, NJ 07456

Year Built: 1960 Gross Floor Area (ft2): 31,700

Energy Performance Rating² (1-100) 28

Site Energy Use Summary ³ Electricity - Grid Purchase(kBtu) Natural Gas (kBtu) ⁴ Total Energy (kBtu)	860,916 2,491,187 3,352,103
Energy Intensity ⁴ Site (kBtu/ft²/yr) Source (kBtu/ft²/yr)	106 173
Emissions (based on site energy use) Greenhouse Gas Emissions (MtCO ₂ e/year)	211
Electric Distribution Utility Rockland Electric Co [Consolidated Edison Inc]	
National Median Comparison National Median Site EUI National Median Source EUI % Difference from National Median Source EUI Building Type	87 142 22% K-12

Meets Industry Standards ⁵ for Indoor Environm Conditions:	nental
Ventilation for Acceptable Indoor Air Quality	N/A
Acceptable Thermal Environmental Conditions	N/A
Adequate Illumination	N/A

Stamp of Certifying Professional Based on the conditions observed at the time of my visit to this building, I certify that the information contained within this statement is accurate.

Certifying Professional Gary Edmerson 6 Campus Drive Parsippany, NJ 07054

Notes:

1. Application for the ENERGY STAR must be submitted to EPA within 4 months of the Period Ending date. Award of the ENERGY STAR is not final until approval is received from EPA.

School

The EPA Energy Performance Rating is based on total source energy. A rating of 75 is the minimum to be eligible for the ENERGY STAR.
 Values represent energy consumption, annualized to a 12-month period.
 Values represent energy intensity, annualized to a 12-month period.
 Based on Meeting ASHRAE Standard 62 for ventilation for acceptable indoor air quality, ASHRAE Standard 55 for thermal comfort, and IESNA Lighting Handbook for lighting quality.

The government estimates the average time needed to fill out this form is 6 hours (includes the time for entering energy data, Licensed Professional facility inspection, and notarizing the SEP) and welcomes suggestions for reducing this level of effort. Send comments (referencing OMB control number) to the Director, Collection Strategies Division, U.S., EPA (2822T), 1200 Pennsylvania Ave., NW, Washington, D.C. 20460.

ENERGY STAR[®] Data Checklist for Commercial Buildings

In order for a building to qualify for the ENERGY STAR, a Professional Engineer (PE) or a Registered Architect (RA) must validate the accuracy of the data underlying the building's energy performance rating. This checklist is designed to provide an at-a-glance summary of a property's physical and operating characteristics, as well as its total energy consumption, to assist the PE or RA in double-checking the information that the building owner or operator has entered into Portfolio Manager.

Please complete and sign this checklist and include it with the stamped, signed Statement of Energy Performance. NOTE: You must check each box to indicate that each value is correct, OR include a note.

CRITERION	VALUE AS ENTERED IN PORTFOLIO MANAGER	VERIFICATION QUESTIONS	NOTES	$\mathbf{\nabla}$
Building Name	Robert Erskine School	Is this the official building name to be displayed in the ENERGY STAR Registry of Labeled Buildings?		
Туре	K-12 School	Is this an accurate description of the space in question?		
Location	88 Erskine Road, Ringwood, NJ 07456	Is this address accurate and complete? Correct weather normalization requires an accurate zip code.		
Single Structure	Single Facility	Does this SEP represent a single structure? SEPs cannot be submitted for multiple-building campuses (with the exception of a hospital, k-12 school, hotel and senior care facility) nor can they be submitted as representing only a portion of a building.		
Robert Erskine Schoo	(K-12 School)			
CRITERION	VALUE AS ENTERED IN PORTFOLIO MANAGER	VERIFICATION QUESTIONS	NOTES	
Gross Floor Area	31,700 Sq. Ft.	Does this square footage include all supporting functions such as kitchens and break rooms used by staff, storage areas, administrative areas, elevators, stairwells, atria, vent shafts, etc. Also note that existing atriums should only include the base floor area that it occupies. Interstitial (plenum) space between floors should not be included in the total. Finally gross floor area is not the same as leasable space. Leasable space is a subset of gross floor area.		
Open Weekends?	Yes	Is this building normally open at all on the weekends? This includes activities beyond the work conducted by maintenance, cleaning, and security personnel. Weekend activity could include any time when the space is used for classes, performances or other school or community activities. If the building is open on the weekend as part of the standard schedule during one or more seasons, the building should select ?yes? for open weekends. The ?yes? response should apply whether the building is open for one or both of the weekend days.		
Number of PCs	55	Is this the number of personal computers in the K12 School?		
Number of walk-in refrigeration/freezer units	0	Is this the total number of commercial walk-in type freezers and coolers? These units are typically found in storage and receiving areas.		
Presence of cooking facilities	Yes	Does this school have a dedicated space in which food is prepared and served to students? If the school has space in which food for students is only kept warm and/or served to students, or has only a galley that is used by teachers and staff then the answer is "no".		
Percent Cooled	20 %	Is this the percentage of the total floor space within the facility that is served by mechanical cooling equipment?		
Percent Heated	100 %	Is this the percentage of the total floor space within the facility that is served by mechanical heating equipment?		
Months	10(Optional)	Is this school in operation for at least 8 months of the year?		

High School?	No	Is this building a high school (teaching grades 10, 11, and/or 12)? If the building teaches to high school students at all, the user should check 'yes' to 'high school'. For example, if the school teaches to grades K-12 (elementary/middle and high school), the user should check 'yes' to 'high school'.		
--------------	----	--	--	--

ENERGY STAR[®] Data Checklist for Commercial Buildings

Energy Consumption

Power Generation Plant or Distribution Utility: Rockland Electric Co [Consolidated Edison Inc]

uel Type: Electricity		
	Meter: Electric (kWh (thousand Watt-hou Space(s): Robert Erskine School Generation Method: Grid Purchase	rs))
Start Date	End Date	Energy Use (kWh (thousand Watt-hours)
08/01/2012	08/31/2012	10,640.00
07/01/2012	07/31/2012	14,720.00
06/01/2012	06/30/2012	22,800.00
05/01/2012	05/31/2012	19,280.00
04/01/2012	04/30/2012	18,720.00
03/01/2012	03/31/2012	26,160.00
02/01/2012	02/29/2012	26,800.00
01/01/2012	01/31/2012	29,040.00
12/01/2011	12/31/2011	24,960.00
11/01/2011	11/30/2011	22,240.00
10/01/2011	10/31/2011	22,080.00
09/01/2011	09/30/2011	14,880.00
lectric Consumption (kWh (thousand Watt	-hours))	252,320.00
lectric Consumption (kBtu (thousand Btu)		860,915.84
otal Electricity (Grid Purchase) Consumpti	on (kBtu (thousand Btu))	860,915.84
s this the total Electricity (Grid Purchase) c Electricity meters?	onsumption at this building including all	
uel Type: Natural Gas		
	Meter: Natural Gas (therms) Space(s): Robert Erskine School	
Start Date	End Date	Energy Use (therms)
08/01/2012	08/31/2012	3.22
07/01/2012	07/31/2012	5.36
06/01/2012	06/30/2012	84.21
05/01/2012	05/31/2012	597.02
04/01/2012	04/30/2012	2,065.68
03/01/2012	03/31/2012	2,696.86
02/01/2012	02/29/2012	5,280.92
01/01/2012	01/31/2012	5,736.99
12/01/2011	12/31/2011	4,938.42
11/01/2011	11/30/2011	2,896.64

10/01/2011 10/31/2011		512.42	
09/01/2011 09/30/2011		94.13	
Natural Gas Consumption (therms)		24,911.87	
Natural Gas Consumption (kBtu (thousand Btu))		2,491,187.00	
Total Natural Gas Consumption (kBtu (thousand Btu))		2,491,187.00	
Is this the total Natural Gas consumption at this building including all Natural Gas meters?			

Additional Fuels	
Do the fuel consumption totals shown above represent the total energy use of this building? Please confirm there are no additional fuels (district energy, generator fuel oil) used in this facility.	

On-Site Solar and Wind Energy	
Do the fuel consumption totals shown above include all on-site solar and/or wind power located at your facility? Please confirm that no on-site solar or wind installations have been omitted from this list. All on-site systems must be reported.	

Certifying Professional (When applying for the ENERGY STAR, the Certifying Professional must be the same PE or RA that signed and stamped the SEP.)

Name: ______ Date: ______

Signature: _____

Signature is required when applying for the ENERGY STAR.

FOR YOUR RECORDS ONLY. DO NOT SUBMIT TO EPA.

Please keep this Facility Summary for your own records; do not submit it to EPA. Only the Statement of Energy Performance (SEP), Data Checklist and Letter of Agreement need to be submitted to EPA when applying for the ENERGY STAR.

Faci	lity
------	------

Robert Erskine School 88 Erskine Road Ringwood, NJ 07456 Facility Owner Ringwood BOE 121 Carletondale Road Ringwood, NJ 07456 **Primary Contact for this Facility**

Warren Mitchell 121 Carletondale Road Ringwood, NJ 07456

General Information

Robert Erskine School	
Gross Floor Area Excluding Parking: (ft ²)	31,700
Year Built	1960
For 12-month Evaluation Period Ending Date:	August 31, 2012

Facility Space Use Summary

Robert Erskine School		
Space Type	K-12 School	
Gross Floor Area (ft2)	31,700	
Open Weekends?	Yes	
Number of PCs	55	
Number of walk-in refrigeration/freezer units	0	
Presence of cooking facilities	Yes	
Percent Cooled	20	
Percent Heated	100	
Months °	10	
High School?	No	
School District °	N/A	

Energy Performance Comparison

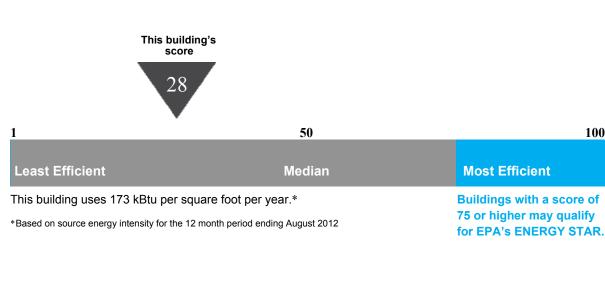
	Evaluation Periods		Comparisons		
Performance Metrics	Current (Ending Date 08/31/2012)	Baseline (Ending Date 08/31/2012)	Rating of 75	Target	National Median
Energy Performance Rating	28	28	75	N/A	50
Energy Intensity		·			
Site (kBtu/ft²)	106	106	68	N/A	87
Source (kBtu/ft²)	173	173	111	N/A	142
Energy Cost		·			·
\$/year	\$ 61,950.79	\$ 61,950.79	\$ 39,886.61	N/A	\$ 51,006.58
\$/ft²/year	\$ 1.95	\$ 1.95	\$ 1.26	N/A	\$ 1.61
Greenhouse Gas Emissions					
MtCO ₂ e/year	211	211	136	N/A	174
kgCO ₂ e/ft²/year	7	7	5	N/A	6

More than 50% of your building is defined as K-12 School. Please note that your rating accounts for all of the spaces listed. The National Median column presents energy performance data your building would have if your building had a median rating of 50.

Notes:

o - This attribute is optional.

d - A default value has been supplied by Portfolio Manager.


Statement of Energy Performance

2012

Robert Erskine School 88 Erskine Road Ringwood, NJ 07456

Portfolio Manager Building ID: 3320577

The energy use of this building has been measured and compared to other similar buildings using the Environmental Protection Agency's (EPA's) Energy Performance Scale of 1–100, with 1 being the least energy efficient and 100 the most energy efficient. For more information, visit energystar.gov/benchmark.

I certify that the information contained within this statement is accurate and in accordance with U.S. Environmental Protection Agency's measurement standards, found at energystar.gov

Date of certification

100

SEPA United States

Date Generated: 10/19/2012