

Local Government Energy Audit: Energy Audit Report

Copyright ©2018 TRC Energy Services. All rights reserved.

Reproduction or distribution of the whole, or any part of the contents of this document without written permission of TRC is prohibited. Neither TRC nor any of its employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any data, information, method, product or process disclosed in this document, or represents that its use will not infringe upon any privately-owned rights, including but not limited to, patents, trademarks or copyrights.

New Sharon School

1810 Delsea Drive

Deptford, NJ 08096

Deptford Township Board of

Education

July 31, 2018

Final Report by:

TRC Energy Services

Disclaimer

The intent of this energy analysis report is to identify energy savings opportunities and recommend upgrades to the facility's energy using equipment and systems. Approximate savings are included in this report to help make decisions about reducing energy use at the facility. This report, however, is not intended to serve as a detailed engineering design document. Further design and analysis may be necessary in order to implement some of the measures recommended in this report.

The energy conservation measures and estimates of energy savings have been reviewed for technical accuracy. However, estimates of final energy savings are not guaranteed, because final savings may depend on behavioral factors and other uncontrollable variables. TRC Energy Services (TRC) and New Jersey Board of Public Utilities (NJBPU) shall in no event be liable should the actual energy savings vary.

Estimated installation costs are based on TRC's experience at similar facilities, pricing from local contractors and vendors, and/or cost estimates from *RS Means*. The owner of the facility is encouraged to independently confirm these cost estimates and to obtain multiple estimates when considering measure installations. Since actual installed costs can vary widely for certain measures and conditions, TRC and NJBPU do not guarantee installed cost estimates and shall in no event be held liable should actual installed costs vary from estimates.

New Jersey's Clean Energy Program (NJCEP) incentive values provided in this report are estimates based on program information available at the time of the report. Incentive levels are not guaranteed. The NJBPU reserves the right to extend, modify, or terminate programs without prior notice. The owner of the facility should review available program incentives and eligibility requirements prior to selecting and installing any energy conservation measures.

Table of Contents

1	Execu	tive Summary	1
	1.1 1.2	Facility Summary	
	Ene	ergy Conservation Measuresergy Efficient Practices	3
	1.3	Implementation Planning	
2		ty Information and Existing Conditions	
	2.1	Project Contacts	
	2.2	General Site Information	
	2.3	Building Occupancy	
	2.4	Building Envelope	
	2.5	On-Site Generation	
	2.6	Energy-Using Systems	
	_	nting System Water Heating System	
		ect Expansion Air Conditioning System (DX)	
	Don	nestic Water Heating System	8
	Buil	lding Plug Load	8
	2.7	Water-Using Systems	
3	Site E	nergy Use and Costs	9
	3.1	Total Cost of Energy	
	3.2	Electricity Usage	
	3.3 3.4	Natural Gas Usage Benchmarking	
	3.5	Energy End-Use Breakdown	
4	Energ	y Conservation Measures	14
	4.1	Recommended ECMs	14
	4.1.1	Lighting Upgrades	15
	ECN	Л 1: Retrofit Fixtures with LED Lamps	15
	4.1.2	Lighting Control Measures	16
	ECN	Л 2: Install Occupancy Sensor Lighting Controls	16
	4.1.3	Gas-Fired Heating System Replacements	17
	ECN	Л 3: Install High Efficiency Hot Water Boilers	17
	4.1.4	Domestic Hot Water Heating System Upgrades	18
	ECN	ብ 4: Install Low-Flow DHW Devices	18
	4.2	ECMs Evaluated But Not Recommended	19

Install High Efficiency Air Conditioning Units	
5 Energy Efficient Practices	20
Reduce Air Leakage	20
Close Doors and Windows	20
Use Window Treatments/Coverings	20
Practice Proper Use of Thermostat Schedules and Ter	nperature Resets20
Perform Proper Boiler Maintenance	20
Perform Proper Water Heater Maintenance	2
Water Conservation	2
On-Site Generation Measures	22
6.1 Photovoltaic	22
	2
7 Demand Response	24
B Project Funding / Incentives	2!
8.1 SmartStart	26
	27
	28
9 Energy Purchasing and Procurement Strategies	29
9.1 Retail Electric Supply Options	29
	29
5 7 8	Reduce Air Leakage

Appendix A: Equipment Inventory & Recommendations

Appendix B: ENERGY STAR® Statement of Energy Performance

Table of Figures

Figure 1 – Previous 12 Month Utility Costs	2
Figure 2 – Potential Post-Implementation Costs	2
Figure 3 – Summary of Energy Reduction Opportunities	2
Figure 4 – Project Contacts	5
Figure 5 - Building Schedule	5
Figure 6 - Utility Summary	9
Figure 7 - Energy Cost Breakdown	9
Figure 8 - Electric Usage & Demand	10
Figure 9 - Electric Usage & Demand	10
Figure 10 - Natural Gas Usage	11
Figure 11 - Natural Gas Usage	11
Figure 12 - Energy Use Intensity Comparison — Existing Conditions	12
Figure 13 - Energy Use Intensity Comparison – Following Installation of Recommended Measures	12
Figure 14 - Energy Balance (% and kBtu/SF)	13
Figure 15 – Summary of Recommended ECMs	14
Figure 16 – Summary of Lighting Upgrade ECMs	15
Figure 17 – Summary of Lighting Control ECMs	16
Figure 18 - Summary of Gas-Fired Heating Replacement ECMs	17
Figure 19 - Summary of Domestic Water Heating ECMs	18
Figure 20 – Summary of Measures Evaluated, But Not Recommended	19
Figure 21 - Photovoltaic Screening	22
Figure 22 - Combined Heat and Power Screening	23
Figure 23 - ECM Incentive Program Eligibility	25

I EXECUTIVE SUMMARY

The New Jersey Board of Public Utilities (NJBPU) has sponsored this Local Government Energy Audit (LGEA) Report for the New Sharon School.

The goal of an LGEA report is to provide you with information on how your facility uses energy, identify energy conservation measures (ECMs) that can reduce your energy use, and provide information and assistance to help facilities implement ECMs. The LGEA report also contains valuable information on financial incentives from New Jersey's Clean Energy Program (NJCEP) for implementing ECMs.

This study was conducted by TRC Energy Services (TRC), as part of a comprehensive effort to assist New Jersey school districts in controlling energy costs and protecting our environment by offering a wide range of energy management options and advice.

I.I Facility Summary

New Sharon School is a 9,282 square foot facility comprised of classrooms, restrooms, closets, a kitchenette, hallways, basement and a mechanical room. This school provides vocational and life skills training and has limited occupancy. The school functions from 10:00 AM to 3:00 PM during the week for 10 months. There are a few summer activities for special education students.

Space heating in the building is provided by a gas-fired non-condensing hot water boiler, and space cooling in the building is provided by window AC units. Lighting at the New Sharon School consists of aging and inefficient linear T8 and incandescent bulb fixtures that are in need of replacement. A thorough description of the facility and our observations are located in Section 2.

1.2 Your Cost Reduction Opportunities

Energy Conservation Measures

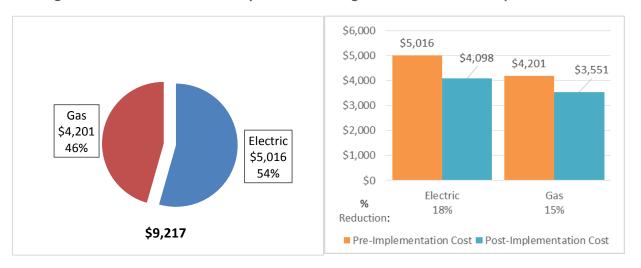

TRC evaluated five measures and recommends four measures which together represent an opportunity for the New Sharon School to reduce annual energy costs by roughly \$1,568 and annual greenhouse gas emissions by 13,359 lbs CO_2e . We estimate that if all measures were implemented as recommended, the project would pay for itself in roughly 8.3 years. The breakdown of existing and potential utility costs after project implementation are illustrated in Figure 1 and Figure 2, respectively. Together these measures represent an opportunity to reduce New Sharon School's annual energy use by 16%.

Figure I - Previous 12 Month Utility Costs

Figure 2 – Potential Post-Implementation Costs

A detailed description of the New Sharon School's existing energy use can be found in Section 3.

Estimates of the total cost, energy savings, and financial incentives for the proposed energy efficient upgrades are summarized below in Figure 3. A brief description of each category can be found below and a description of savings opportunities can be found in Section 4.

Figure 3 – Summary of Energy Reduction Opportunities

Energy Conservation Measure		Recommend?	Annual Electric Savings (kWh)	Peak Demand Savings (kW)	Annual Fuel Savings (MMBtu)		Estimated Install Cost (\$) \$3,891.55	Estimated Incentive (\$)*	Estimated Net Cost (\$)	Simple Payback Period (yrs)**	CO ₂ e Emissions Reduction (lbs)
ECM 1	Lighting Upgrades Retrofit Fixtures with LED Lamps	Yes	3,475	1.7	0.0	\$570.38 \$570.38	\$3,891.55	\$705.00	\$3,186.55	5.6	3,500
ECIVI I		res	-, -			·					,
	Lighting Control Measures		442	0.2	0.0	\$72.51	\$1,080.00	\$140.00	\$940.00	13.0	445
ECM 2	Install Occupancy Sensor Lighting Controls	Yes	442	0.2	0.0	\$72.51	\$1,080.00	\$140.00	\$940.00	13.0	445
	Electric Unitary HVAC Measures		2,036	1.5	0.0	\$334.10	\$8,710.08	\$0.00	\$8,710.08	26.1	2,050
	Install High Efficiency Electric AC	No	2,036	1.5	0.0	\$334.10	\$8,710.08	\$0.00	\$8,710.08	26.1	2,050
	Gas Heating (HVAC/Process) Replacement		0	0.0	66.0	\$650.16	\$9,913.41	\$1,000.00	\$8,913.41	13.7	7,727
ECM 3	Install High Efficiency Hot Water Boilers	Yes	0	0.0	66.0	\$650.16	\$9,913.41	\$1,000.00	\$8,913.41	13.7	7,727
	Domestic Water Heating Upgrade		1,675	0.0	0.0	\$274.93	\$35.85	\$0.00	\$35.85	0.1	1,687
ECM 4	Install Low-Flow Domestic Hot Water Devices	Yes	1,675	0.0	0.0	\$274.93	\$35.85	\$0.00	\$35.85	0.1	1,687
	TOTAL OF ALL EVALUATED ECMS			3.3	66.0	\$1,902.07	\$23,630.89	\$1,845.00	\$21,785.89	11.5	15,409
	TOTAL OF ALL RECOMMENDED ECMS			2	66	\$ 1,567.97	\$ 14,920.81	\$ 1,845.00	\$ 13,075.81	8.3	13,359
	TOTAL OF ALL NON-RECOMMENDED ECMS			1	0	\$ 334.10	\$ 8,710.08	\$ -	\$ 8,710.08	26.1	2,050

^{* -} All incentives presented in this table are based on NJ Smart Start Building equipment incentives and assume proposed equipment meets minimum performance criteria for that program.

^{** -} Simple Payback Period is based on net measure costs (i.e. after incentives).

Lighting Upgrades generally involve the replacement of existing lighting components such as lamps and ballasts (or the entire fixture) with higher efficiency lighting components. These measure save energy by reducing the power used by the lighting components due to improved electrical efficiency.

Lighting Controls measures generally involve the installation of automated controls to turn off lights or reduce light output when not needed. Automated control reduces reliance on occupant behavior for adjusting lights. These measures save energy by reducing the amount of time lights are on.

Electric Unitary HVAC measures generally involve replacing older inefficient air conditioning systems with modern energy efficient systems. New air conditioning systems can provide equivalent cooling to older air condition systems at a reduced energy cost. These measures save energy by reducing the power used by the air conditioning systems, due to improved electrical efficiency.

Gas Heating (HVAC/Process) measures generally involve replacing older inefficient hydronic heating systems with modern energy efficient systems. Gas heating systems can provide equivalent heating compared to older systems at a reduced energy cost. These measures save energy by reducing the fuel demands for heating, due to improved combustion and heat transfer efficiency.

Domestic Hot Water upgrade measures generally involve replacing older inefficient domestic water heating systems with modern energy efficient systems. New domestic hot water heating systems can provide equivalent, or greater, water heating capacity compared to older systems at a reduced energy cost. These measures save energy by reducing the fuel used for domestic hot water heating due to improved heating efficiency or reducing standby losses.

Energy Efficient Practices

TRC also identified seven low cost (or no cost) energy efficient practices. A facility's energy performance can be significantly improved by employing certain behavioral or operational adjustments and by performing better routine maintenance on building systems. These practices can extend equipment lifetime, improve occupant comfort, provide better health and safety, as well as reduce annual energy and O&M costs. Potential opportunities identified at the New Sharon School include:

- Reduce Air Leakage
- Close Doors and Windows
- Use Window Treatments/Coverings
- Practice Proper Use of Thermostat Schedules and Temperature Resets
- Perform Proper Boiler Maintenance
- Perform Proper Water Heater Maintenance
- Water Conservation

For details on these energy efficient practices, please refer to Section 5.

On-Site Generation Measures

TRC evaluated the potential for installing on-site generation for the New Sharon School. Based on the configuration of the site and its loads there is a low potential for installing any PV and combined heat and power self-generation measures.

For details on our evaluation and on-site generation potential, please refer to Section 6.

1.3 Implementation Planning

To realize the energy savings from the ECMs listed in this report, a project implementation plan must be developed. Available capital must be considered and decisions need to be made whether it is best to pursue individual ECMs separately, groups of ECMs, or a comprehensive approach where all ECMs are implemented together, possibly in conjunction with other facility upgrades or improvements.

Rebates, incentives, and financing are available from NJCEP, as well as other sources, to help reduce the costs associated with the implementation of energy efficiency projects. Prior to implementing any measure, please review the relevant incentive program guidelines before proceeding. This is important because in most cases you will need to submit applications for the incentives prior to purchasing materials or commencing with installation.

The ECMs outlined in this report may qualify under the following program(s):

- SmartStart
- Direct Install
- Energy Savings Improvement Program (ESIP)

For facilities wanting to pursue only selected individual measures (or planning to phase implementation of selected measures over multiple years), incentives are available through the SmartStart program. To participate in this program you may utilize internal resources, or an outside firm or contractor, to do the final design of the ECM(s) and do the installation. Program pre-approval is required for some SmartStart incentives, so only after receiving pre-approval should you proceed with ECM installation. The incentive estimates listed above in Figure 3 are based on the SmartStart program. More details on this program and others are available in Section 8.

This facility may also qualify for the Direct Install program which can provide turnkey installation of multiple measures, through an authorized network of participating contractors. This program can provide substantially higher incentives that SmartStart, up to 70% of the cost of selected measures, although measure eligibility will have to be assessed and be verified by the designated Direct Install contractor and, in most cases, they will perform the installation work.

For larger facilities with limited capital availability to implement ECMs, project financing may be available through the Energy Savings Improvement Program (ESIP). Supported directly by the NJBPU, ESIP provides government agencies with project development, design, and implementation support services, as well as, attractive financing for implementing ECMs. An LGEA report (or other approved energy audit) is required for participation in ESIP. Please refer to Section 8.3 for additional information on the ESIP Program.

The Demand Response Energy Aggregator is a (non-NJCEP) program designed to reduce electric loads at commercial facilities, when wholesale electricity prices are high or when the reliability of the electric grid is threatened due to peak power demand. Demand Response (DR) service providers (a.k.a. Curtailment Service Providers) are registered with PJM, the independent system operator (ISO) for mid-Atlantic state region that is charged with maintaining electric grid reliability. By enabling grid operators to call upon commercial facilities to reduce their electric usage during times of peak demand, the grid is made more reliable and overall transmission costs are reduced for all ratepayers. Curtailment Service Providers provide regular payments to medium and large consumers of electric power for their participation in DR programs. Program participation is voluntary and facilities receive payments whether or not they are called upon to curtail their load during times of peak demand. Refer to Section 7 for additional information on this program.

Additional information on relevant incentive programs is located in Section 8 or: www.njcleanenergy.com/ci.

2 FACILITY INFORMATION AND EXISTING CONDITIONS

2.1 Project Contacts

Figure 4 – Project Contacts

Name Role E		E-Mail	Phone #				
Customer							
William Blatchley Business Administrator		blatchley.w@deptford.k12.nj.us	856-232-2700 x 3007				
Designated Representative							
Samuel Ringelberg	Development Engineer	Sam.Ringelberg@schneider-electric.com	717-579-0958				
TRC Energy Services							
Smruti Srinivasan Auditor		ssrinivasan@trcsolutions.com	732-855-0033				

2.2 General Site Information

On April 5, 2017, TRC performed an energy audit at the New Sharon School located in Deptford, New Jersey. TRC's team met with Brian Rosas to review the facility operations and help focus our investigation on specific energy-using systems.

New Sharon School is a 9,282 square foot facility comprised of classrooms, restrooms, closets, a kitchenette, hallways, basement and a mechanical room. This school provides vocational and life skills training and has limited occupancy. The school functions from 10:00 AM to 3:00 PM during the week for 10 months. There are a few summer activities for special education students.

The building was constructed in 1924. Space heating in the building is provided by a gas-fired non-condensing hot water boiler, and space cooling in the building is provided by window AC units. Lighting at New Sharon School consists of aging and inefficient linear T8 and incandescent bulb fixtures that are in need of replacement

2.3 Building Occupancy

The typical schedule is presented in the table below. During a typical day, the facility is occupied by approximately 10 staff and 20 students.

Figure 5 - Building Schedule

Building Name	Weekday/Weekend	Operating Schedule		
New Sharon School	Weekday	10 AM - 3 PM		
New Sharon School	Weekend	No operation		

2.4 Building Envelope

The building is constructed of concrete block and structural steel with a brick façade. The building has a pitched roof with asphalt shingles. The windows in the building are single pane. The exterior doors are made of aluminum or aluminum framed glass. The windows and doors are in fair condition showing signs of air infiltration.

Image I Building Envelope

2.5 On-Site Generation

The New Sharon School does not have any on-site electric generation systems currently installed.

2.6 Energy-Using Systems

Please see Appendix A: Equipment Inventory & Recommendations for an inventory of the facility's equipment.

Lighting System

Lighting is provided mostly by 32-Watt linear fluorescent T8 lamps with electronic ballasts as well as some incandescent lamps. Most of the fixtures are 2-lamp 4-foot long troffers.

Closets and the rear entrance of the building are lit using 75-Watt incandescent lamp fixtures.

Lighting control in the school is provided by manual wall switches. There were no exterior light fixtures noted on site. All exit signs are 2-Watt LED fixtures.

Image 2 Lighting system

Hot Water Heating System

The hot water system consists of one gas-fired non-condensing HB Smith hot water boiler with an output capacity of 413 MBh and a combustion efficiency of 75%. The hot water from the boiler is circulated through the school using a small hot water heating pump. The classrooms, kitchenette and hallways have unit ventilators and terminal units to condition the space. The temperatures are controlled by the building automation system.

The boiler is 26 years old and has been evaluated for replacement.

Image 3 Hot water system

Direct Expansion Air Conditioning System (DX)

The kitchenette and rooms 1, 2 and 3 are cooled using 2 ton window AC (Frigidaire) units. These units are 11 years old, have a SEER of 9.4 and have been evaluated for replacement.

Image 4 Air conditioning system

Domestic Water Heating System

The domestic water heating system for the facility consists of two electric water heaters (from Bradford White and Whirlpool). These have an input capacity of 4.5kW and 1.5kW and a tank capacity of 40 gallons and 19 gallons respectively. The water heaters are 10 years and three years old, in good condition and well maintained.

Image 5 Domestic water system

Building Plug Load

There are roughly seven computer work stations and other office loads include printers, paper shredders, projectors, and smart boards. The kitchenette equipment have plug loads such as microwave ovens, coffee machines, toasters, toaster oven, one washer, one dryer and a dishwasher. There is no centralized PC power management software installed.

2.7 Water-Using Systems

A sampling of restrooms found that the faucets are rated for 2.2 gallons per minute (gpm) or higher, the toilets are rated at 1.6 gallons per flush (gpf) and the urinals are rated at 2 gpf.

3 SITE ENERGY USE AND COSTS

Utility data for electricity and natural gas was analyzed to identify opportunities for savings. In addition, data for electricity and natural gas was evaluated to determine the annual energy performance metrics for the building in energy cost per square foot and energy usage per square foot. These metrics are an estimate of the relative energy efficiency of this building. There are a number of factors that could cause the energy use of this building to vary from the "typical" energy usage profile for facilities with similar characteristics. Local weather conditions, building age and insulation levels, equipment efficiency, daily occupancy hours, changes in occupancy throughout the year, equipment operating hours, and energy efficient behavior of occupants all contribute to benchmarking scores. Please refer to the Benchmarking section within Section 3.4 for additional information.

3.1 Total Cost of Energy

The following energy consumption and cost data is based on the last 12-month period of utility billing data that was provided for each utility. A profile of the annual energy consumption and energy cost of the facility was developed from this information.

 Utility Summary for New Sharon School

 Fuel
 Usage
 Cost

 Electricity
 30,563 kWh
 \$5,016

 Natural Gas
 4,265 Therms
 \$4,201

 Total
 \$9,217

Figure 6 - Utility Summary

The current annual energy cost for this facility is \$9,217 as shown in the chart below.

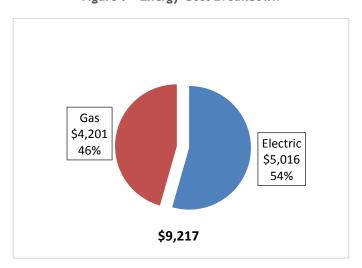


Figure 7 - Energy Cost Breakdown

3.2 Electricity Usage

Electricity is provided by PSE&G. The average electric cost over the past 12 months was \$0.164/kWh, which is the blended rate that includes energy supply, distribution, and other charges. This rate is used throughout the analyses in this report to assess energy costs and savings. The third party electric supply is provided by South Jersey Energy Company. The monthly electricity consumption and peak demand are shown in the chart below.

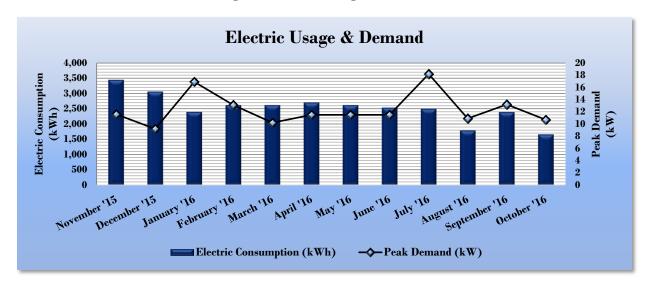


Figure 8 - Electric Usage & Demand

Figure 9 - Electric Usage & Demand

	Electric Billing Data for New Sharon School										
Period Ending	Days in Period	Electric Usage (kWh)	Demand (kW)	Demand Cost	Total Electric Cost	TRC Estimated Usage?					
12/2/15	30	3,432	12	\$40	\$495	No					
12/31/15	29	3,048	9	\$74	\$414	No					
2/1/16	32	2,388	17	\$57	\$364	No					
3/2/16	30	2,610	13	\$57	\$377	Yes					
4/1/16	30	2,610	10	\$45	\$377	Yes					
5/1/16	30	2,694	12	\$145	\$424	Yes					
6/1/16	31	2,610	12	\$145	\$422	Yes					
6/30/16	29	2,526	12	\$145	\$408	Yes					
8/1/16	32	2,490	18	\$229	\$561	No					
8/30/16	29	1,782	11	\$48	\$376	No					
9/29/16	30	2,382	13	\$59	\$487	No					
10/28/16	29	1,656	11	\$48	\$255	No					
Totals	361	30,228	18.2	\$1,091	\$4,961	5					
Annual	365	30,563	18.2	\$1,103	\$5,016						

3.3 Natural Gas Usage

Natural gas is provided by South Jersey Gas. The average gas cost for the past 12 months is \$0.985/therm, which is the blended rate used throughout the analyses in this report. The third party gas supply is provided by Direct Energy. The monthly gas consumption is shown in the chart below.

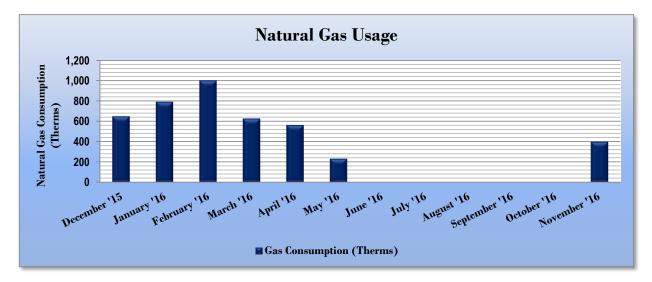


Figure 10 - Natural Gas Usage

Figure II - Natural Gas Usage

Gas Billing Data for New Sharon School									
Period Ending	Days in Period	Natural Gas Usage (Therms)	Natural Gas Cost						
12/21/15	30	645	\$635						
1/20/16	30	788	\$768						
2/19/16	30	998	\$961						
3/18/16	28	623	\$610						
4/19/16	32	560	\$552						
5/23/16	34	230	\$244						
6/22/16	30	0	\$29						
7/21/16	29	0	\$28						
8/22/16	32	0	\$31						
9/22/16	31	0	\$30						
10/24/16	32	0	\$31						
11/18/16	25	397	\$260						
Totals	363	4,241	\$4,178						
Annual	365	4,265	\$4,201						

3.4 Benchmarking

This facility was benchmarked using *Portfolio Manager*, an online tool created and managed by the United States Environmental Protection Agency (EPA) through the ENERGY STAR® program. Portfolio Manager analyzes your building's consumption data, cost information, and operational use details and then compares its performance against a national median for similar buildings of its type. Metrics provided by this analysis are Energy Use Intensity (EUI) and an ENERGY STAR® score for select building types.

The EUI is a measure of a facility's energy consumption per square foot, and it is the standard metric for comparing buildings' energy performance. Comparing the EUI of a building with the national median EUI for that building type illustrates whether that building uses more or less energy than similar buildings of its type on a square foot basis. EUI is presented in terms of "site energy" and "source energy." Site energy is the amount of fuel and electricity consumed by a building as reflected in utility bills. Source energy includes fuel consumed to generate electricity consumed at the site, factoring in electric production and distribution losses for the region.

Figure 12 - Energy Use Intensity Comparison – Existing Conditions

Energy Use Intensity Comparison - Existing Conditions								
	New Sharon School	National Median Building Type: School (K-12)						
Source Energy Use Intensity (kBtu/ft²)	83.5	141.4						
Site Energy Use Intensity (kBtu/ft²)	57.2	58.2						

Implementation of all recommended measures in this report would improve the building's estimated EUI significantly, as shown in the table below:

Figure 13 - Energy Use Intensity Comparison - Following Installation of Recommended Measures

Energy Use Intensity Comparison - Following Installation of Recommended Measures								
	New Sharon School	National Median						
	New Charon Cancor	Building Type: School (K-12)						
Source Energy Use Intensity (kBtu/ft²)	69.6	141.4						
Site Energy Use Intensity (kBtu/ft²)	48.0	58.2						

Many types of commercial buildings are also eligible to receive an ENERGY STAR® score. This score is a percentile ranking from 1 to 100. It compares your building's energy performance to similar buildings nationwide. A score of 50 represents median energy performance, while a score of 75 means your building performs better than 75 percent of all similar buildings nationwide and may be eligible for ENERGY STAR® certification. This facility has a current score of 80.

A Portfolio Manager Statement of Energy Performance (SEP) was generated for this facility, see Appendix B: ENERGY STAR® Statement of Energy Performance.

For more information on ENERGY STAR® certification go to: https://www.energystar.gov/buildings/facility-owners-and-managers/existing-buildings/earn-recognition/energy-star-certification/how-app-1.

A Portfolio Manager account has been created online for your facility and you will be provided with the login information for the account. We encourage you to update your utility information in Portfolio Manager regularly, so that you can keep track of your building's performance. Free online training is available to help you use ENERGY STAR® Portfolio Manager to track your building's performance at: https://www.energystar.gov/buildings/training.

3.5 Energy End-Use Breakdown

In order to provide a complete overview of energy consumption across building systems, an energy balance was performed at this facility. An energy balance utilizes standard practice engineering methods to evaluate all components of the various electric and fuel-fired systems found in a building to determine their proportional contribution to overall building energy usage. This chart of energy end uses highlights the relative contribution of each equipment category to total energy usage. This can help determine where the greatest benefits might be found from energy efficiency measures.

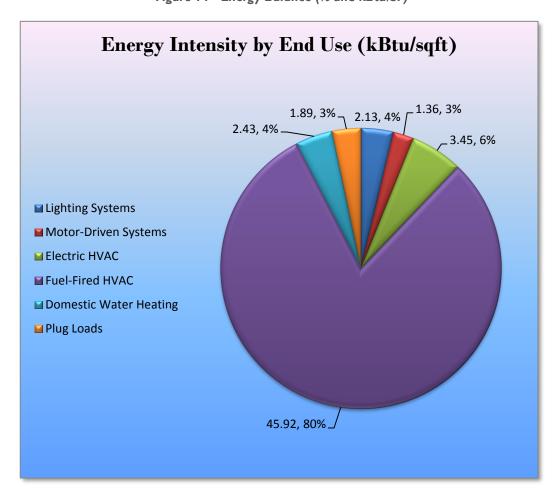


Figure 14 - Energy Balance (% and kBtu/SF)

4 ENERGY CONSERVATION MEASURES

Level of Analysis

The goal of this audit report is to identify potential energy efficiency opportunities, help prioritize specific measures for implementation, and provide information to the New Sharon School regarding financial incentives for which they may qualify to implement the recommended measures. For this audit report, most measures have received only a preliminary analysis of feasibility which identifies expected ranges of savings and costs. This level of analysis is usually considered sufficient to demonstrate project cost-effectiveness and help prioritize energy measures. Savings are based on the New Jersey Clean Energy Program Protocols to Measure Resource Savings dated June 29, 2016, approved by the New Jersey Board of Public Utilities. Further analysis or investigation may be required to calculate more precise savings based on specific circumstances. A higher level of investigation may be necessary to support any custom SmartStart or Pay for Performance, or Direct Install incentive applications. Financial incentives for the ECMs identified in this report have been calculated based the NJCEP prescriptive SmartStart program. Some measures and proposed upgrade projects may be eligible for higher incentives than those shown below through other NJCEP programs as described in Section 8.

The following sections describe the evaluated measures.

4.1 Recommended ECMs

The measures below have been evaluated by the auditor and are recommended for implementation at the facility.

Figure 15 – Summary of Recommended ECMs

Energy Conservation Measure		Peak Demand Savings (kW)	Annual Fuel Savings (MMBtu)	_	Estimated Install Cost (\$)	Estimated Incentive (\$)*	Estimated Net Cost (\$)	Simple Payback Period (yrs)**	CO ₂ e Emissions Reduction (lbs)
Lighting Upgrades	3,475	1.7	0.0	\$570.38	\$3,891.55	\$705.00	\$3,186.55	5.6	3,500
ECM 1 Retrofit Fixtures with LED Lamps	3,475	1.7	0.0	\$570.38	\$3,891.55	\$705.00	\$3,186.55	5.6	3,500
Lighting Control Measures	442	0.2	0.0	\$72.51	\$1,080.00	\$140.00	\$940.00	13.0	445
ECM 2 Install Occupancy Sensor Lighting Controls	442	0.2	0.0	\$72.51	\$1,080.00	\$140.00	\$940.00	13.0	445
Gas Heating (HVAC/Process) Replacement	0	0.0	66.0	\$650.16	\$9,913.41	\$1,000.00	\$8,913.41	13.7	7,727
ECM 3 Install High Efficiency Hot Water Boilers	0	0.0	66.0	\$650.16	\$9,913.41	\$1,000.00	\$8,913.41	13.7	7,727
Domestic Water Heating Upgrade	1,675	0.0	0.0	\$274.93	\$35.85	\$0.00	\$35.85	0.1	1,687
ECM 4 Install Low-Flow Domestic Hot Water Devices	1,675	0.0	0.0	\$274.93	\$35.85	\$0.00	\$35.85	0.1	1,687
TOTALS	5,592	1.9	66.0	\$1,567.97	\$14,920.81	\$1,845.00	\$13,075.81	8.3	13,359

^{* -} All incentives presented in this table are based on NJ Smart Start Building equipment incentives and assume proposed equipment meets minimum performance criteria for that program.

^{** -} Simple Payback Period is based on net measure costs (i.e. after incentives).

4.1.1 Lighting Upgrades

Our recommendations for upgrades to existing lighting fixtures are summarized in Figure 16 below.

Figure 16 - Summary of Lighting Upgrade ECMs

Energy Conservation Measure		Annual Electric Savings (kWh)	Peak Demand Savings (kW)		•	Estimated Install Cost (\$)	Estimated Incentive (\$)	Net Cost		CO ₂ e Emissions Reduction (lbs)
Lighting Upgrades		3,475	1.7	0.0	\$570.38	\$3,891.55	\$705.00	\$3,186.55	5.6	3,500
ECM 1	Retrofit Fixtures with LED Lamps	3,475	1.7	0.0	\$570.38	\$3,891.55	\$705.00	\$3,186.55	5.6	3,500

During lighting upgrade planning and design, we recommend a comprehensive approach that considers both the efficiency of the lighting fixtures and how they are controlled.

ECM 1: Retrofit Fixtures with LED Lamps

Summary of Measure Economics

Interior/ Exterior		Peak Demand Savings (kW)			Estimated Install Cost (\$)	Estimated Incentive (\$)	Estimated Net Cost (\$)	Simple Payback Period (yrs)	CO ₂ e Emissions Reduction (Ibs)
Interior	3,475	1.7	0.0	\$570.38	\$3,891.55	\$705.00	\$3,186.55	5.6	3,500
Exterior	0	0.0	0.0	\$0.00	\$0.00	\$0.00	\$0.00	0.0	0

Measure Description

We recommend retrofitting existing linear T8 tubes and incandescent lighting technologies with LED lamps. Many LED tube lamps are direct replacements for existing fluorescent lamps and can be installed while leaving the fluorescent fixture ballast in place. LED bulbs can be used in existing fixtures as a direct replacement for most other lighting technologies. This measure saves energy by installing LEDs which use less power than other lighting technologies yet provide equivalent lighting output for the space.

Additional savings from lighting maintenance can be anticipated since LEDs have lifetimes which are more than twice that of a fluorescent tubes and more than 10 times longer than many incandescent lamps.

4.1.2 Lighting Control Measures

Our recommendations for lighting control measures are summarized in Figure 17 below.

Figure 17 – Summary of Lighting Control ECMs

Energy Conservation Measure Lighting Control Measures		Annual Electric Savings (kWh)	Peak Demand Savings (kW)			Estimated Install Cost (\$)	Estimated Incentive (\$)	Estimated Net Cost (\$)		CO ₂ e Emissions Reduction (lbs)
	Lighting Control Measures ECM 2 Install Occupancy Sensor Lighting Controls		0.2	0.0	\$72.51	\$1,080.00	\$140.00	\$940.00	13.0	445
ECM 2			0.2	0.0	\$72.51	\$1,080.00	\$140.00	\$940.00	13.0	445

During lighting upgrade planning and design, we recommend a comprehensive approach that considers both the efficiency of the lighting fixtures and how they are controlled.

ECM 2: Install Occupancy Sensor Lighting Controls

Summary of Measure Economics

	Peak Demand Savings (kW)			Estimated Install Cost (\$)		Estimated Net Cost (\$)	Simple Payback Period (yrs)	CO₂e Emissions Reduction (lbs)
442	0.2	0.0	\$72.51	\$1,080.00	\$140.00	\$940.00	13.0	445

Measure Description

We recommend installing occupancy sensors to control lighting fixtures that are currently controlled by manual switches in all classrooms and offices. Lighting sensors detect occupancy using ultrasonic and/or infrared sensors. For most spaces, we recommend lighting controls use dual technology sensors, which can eliminate the possibility of any lights turning off unexpectedly. Lighting systems are enabled when an occupant is detected. Fixtures are automatically turned off after an area has been vacant for a preset period. Some controls also provide dimming options and all modern occupancy controls can be easily over-ridden by room occupants to allow them to manually turn fixtures on or off, as desired. Energy savings results from only operating lighting systems when they are required.

Occupancy sensors may be mounted on the wall at existing switch locations, mounted on the ceiling, or in remote locations. In general, wall switch replacement sensors are recommended for single occupant offices and other small rooms. Ceiling-mounted or remote mounted sensors are used in locations without local switching or where wall switches are not in the line-of-sight of the main work area and in large spaces. We recommend a comprehensive approach to lighting design that upgrades both the lighting fixtures and the controls together for maximum energy savings and improved lighting for occupants.

4.1.3 Gas-Fired Heating System Replacements

Our recommendations for gas-fired heating system replacements are summarized in Figure 18 below.

Figure 18 - Summary of Gas-Fired Heating Replacement ECMs

Energy Conservation Measure Gas Heating (HVAC/Process) Replacement		Annual Electric Savings (kWh)	Peak Demand Savings (kW)		· ·	Estimated Install Cost (\$)	Estimated Incentive (\$)	Net Cost		CO ₂ e Emissions Reduction (Ibs)
	Gas Heating (HVAC/Process) Replacement	0	0.0	66.0	\$650.16	\$9,913.41	\$1,000.00	\$8,913.41	13.7	7,727
ECM 3	ECM 3 Install High Efficiency Hot Water Boilers		0.0	66.0	\$650.16	\$9,913.41	\$1,000.00	\$8,913.41	13.7	7,727

ECM 3: Install High Efficiency Hot Water Boilers

Summary of Measure Economics

	Peak Demand Savings (kW)			Estimated Install Cost (\$)		Estimated Net Cost (\$)		CO ₂ e Emissions Reduction (Ibs)
0	0.0	66.0	\$650.16	\$9,913.41	\$1,000.00	\$8,913.41	13.7	7,727

Measure Description

We recommend replacing older inefficient hot water boilers with high efficiency hot water boilers. Significant improvements have been made in combustion technology resulting in increased overall boiler efficiency. Energy savings results from improved combustion efficiency and reduced standby losses at low loads.

The most notable efficiency improvement is condensing hydronic boilers that can achieve over 90% efficiency under the proper conditions. Condensing hydronic boilers typically operate at efficiencies of approximately 85% and 87% (comparable to other high efficiency boilers) when the return water temperature is above 130°F. If the return water temperature drops below 130°F, the unit will enter "condensing mode" providing more efficient operation. Condensing hydronic boilers are typically only recommended when it could be confirmed that the return water temperature is less than 130°F during most of the operating hours. Please be aware that condensing boilers are typically 10% - 15% more expensive than standard high efficiency boilers and should only be selected if the design conditions support "condensing mode" operation.

4.1.4 Domestic Hot Water Heating System Upgrades

Our recommendations for domestic water heating system improvements are summarized in Figure 19 below.

Figure 19 - Summary of Domestic Water Heating ECMs

	Energy Conservation Measure	Annual Electric Savings (kWh)	Peak Demand Savings (kW)		Energy Cost Savings	Estimated Install Cost (\$)	Estimated Incentive (\$)	Estimated Net Cost (\$)	Simple Payback Period (yrs)	CO ₂ e Emissions Reduction (Ibs)
	BCM 4 Install Low-Flow Domestic Hot Water Devices		0.0	0.0	\$274.93	\$35.85	\$0.00	\$35.85	0.1	1,687
ECM 4			0.0	0.0	\$274.93	\$35.85	\$0.00	\$35.85	0.1	1,687

ECM 4: Install Low-Flow DHW Devices

Summary of Measure Economics

Annual Electric Savings (kWh)	Peak Demand Savings (kW)			Estimated Install Cost (\$)		Estimated Net Cost (\$)	Simple Payback Period (yrs)	CO₂e Emissions Reduction (Ibs)
1,675	0.0	0.0	\$274.93	\$35.85	\$0.00	\$35.85	0.1	1,687

Measure Description

We recommend installing low-flow domestic hot water devices to reduce overall hot water demand. Energy demand from domestic hot water heating systems can be reduced by reducing water usage in general.

Low-flow devices reduce the overall water flow from the fixture, while still adequate pressure for washing. This reduces the amount of water used per day resulting in energy and water savings.

4.2 ECMs Evaluated But Not Recommended

The measures below have been evaluated by the auditor but are not recommended for implementation at the facility. Reasons for exclusion can be found in each measure description section.

Figure 20 - Summary of Measures Evaluated, But Not Recommended

Energy Conservation Measure Electric Unitary HVAC Measures Install High Efficiency Electric AC		Electric Demand Fuel Energy Cost	Estimated Install Cost (\$)	Estimated Incentive (\$)*	Estimated Net Cost (\$)		CO ₂ e Emissions Reduction (Ibs)		
Electric Unitary HVAC Measures	2,036	1.5	0.0	\$334.10	\$8,710.08	\$0.00	\$8,710.08	26.1	2,050
Install High Efficiency Electric AC	2,036	1.5	0.0	\$334.10	\$8,710.08	\$0.00	\$8,710.08	26.1	2,050
TOTALS	2,036	1.5	0.0	\$334.10	\$8,710.08	\$0.00	\$8,710.08	26.1	2,050

^{* -} All incentives presented in this table are based on NJ Smart Start Building equipment incentives and assume proposed equipment meets minimum performance criteria for that program.

Install High Efficiency Air Conditioning Units

Summary of Measure Economics

	Peak Demand Savings (kW)		· ·	Estimated Install Cost (\$)		Estimated Net Cost (\$)	Simple Payback Period (yrs)	CO₂e Emissions Reduction (lbs)
2,036	1.5	0.0	\$334.10	\$8,710.08	\$0.00	\$8,710.08	26.1	2,050

Measure Description

We typically recommend replacing standard efficiency packaged air conditioning units with high efficiency packaged air conditioning units when cost effective. There have been significant improvements in both compressor and fan motor efficiencies over the past several years. Therefore, electricity savings can be achieved by replacing older units with new high efficiency units. A higher EER or SEER rating indicates a more efficient cooling system. The magnitude of energy savings for this measure depends on the relative efficiency of the older unit versus the new high efficiency unit, the average cooling load, and the estimated annual operating hours.

Reasons for not Recommending

Although we evaluated the replacements of the window AC units, the payback period on these exceed the useful life of the equipment itself. When the existing equipment come to the end of their useful life, we recommend replacing them with high efficiency units.

^{** -} Simple Payback Period is based on net measure costs (i.e. after incentives).

5 ENERGY EFFICIENT PRACTICES

In addition to the quantifiable savings estimated in Section 4, a facility's energy performance can also be improved through application of many low cost or no-cost energy efficiency strategies. By employing certain behavioral and operational changes and performing routine maintenance on building systems, equipment lifetime can be extended; occupant comfort, health and safety can be improved; and energy and O&M costs can be reduced. The recommendations below are provided as a framework for developing a whole building maintenance plan that is customized to your facility. Consult with qualified equipment specialists for details on proper maintenance and system operation.

Reduce Air Leakage

Air leakage, or infiltration, occurs when outside air enters a building uncontrollably through cracks and openings. Properly sealing such cracks and openings can significantly reduce heating and cooling costs, improve building durability, and create a healthier indoor environment. This includes caulking or installing weather stripping around leaky doors and windows allowing for better control of indoor air quality through controlled ventilation.

Close Doors and Windows

Ensure doors and windows are closed in conditioned spaces. Leaving doors and windows open leads to a significant increase in heat transfer between conditioned spaces and the outside air. Reducing a facility's air changes per hour (ACH) can lead to increased occupant comfort as well as significant heating and cooling savings, especially when combined with proper HVAC controls and adequate ventilation.

Use Window Treatments/Coverings

A substantial amount of heat gain can occur through uncovered or untreated windows, especially older single pane windows and east or west-facing windows. Treatments such as high-reflectivity films or covering windows with shades or shutters can reduce solar heat gain and, consequently, cooling load and can reduce internal heat loss and the associated heating load.

Practice Proper Use of Thermostat Schedules and Temperature Resets

Ensure thermostats are correctly set back. By employing proper set back temperatures and schedules, facility heating and cooling costs can be reduced dramatically during periods of low or no occupancy. As such, thermostats should be programmed for a setback of 5-10°F during low occupancy hours (reduce heating setpoints and increase cooling setpoints). Cooling load can be reduced further by increasing the facility's occupied setpoint temperature. In general, during the cooling season, thermostats should be set as high as possible without sacrificing occupant comfort.

Perform Proper Boiler Maintenance

Many boiler problems develop slowly over time, so regular inspection and maintenance is essential to retain proper functionality and efficiency of the heating system. Fuel burning equipment should undergo yearly tune-ups to ensure they are operating as safely and efficiently as possible from a combustion standpoint. A tune-up should include a combustion analysis to analyze the exhaust from the boilers and to ensure the boiler is operating safely. Buildup of dirt, dust, or deposits on the internal surfaces of a boiler can greatly affect its heat transfer efficiency. These deposits can accumulate on the water side or fire side of the boiler. Boilers should be cleaned regularly according to the manufacturer's instructions to remove this build up in order to sustain efficiency and equipment life.

Perform Proper Water Heater Maintenance

At least once a year, drain a few gallons out of the water heater using the drain valve. If there is a lot of sediment or debris, then a full flush is recommended. Turn the temperature down and then completely drain the tank. Once a year check for any leaks or heavy corrosion on the pipes and valves. For gas water heaters, check the draft hood and make sure it is placed properly, with a few inches of air space between the tank and where it connects to the vent. Look for any corrosion or wear on the gas line and on the piping. If you noticed any black residue, soot or charred metal, this is a sign you may be having combustion issues and you should have the unit serviced by a professional. For electric water heaters, look for any signs of leaking such as rust streaks or residue around the upper and lower panels covering the electrical components on the tank. For water heaters over three to four years old have a technician inspect the sacrificial anode annually.

Water Conservation

Installing low-flow faucets or faucet aerators, low-flow showerheads, and kitchen sink pre-rinse spray valves saves both energy and water. These devices save energy by reducing the overall amount of hot water used hence reducing the energy used to heat the water. The flow ratings for EPA WaterSense™ (http://www3.epa.gov/watersense/products) labeled devices are 1.5 gpm for bathroom faucets, 2.0 gpm for showerheads, and 1.28 gpm for pre-rinse spray valves.

Installing dual flush or low-flow toilets and low-flow or waterless urinals are additional ways to reduce the sites water use, however, these devices do not provide energy savings at the site level. Any reduction in water use does however ultimately reduce grid level electricity use since a significant amount of electricity is used to deliver water from reservoirs to end users. The EPA WaterSense™ ratings for urinals is 0.5 gpf and toilets that use as little as 1.28 gpf (this is lower than the current 1.6 gpf federal standard). Refer to Section 4.1.4 for any low-flow ECM recommendations.

6 ON-SITE GENERATION MEASURES

On-site generation measure options include both renewable (e.g., solar, wind) and non-renewable (e.g., fuel cells) on-site technologies that generate power to meet all or a portion of the electric energy needs of a facility, often repurposing any waste heat where applicable. Also referred to as distributed generation, these systems contribute to Greenhouse Gas (GHG) emission reductions, demand reductions and reduced customer electricity purchases, resulting in the electric system reliability through improved transmission and distribution system utilization.

The State of New Jersey's Energy Master Plan (EMP) encourages new distributed generation of all forms and specifically focuses on expanding use of combined heat and power (CHP) by reducing financial, regulatory and technical barriers and identifying opportunities for new entries. The EMP also outlines a goal of 70% of the State's electrical needs to be met by renewable sources by 2050.

Preliminary screenings were performed to determine the potential that a generation project could provide a cost-effective solution for your facility. Before making a decision to implement, a feasibility study should be conducted that would take a detailed look at existing energy profiles, siting, interconnection, and the costs associated with the generation project including interconnection costs, departing load charges, and any additional special facilities charges.

6.1 Photovoltaic

Sunlight can be converted into electricity using photovoltaics (PV) modules. Modules are racked together into an array that produces direct current (DC) electricity. The DC current is converted to alternating current (AC) through an inverter. The inverter is interconnected to the facility's electrical distribution system. The amount of unobstructed area available determines how large of a solar array can be installed. The size of the array combined with the orientation, tilt, and shading elements determines the energy produced.

A preliminary screening based on the facility's electric demand, size and location of free area, and shading elements shows that the facility has a **Low** potential for installing a PV array.

The amount of free area, ease of installation (location), and the lack of shading elements contribute to the potential for PV at the site. A PV array located on the roof of the main building/ground next to the building/over the main parking lot may be feasible.

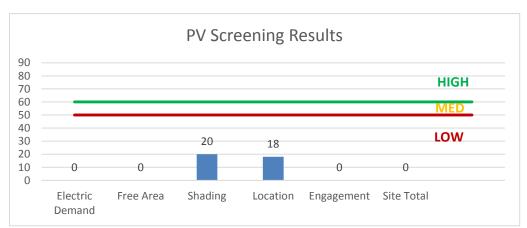


Figure 21 - Photovoltaic Screening

For more information on solar PV technology and commercial solar markets in New Jersey, or to find a qualified solar installer, who can provide a more detailed assessment of the specific costs and benefits of solar develop of the site, please visit the following links below:

- Basic Info on Solar PV in NJ: http://www.njcleanenergy.com/whysolar
- NJ Solar Market FAQs: http://www.njcleanenergy.com/renewable-energy/program-updates-and-background-information/solar-transition/solar-market-faqs
- Approved Solar Installers in the NJ Market: http://www.njcleanenergy.com/commercial-industrial/programs/nj-smartstart-buildings/tools-and-resources/tradeally/approved_vendorsearch/?id=60&start=1

6.2 Combined Heat and Power

Combined heat and power (CHP) is the on-site generation of electricity along with the recovery of heat energy, which is put to beneficial use. Common technologies for CHP include reciprocating engines, microturbines, fuel cells, backpressure steam turbines, and (at large facilities) gas turbines. Electric generation from a CHP system is typically interconnected to local power distribution systems. Heat is recovered from exhaust and ancillary cooling systems and interconnected to the existing hot water (or steam) distribution systems.

CHP systems are typically used to produce a portion of the electric power used onsite by a facility, with the balance of electric power needs supplied by grid purchases. The heat is used to supplement (or supplant) existing boilers for the purpose of space heating and/or domestic hot water heating. Waste heat can also be routed through absorption chillers for the purpose of space cooling. The key criteria used for screening, however, is the amount of time the system operates at full load and the facility's ability to use the recovered heat. Facilities with continuous use for large quantities of waste heat are the best candidates for CHP.

A preliminary screening based on heating and electrical demand, siting, and interconnection shows that the facility has a Low potential for installing a cost-effective CHP system.

Low or infrequent thermal load, and lack of space near the existing boilers are the most significant factors contributing to the potential for CHP at the site. In our opinion, the facility does not appear to meet the minimum requirements for a cost-effective CHP installation.

For a list of qualified firms in New Jersey specializing in commercial CHP cost assessment and installation, go to: http://www.njcleanenergy.com/commercial-industrial/programs/nj-smartstart-buildings/tools-and-resources/tradeally/approved_vendorsearch/

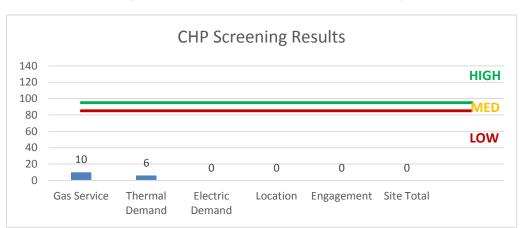


Figure 22 - Combined Heat and Power Screening

7 DEMAND RESPONSE

Demand Response (DR) is a program designed to reduce the electric load of commercial facilities when electric wholesale prices are high or when the reliability of the electric grid is threatened due to peak demand. Demand Response service providers (a.k.a. Curtailment Service Providers) are registered with PJM, the independent system operator (ISO) for mid-Atlantic state region that is charged with maintaining electric grid reliability.

By enabling grid operators to call upon Curtailment Service Providers and commercial facilities to reduce electric usage during times of peak demand, the grid is made more reliable and overall transmission costs are reduced for all ratepayers. Curtailment Service Providers provide regular payments to medium and large consumers of electric power for their participation in DR programs. Program participation is voluntary and participants receive payments whether or not their facility is called upon to curtail their electric usage.

Typically an electric customer needs to be capable of reducing their electric demand, within minutes, by at least 100 kW or more in order to participate in a DR program. Customers with a greater capability to quickly curtail their demand during peak hours will receive higher payments. Customers with back-up generators onsite may also receive additional DR payments for their generating capacity if they agree to run the generators for grid support when called upon. Eligible customers who have chosen to participate in a DR programs often find it to be a valuable source of revenue for their facility because the payments can significantly offset annual electric costs.

Participating customers can often quickly reduce their peak load through simple measures, such as temporarily raising temperature set points on thermostats, so that air conditioning units run less frequently, or agreeing to dim or shut off less critical lighting. This usually requires some level of building automation and controls capability to ensure rapid load reduction during a DR curtailment event. DR program participants may need to install smart meters or may need to also sub-meter larger energy-using equipment, such as chillers, in order to demonstrate compliance with DR program requirements.

DR does not include the reduction of electricity consumption based on normal operating practice or behavior. For example, if a company's normal schedule is to close for a holiday, the reduction of electricity due to this closure or scaled-back operation is not considered a demand response activity in most situations.

The first step toward participation in a DR program is to contact a Curtailment Service Provider. A list of these providers is available on PJM's website and it includes contact information for each company, as well as the states where they have active business (http://www.pjm.com/markets-and-operations/demand-response/csps.aspx). PJM also posts training materials that are developed for program members interested in specific rules and requirements regarding DR activity (http://www.pjm.com/training/training%20material.aspx), along with a variety of other DR program information.

Curtailment Service Providers typically offer free assessments to determine a facility's eligibility to participate in a DR program. They will provide details regarding program rules and requirements for metering and controls, assess a facility's ability to temporarily reduce electric load, and provide details on payments to be expected for participation in the program. Providers usually offer multiple options for DR to larger facilities and may also install controls or remote monitoring equipment of their own to help ensure compliance with all terms and conditions of a DR contract.

In our opinion this facility is not a good candidate for the Demand Response program.

8 Project Funding / Incentives

The NJCEP is able to provide the incentive programs described below, and other benefits to ratepayers, because of the Societal Benefits Charge (SBC) Fund. The SBC was created by the State of New Jersey's Electricity Restructuring Law (1999), which requires all customers of investor-owned electric and gas utilities to pay a surcharge on their monthly energy bills. As a customer of a state-regulated electric or gas utility and therefore a contributor to the fund your organization is eligible to participate in the LGEA program and also eligible to receive incentive payment for qualifying energy efficiency measures. Also available through the NJBPU are some alternative financing programs described later in this section. Please refer to Figure 23 for a list of the eligible programs identified for each recommended ECM.

Figure 23 - ECM Incentive Program Eligibility

	Energy Conservation Measure	SmartStart Prescriptive	Direct Install	Pay For Performance Existing Buildings	Large Energy Users Program	Combined Heat & Power and Fuel Cell
ECM 1	Retrofit Fixtures with LED Lamps	Х	Х			
ECM 2	Install Occupancy Sensor Lighting Controls	Х	Х			
ECM 3	Install High Efficiency Hot Water Boilers	Х	Х			
ECM 4	Install Low-Flow Domestic Hot Water Devices		Х			

SmartStart is generally well-suited for implementation of individual measures or small group of measures. It provides flexibility to install measures at your own pace using in-house staff or a preferred contractor. Direct Install caters to small to mid-size facilities that can bundle multiple ECMs together. This can greatly simplify participation and may lead to higher incentive amounts, but requires the use of pre-approved contractors.

Generally, the incentive values provided throughout the report assume the SmartStart program is utilized because it provides a consistent basis for comparison of available incentives for various measures, though in many cases incentive amounts may be higher through participation in other programs.

Brief descriptions of all relevant financing and incentive programs are located in the sections below. Further information, including most current program availability, requirements, and incentive levels can be found at: www.njcleanenergy.com/ci.

8.1 SmartStart

Overview

The SmartStart program offers incentives for installing prescriptive and custom energy efficiency measures at your facility. Routinely the program adds, removes or modifies incentives from year to year for various energy efficiency equipment based on market trends and new technologies.

Equipment with Prescriptive Incentives Currently Available:

Electric Chillers
Electric Unitary HVAC
Gas Cooling
Gas Heating
Gas Water Heating
Ground Source Heat Pumps
Lighting

Lighting Controls
Refrigeration Doors
Refrigeration Controls
Refrigerator/Freezer Motors
Food Service Equipment
Variable Frequency Drives

Most equipment sizes and types are served by this program. This program provides an effective mechanism for securing incentives for energy efficiency measures installed individually or as part of a package of energy upgrades.

Incentives

The SmartStart prescriptive incentive program provides fixed incentives for specific energy efficiency measures, whereas the custom SmartStart program provides incentives for more unique or specialized technologies or systems that are not addressed through prescriptive incentive offerings for specific devices.

Since your facility is an existing building, only the retrofit incentives have been applied in this report. Custom measure incentives are calculated at \$0.16/kWh and \$1.60/therm based on estimated annual savings, capped at 50% of the total installed incremental project cost, or a project cost buy down to a one year payback (whichever is less). Program incentives are capped at \$500,000 per electric account and \$500,000 per natural gas account, per fiscal year.

How to Participate

To participate in the SmartStart program you will need to submit an application for the specific equipment to be installed. Many applications are designed as rebates, although others require application approval prior to installation. Applicants may work with a contractor of their choosing and can also utilize internal personnel, which provides added flexibility to the program. Using internal personnel also helps improve the economics of the ECM by reducing the labor cost that is included in the tables in this report.

Detailed program descriptions, instructions for applying and applications can be found at: www.njcleanenergy.com/SSB.

8.2 Direct Install

Overview

Direct Install is a turnkey program available to existing small to medium-sized facilities with a peak electric demand that does not exceed 200 kW for any recent 12-month period. You will work directly with a preapproved contractor who will perform a free energy assessment at your facility, identify specific eligible measures, and provide a clear scope of work for installation of selected measures. Energy efficiency measures may include lighting and lighting controls, refrigeration, HVAC, motors, variable speed drives and controls.

Incentives

The program pays up to **70%** of the total installed cost of eligible measures, up to \$125,000 per project. Direct Install participants will also be held to a fiscal year cap of \$250,000 per entity.

How to Participate

To participate in the Direct Install program you will need to contact the participating contractor who the region of the state where your facility is located. A complete list of Direct Install program partners is provided on the Direct Install website linked below. The contractor will be paid the measure incentives directly by the program which will pass on to you in the form of reduced material and implementation costs. This means up to 70% of eligible costs are covered by the program, subject to program caps and eligibility, while the remaining 30% of the cost is paid to the contractor by the customer.

Since Direct Install offers a free assessment of eligible measures, Direct Install is also available to small businesses and other commercial facilities too that may not be eligible for the more detailed facility audits provided by LGEA.

Detailed program descriptions and applications can be found at: www.njcleanenergy.com/DI.

8.3 Energy Savings Improvement Program

The Energy Savings Improvement Program (ESIP) is an alternate method for New Jersey's government agencies to finance the implementation of energy conservation measures. An ESIP is a type of "performance contract," whereby school districts, counties, municipalities, housing authorities and other public and state entities enter in to contracts to help finance building energy upgrades. This is done in a manner that ensures that annual payments are lower than the savings projected from the ECMs, ensuring that ESIP projects are cash flow positive in year one, and every year thereafter. ESIP provides government agencies in New Jersey with a flexible tool to improve and reduce energy usage with minimal expenditure of new financial resources. NJCEP incentive programs can be leveraged to help further reduce the total project cost of eligible measures.

This LGEA report is the first step to participating in ESIP. Next, you will need to select an approach for implementing the desired ECMs:

- (1) Use an Energy Services Company or "ESCO."
- (2) Use independent engineers and other specialists, or your own qualified staff, to provide and manage the requirements of the program through bonds or lease obligations.
- (3) Use a hybrid approach of the two options described above where the ESCO is utilized for some services and independent engineers, or other specialists or qualified staff, are used to deliver other requirements of the program.

After adopting a resolution with a chosen implementation approach, the development of the Energy Savings Plan (ESP) can begin. The ESP demonstrates that the total project costs of the ECMs are offset by the energy savings over the financing term, not to exceed 15 years. The verified savings will then be used to pay for the financing.

The ESIP approach may not be appropriate for all energy conservation and energy efficiency improvements. Entities should carefully consider all alternatives to develop an approach that best meets their needs. A detailed program descriptions and application can be found at: www.njcleanenergy.com/ESIP.

Please note that ESIP is a program delivered directly by the NJBPU and is not an NJCEP incentive program. As mentioned above, you may utilize NJCEP incentive programs to help further reduce costs when developing the ESP. You should refer to the ESIP guidelines at the link above for further information and quidance on next steps.

9 ENERGY PURCHASING AND PROCUREMENT STRATEGIES

9.1 Retail Electric Supply Options

In 1999, New Jersey State Legislature passed the Electric Discount & Energy Competition Act (EDECA) to restructure the electric power industry in New Jersey. This law deregulated the retail electric markets, allowing all consumers to shop for service from competitive electric suppliers. The intent was to create a more competitive market for electric power supply in New Jersey. As a result, utilities were allowed to charge Cost of Service and customers were given the ability to choose a third party (i.e. non-utility) energy supplier.

Energy deregulation in New Jersey has increased energy buyers' options by separating the function of electricity distribution from that of electricity supply. So, though you may choose a different company from which to buy your electric power, responsibility for your facility's interconnection to the grid and repair to local power distribution will still reside with the traditional utility company serving your region.

If your facility is not purchasing electricity from a third party supplier, consider shopping for a reduced rate from third party electric suppliers. If your facility is purchasing electricity from a third party supplier, review and compare prices at the end of the current contract or every couple years.

A list of third party electric suppliers, who are licensed by the state to provide service in New Jersey, can be found online at: www.state.nj.us/bpu/commercial/shopping.html.

9.2 Retail Natural Gas Supply Options

The natural gas market in New Jersey has also been deregulated. Most customers that remain with the utility for natural gas service pay rates that are market-based and that fluctuate on a monthly basis. The utility provides basic gas supply service (BGSS) to customers who choose not to buy from a third party supplier for natural gas commodity.

A customer's decision about whether to buy natural gas from a retail supplier is typically dependent upon whether a customer seeks budget certainty and/or longer-term rate stability. Customers can secure longer-term fixed prices by signing up for service through a third party retail natural gas supplier. Many larger natural gas customers may seek the assistance of a professional consultant to assist in their procurement process.

If your facility is not purchasing natural gas from a third party supplier, consider shopping for a reduced rate from third party natural gas suppliers. If your facility is purchasing natural gas from a third party supplier, review and compare prices at the end of the current contract or every couple years.

A list of third party natural gas suppliers, who are licensed by the state to provide service in New Jersey, can be found online at: www.state.nj.us/bpu/commercial/shopping.html.

Appendix A: Equipment Inventory & Recommendations

Lighting Inventory & Recommendations

	Existing C	onditions				Proposed Condition	ns						Energy Impac	t & Financial A	nalysis				
Location	Fixture Quantity	Fixture Description	Control System	Watts per Fixture	Annual Operating Hours	Fixture Recommendation	Add Controls?	Fixture Quantity	Fixture Description	Control System	Watts per Fixture	Annual Operating Hours	Total Peak kW Savings	Total Annual kWh Savings	Total Annual MMBtu Savings	Total Annual Energy Cost Savings	Total Installation Cost	Total Incentives	Simple Payback w/ Incentives in Years
Kitchenette	6	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,380	Relamp	Yes	6	LED - Linear Tubes: (2) 4' Lamps	Occupancy Sensor	29	966	0.16	397	0.0	\$65.17	\$621.00	\$95.00	8.07
Room 3	6	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,380	Relamp	Yes	6	LED - Linear Tubes: (2) 4' Lamps	Occupancy Sensor	29	966	0.16	397	0.0	\$65.17	\$621.00	\$95.00	8.07
Hallway	8	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,380	Relamp	No	8	LED - Linear Tubes: (2) 4' Lamps	Wall Switch	29	1,380	0.17	419	0.0	\$68.76	\$468.00	\$80.00	5.64
Closet*	1	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	52	Relamp	No	1	LED - Linear Tubes: (2) 4' Lamps	Wall Switch	29	52	0.02	2	0.0	\$0.32	\$58.50	\$10.00	149.75
Men's restroom	1	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	780	Relamp	No	1	LED - Linear Tubes: (2) 4' Lamps	Wall Switch	29	780	0.02	30	0.0	\$4.86	\$58.50	\$10.00	9.98
Room 1	10	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,380	Relamp	Yes	10	LED - Linear Tubes: (2) 4' Lamps	Occupancy Sensor	29	966	0.27	662	0.0	\$108.61	\$855.00	\$135.00	6.63
Room 2	10	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,380	Relamp	Yes	10	LED - Linear Tubes: (2) 4' Lamps	Occupancy Sensor	29	966	0.27	662	0.0	\$108.61	\$855.00	\$135.00	6.63
Women's restroom	1	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	780	Relamp	No	1	LED - Linear Tubes: (2) 4' Lamps	Wall Switch	29	780	0.02	30	0.0	\$4.86	\$58.50	\$10.00	9.98
Boiler Room	2	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,380	Relamp	No	2	LED - Linear Tubes: (2) 4' Lamps	Wall Switch	29	1,380	0.04	105	0.0	\$17.19	\$117.00	\$20.00	5.64
Hallway basement	19	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,380	Relamp	No	19	LED - Linear Tubes: (2) 4' Lamps	Wall Switch	29	1,380	0.41	995	0.0	\$163.30	\$1,111.50	\$190.00	5.64
Closet	2	Incandescent 2 lamps	Wall Switch	75	20	Relamp	No	2	LED Screw-In Lamps: 2 lamp - ceiling mount fixture	Wall Switch	8	20	0.09	3	0.0	\$0.51	\$46.62	\$20.00	52.63
Back entrance	2	Incandescent 2 lamps	Wall Switch	75	1,380	Relamp	No	2	LED Screw-In Lamps: 2 lamp - ceiling mount fixture	Wall Switch	8	1,380	0.09	213	0.0	\$34.90	\$46.62	\$20.00	0.76
Closet	1	Incandescent: 1 lamp	Wall Switch	75	20	Relamp	No	1	LED Screw-In Lamps: 1 lamp - ceiling mount fixture	Wall Switch	8	20	0.04	2	0.0	\$0.25	\$23.31	\$5.00	72.40
Closet	2	Incandescent 2 lamps - recessed fixture	Wall Switch	60	20	Relamp	No	2	LED Screw-In Lamps: 2 lamp - recessed fixture	Wall Switch	8	20	0.07	2	0.0	\$0.39	\$31.00	\$20.00	28.02
All school	5	Exit Signs: LED - 2 W Lamp	None	6	8,760	None	No	5	Exit Signs: LED - 2 W Lamp	None	6	8,760	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00

Motor Inventory & Recommendations

		Existing (Conditions					Proposed	Conditions			Energy Impact	& Financial A	nalysis				
Location	Area(s)/System(s) Served	Motor Quantity	Motor Application		Full Load Efficiency	VFD Control?	Annual Operating Hours	Install High Efficiency Motors?	Full Load Efficiency	Install VFDs?	Number of VFDs	Total Peak kW Savings	Total Annual		Total Annual Energy Cost Savings	Total Installation Cost	Total Incentives	Simple Payback w/ Incentives in Years
Boiler room	Boiler	1	Other	0.3	58.0%	No	2,745	No	58.0%	No		0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Boiler room	Boiler	1	Heating Hot Water Pump	0.3	60.0%	No	2,745	No	60.0%	No		0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Classrooms, kitchenette and hallways	Classrooms, kitchenette and hallways	11	Supply Fan	0.1	58.0%	No	2,745	No	58.0%	No		0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00

Electric HVAC Inventory & Recommendations

Existing Conditions P				Proposed Conditions								Energy Impact & Financial Analysis								
Location	Area(s)/System(s) Served	System Quantity	System Type	Capacity per Unit				System Tyne	Capacity per Unit		Mode	Heating Mode Efficiency (COP)	Install Dual Enthalpy Economizer?	Total Peak	Total Annual kWh Savings	MMRtu	Total Annual Energy Cost Savings	Total Installation Cost	Total Incentives	Simple Payback w/ Incentives in Years
Kitchenette	Kitchenette	1	Window AC	2.00		Yes	1	Window AC	2.00		12.00		No	0.37	509	0.0	\$83.52	\$2,177.52	\$0.00	26.07
Rooms 1,2,3	Rooms 1,2,3	3	Window AC	2.00		Yes	3	Window AC	2.00		12.00		No	1.11	1,527	0.0	\$250.57	\$6,532.56	\$0.00	26.07

Fuel Heating Inventory & Recommendations

Existing Conditions				Proposed Conditions					Energy Impact & Financial Analysis								
Location	Area(s)/System(s) Served	System Quantity	System Type				System Type	Output Capacity per Unit (MBh)	Heating Efficiency	Heating Efficiency Units	Total Peak kW Savings	Total Annual kWh Savings	Total Annual MMBtu Savings		Total Installation Cost	Total Incentives	Simple Payback w/ Incentives in Years
Boiler room	All school	1	Non-Condensing Hot Water Boiler	413.00	Yes	1	Condensing Hot Water Boiler	413.00	93.00%	Et	0.00	0	66.0	\$650.16	\$9,913.41	\$1,000.00	13.71

DHW Inventory & Recommendations

	Existing (Conditions	Proposed	Proposed Conditions						Energy Impact & Financial Analysis						
Location	Area(s)/System(s) Served	System Quantity	System Lyne	Replace?	System Quantity	System Lyne	Fuel Type	System Efficiency	Efficiency Units		Total Annual kWh Savings	MMRtu	Total Annual Energy Cost Savings	Total Installation Cost	Total Incentives	Simple Payback w/ Incentives in Years
Basement	Restrooms and classrooms	1	Storage Tank Water Heater (≤ 50 Gal)	No						0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Basement	Restrooms	1	Storage Tank Water Heater (≤ 50 Gal)	No						0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00

Low-Flow Device Recommendations

	Recomme	edation Inputs			Energy Impact & Financial Analysis									
Location	Device Quantity	Device Type	Existing Flow Rate (gpm)	Proposed Flow Rate (gpm)	Total Peak	Total Annual kWh Savings	MMBtu	Total Annual Energy Cost Savings	Total Installation Cost	Total Incentives	Simple Payback w/ Incentives in Years			
Kitchenette	1	Faucet Aerator (Kitchen)	2.50	2.20	0.00	80	0.0	\$13.09	\$7.17	\$0.00	0.55			
Men's restroom	2	Faucet Aerator (Lavatory)	2.50	1.00	0.00	798	0.0	\$130.92	\$14.34	\$0.00	0.11			
Women's restroom	2	Faucet Aerator (Lavatory)	2.50	1.00	0.00	798	0.0	\$130.92	\$14.34	\$0.00	0.11			

Plug Load Inventory

	Existing C	Conditions		
Location	Quantity	Equipment Description	Energy Rate	ENERGY STAR
			(W)	Qualified?
New Sharon School	7	Computer	145.0	Yes
New Sharon School	1	Printer - Medium	20.0	Yes
New Sharon School	2	Printer - large	600.0	Yes
New Sharon School	1	Paper shredder	150.0	Yes
New Sharon School	1	Projector	200.0	Yes
New Sharon School	1	Microwave	1,000.0	No
New Sharon School	2	Refrigerator - large	227.0	No
New Sharon School	3	Coffee machine	900.0	No
New Sharon School	1	Toaster	850.0	No
New Sharon School	2	Toaster ov en	1,200.0	No
New Sharon School	1	Washer	900.0	No
New Sharon School	1	Dryer	1,500.0	No
New Sharon School	1	Stove	3,000.0	No
New Sharon School	1	Smart Board	5.0	Yes
New Sharon School	1	Dishwaser	1,200.0	Yes

Appendix B: ENERGY STAR® Statement of Energy Performance

ENERGY STAR[®] Statement of Energy Performance

New Sharon School

Primary Property Type: K-12 School Gross Floor Area (ft2): 9,282

Built: 1924

ENERGY STAR® Score¹

For Year Ending: October 31, 2016 Date Generated: December 21, 2017

climate and business	s activity.		, , , , , , , , , , , , , , , , , , , ,						
Property & Cor	ntact Information								
Property Address New Sharon School 1810 Delsea Drive Deptford, New Jersey 08096		Property Owner	-	Primary Contact ———————————————————————————————————					
Property ID: 613	7182								
Energy Consur	mption and Energy U	se Intensity (EUI)							
Site EUI 56.3 kBtu/ft² Source EUI 82.4 kBtu/ft²	66.3 kBtu/ft² Electric - Grid (kBtu) 103,514 (20%) Natural Gas (kBtu) 418,785 (80%) Source EUI			National Median Comparison National Median Site EUI (kBtu/ft²) National Median Source EUI (kBtu/ft²) % Diff from National Median Source EUI Annual Emissions Greenhouse Gas Emissions (Metric Tons CO2e/year)					
Signature & S	Stamp of Verifyin	g Professional							
	(Name) verify that	at the above information	is true and correc	t to the best of my knowledg	je.				
Signature:	esional	Date:							

Professional Engineer Stamp (if applicable)