

# Local Government Energy Audit: Energy Audit Report





Copyright ©2017 TRC Energy Services. All rights reserved.

Reproduction or distribution of the whole, or any part of the contents of this document without written permission of TRC is prohibited. Neither TRC nor any of its employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any data, information, method, product or process disclosed in this document, or represents that its use will not infringe upon any privately-owned rights, including but not limited to, patents, trademarks or copyrights. High School Sewage Treatment Plant Jefferson Township Board of Education 1010 Weldon Road Oak Ridge, NJ 07438

July 18, 2018 Final Report by: TRC Energy Services

# Disclaimer

The intent of this energy analysis report is to identify energy savings opportunities and recommend upgrades to the facility's energy using equipment and systems. Approximate savings are included in this report to help make decisions about reducing energy use at the facility. This report, however, is not intended to serve as a detailed engineering design document. Further design and analysis may be necessary in order to implement some of the measures recommended in this report.

The energy conservation measures and estimates of energy savings have been reviewed for technical accuracy. However, estimates of final energy savings are not guaranteed, because final savings may depend on behavioral factors and other uncontrollable variables. TRC Energy Services (TRC) and New Jersey Board of Public Utilities (NJBPU) shall in no event be liable should the actual energy savings vary.

Estimated installation costs are based on TRC's experience at similar facilities, pricing from local contractors and vendors, and/or cost estimates from *RS Means*. The owner of the facility is encouraged to independently confirm these cost estimates and to obtain multiple estimates when considering measure installations. Since actual installed costs can vary widely for certain measures and conditions, TRC and NJBPU do not guarantee installed cost estimates and shall in no event be held liable should actual installed costs vary from estimates.

New Jersey's Clean Energy Program (NJCEP) incentive values provided in this report are estimates based on program information available at the time of the report. Incentive levels are not guaranteed. The NJBPU reserves the right to extend, modify, or terminate programs without prior notice. The owner of the facility should review available program incentives and eligibility requirements prior to selecting and installing any energy conservation measures.





# **Table of Contents**

| 1 | Executi      | ive Summary1                                                |
|---|--------------|-------------------------------------------------------------|
|   | 1.1          | Facility Summary1                                           |
|   | 1.2          | Your Cost Reduction Opportunities1                          |
|   |              | gy Conservation Measures                                    |
|   | -            | zy Efficient Practices                                      |
|   | 1.3          | Implementation Planning                                     |
| 2 |              | Information and Existing Conditions                         |
|   | 2.1          | Project Contacts                                            |
|   | 2.2          | General Site Information                                    |
|   | 2.3          | Building Occupancy                                          |
|   | 2.4          | Building Envelope                                           |
|   | 2.5<br>2.6   | On-Site Generation                                          |
|   | -            |                                                             |
|   | -            | ing System6<br>ing System                                   |
|   |              | Vater Heating System                                        |
|   | 2.7          | Water-Using System                                          |
| 3 | Site En      | ergy Use and Costs7                                         |
|   | 3.1          | Total Cost of Energy7                                       |
|   | 3.2          | Electricity Usage                                           |
|   | 3.3          | 9 Search and the Decondense                                 |
| 4 | 3.4          | Energy End-Use Breakdown                                    |
| 4 | 0.           |                                                             |
|   | 4.1<br>4.1.1 | Recommended ECMs                                            |
|   |              | 1: Install LED Fixtures                                     |
|   |              | 2: Retrofit Fluorescent Fixtures with LED Lamps and Drivers |
|   | 4.1.2        | Lighting Control Measures15                                 |
|   | ECM          | 3: Install Occupancy Sensor Lighting Controls15             |
|   | 4.1.3        | Motor Upgrades16                                            |
|   | ECM          | 4: Premium Efficiency Motors16                              |
| 5 | Energy       | Efficient Practices                                         |
|   |              | re Lighting Controls Are Operating Properly                 |
| 6 | On-Site      | e Generation Measures18                                     |
|   | 6.1          | Photovoltaic19                                              |
| 7 | Deman        | d Response20                                                |





| 8 | Projec | ct Funding / Incentives                 | 21 |
|---|--------|-----------------------------------------|----|
|   | 8.1    | SmartStart                              |    |
|   | 8.2    | Energy Savings Improvement Program      |    |
| 9 | Energ  | y Purchasing and Procurement Strategies | 24 |
|   | 9.1    | Retail Electric Supply Options          | 24 |
|   | 9.2    | Retail Natural Gas Supply Options       |    |

Appendix A: Equipment Inventory & Recommendations

Appendix B: ENERGY STAR<sup>®</sup> Statement of Energy Performance





# Table of Figures

| Figure 1 – Previous 12 Month Utility Costs1                                                   |
|-----------------------------------------------------------------------------------------------|
| Figure 2 – Potential Post-Implementation Costs1                                               |
| Figure 3 – Summary of Energy Reduction Opportunities2                                         |
| Figure 4 – Project Contacts                                                                   |
| Figure 5 - Building Schedule                                                                  |
| Figure 6 - Utility Summary7                                                                   |
| Figure 7 - Energy Cost Breakdown                                                              |
| Figure 8 - Electric Usage & Demand                                                            |
| Figure 9 - Electric Usage & Demand                                                            |
| Figure 10 - Energy Use Intensity Comparison – Existing Conditions9                            |
| Figure 11 - Energy Use Intensity Comparison – Following Installation of Recommended Measures9 |
| Figure 12 - Energy Balance (% and kBtu/SF)11                                                  |
| Figure 13 – Summary of Recommended ECMs12                                                     |
| Figure 14 – Summary of Lighting Upgrade ECMs13                                                |
| Figure 15 – Summary of Lighting Control ECMs15                                                |
| Figure 16 – Summary of Motor Upgrade ECMs16                                                   |
| Figure 17 - Photovoltaic Screening19                                                          |
| Figure 18- ECM Incentive Program Eligibility21                                                |





# I EXECUTIVE SUMMARY

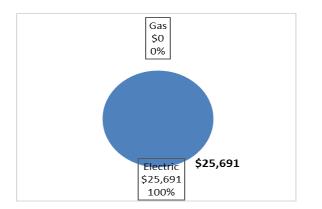
The New Jersey Board of Public Utilities (NJBPU) has sponsored this Local Government Energy Audit (LGEA) Report for the High School Sewage Treatment Plant.

The goal of an LGEA report is to provide you with information on how your facility uses energy, identify energy conservation measures (ECMs) that can reduce your energy use, and provide information and assistance to help facilities implement ECMs. The LGEA report also contains valuable information on financial incentives from New Jersey's Clean Energy Program (NJCEP) for implementing ECMs.

This study was conducted by TRC Energy Services (TRC), as part of a comprehensive effort to assist New Jersey school districts in controlling energy costs and protecting our environment by offering a wide range of energy management options and advice.

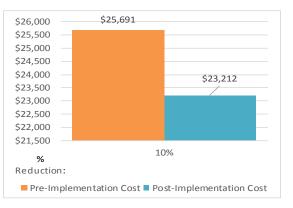
### I.I Facility Summary

Jefferson High School Sewage Treatment Plant is a 1,235 square foot facility comprised of two small buildings - the main building and the compressor building. The plant was built in 1962. The roofs are flat and exterior walls are made of concrete with a brick veneer.


Interior lighting consists of linear fluorescent T12 lamps and metal halide lamps. Heating is provided by electric unit heaters and there is no cooling equipment. The building is normally unoccupied, but does receive frequent visits from the maintenance personnel.

A thorough description and our observations of the facility is provided in Section 2.

### 1.2 Your Cost Reduction Opportunities


#### **Energy Conservation Measures**

TRC evaluated four measures which together represent an opportunity for the High School Sewage Treatment Plant to its reduce annual energy costs by \$2,479 and its annual greenhouse gas emissions by 23,189 lbs CO<sub>2</sub>e. We estimate that if all measures are implemented as recommended, then the project would pay for itself in energy savings alone in about 4.2 years. The Plant's energy usage is 100% electric. A comparison of existing and potential utility costs, following installation of recommended upgrades is shown in Figure 2. Together these measures represent an opportunity to reduce the High School Sewage Treatment Plant 's annual energy use by about 10% overall.













A detailed description of High School Sewage Treatment Plant's existing energy use can be found in Section 3.

Estimates of the total cost, energy savings, and financial incentives for the proposed energy efficient upgrades are summarized below in Figure 3. A brief description of each category can be found below and a description of savings opportunities can be found in Section 4.

| Energy Conservation Measure |                                                          | Annual<br>Electric<br>Savings<br>(kWh) | Peak<br>Demand<br>Savings<br>(kW) | Annual<br>Fuel<br>Savings<br>(MMBtu) |            | Estimated<br>Install Cost<br>(\$) | Estimated<br>Incentive<br>(\$)* | Estimated<br>Net Cost<br>(\$) |      | CO <sub>2</sub> e<br>Emissions<br>Reduction<br>(lbs) |
|-----------------------------|----------------------------------------------------------|----------------------------------------|-----------------------------------|--------------------------------------|------------|-----------------------------------|---------------------------------|-------------------------------|------|------------------------------------------------------|
|                             | Lighting Upgrades                                        | 18,922                                 | 2.4                               | 0.0                                  | \$2,036.56 | \$6,719.09                        | \$445.00                        | \$6,274.09                    | 3.1  | 19,054                                               |
| ECM 1                       | Install LED Fixtures                                     | 15,108                                 | 1.9                               | 0.0                                  | \$1,626.11 | \$5,432.09                        | \$335.00                        | \$5,097.09                    | 3.1  | 15,214                                               |
| ECM 2                       | Retrofit Fluorescent Fixtures with LED Lamps and Drivers | 3,814                                  | 0.5                               | 0.0                                  | \$410.45   | \$1,287.00                        | \$110.00                        | \$1,177.00                    | 2.9  | 3,840                                                |
|                             | Lighting Control Measures                                | 2,300                                  | 0.3                               | 0.0                                  | \$247.60   | \$2,006.00                        | \$265.00                        | \$1,741.00                    | 7.0  | 2,317                                                |
| ECM 3                       | Install Occupancy Sensor Lighting Controls               | 2,300                                  | 0.3                               | 0.0                                  | \$247.60   | \$2,006.00                        | \$265.00                        | \$1,741.00                    | 7.0  | 2,317                                                |
|                             | Motor Upgrades                                           | 1,806                                  | 0.5                               | 0.0                                  | \$194.37   | \$2,410.05                        | \$0.00                          | \$2,410.05                    | 12.4 | 1,818                                                |
| ECM 4                       | Premium Efficiency Motors                                | 1,806                                  | 0.5                               | 0.0                                  | \$194.37   | \$2,410.05                        | \$0.00                          | \$2,410.05                    | 12.4 | 1,818                                                |
|                             | TOTALS                                                   | 23,028                                 | 3.2                               | 0.0                                  | \$2,478.53 | \$11,135.14                       | \$710.00                        | \$10,425.14                   | 4.2  | 23,189                                               |

#### Figure 3 – Summary of Energy Reduction Opportunities

\* - All incentives presented in this table are based on NJ Smart Start Building equipment incentives and assume proposed equipment meets minimum performance criteria for that program. \*\* - Simple Payback Period is based on net measure costs (i.e. after incentives).

- Simple Payback Period is based on hel measure costs (i.e. aller incentives).

**Lighting Upgrades** generally involve the replacement of existing lighting components such as lamps and ballasts (or the entire fixture) with higher efficiency lighting components. These measures save energy by reducing the power used by the lighting components due to improved electrical efficiency.

**Lighting Controls** measures generally involve the installation of automated controls to turn off lights or reduce light output when not needed. Automated control reduces reliance on occupant behavior for adjusting lights. These measures save energy by reducing the amount of time lights are on.

**Motor Upgrades** generally involve replacing older standard efficiency motors with high efficiency standard (NEMA Premium). Motors replacements generally assume the same size motors, just higher efficiency. Although occasionally additional savings can be achieved by downsizing motors to better meet current load requirements. This measure saves energy by reducing the power used by the motors, due to improved electrical efficiency.

#### **Energy Efficient Practices**

TRC also identified two low-cost (or no-cost) energy efficient practices. A facility's energy performance can be significantly improved by employing certain behavioral or operational adjustments and by performing better routine maintenance on building systems. These practices can extend equipment lifetime, improve occupant comfort, provide better health and safety, as well as reduce annual energy and O&M costs. Potential opportunities identified at the High School Sewage Treatment Plant include:

- Ensure Lighting Controls Are Operating Properly
- Perform Routine Motor Maintenance

For details on these energy efficient practices, please refer to Section 5.





#### **On-Site Generation Measures**

TRC evaluated the potential for installing on-site generation for the High School Sewage Treatment Plant. Based on the configuration of the site and its loads there is a low potential for installing PV solar power self-generation measures.

For details on our evaluation and on-site generation potential, please refer to Section 6.

### I.3 Implementation Planning

To realize the energy savings from the ECMs listed in this report, a project implementation plan must be developed. Available capital must be considered and decisions need to be made whether it is best to pursue individual ECMs separately, groups of ECMs, or a comprehensive approach where all ECMs are implemented together, possibly in conjunction with other facility upgrades or improvements.

Rebates, incentives, and financing are available from NJCEP, as well as other sources, to help reduce the costs associated with the implementation of energy efficiency projects. Prior to implementing any measure, please review the relevant incentive program guidelines before proceeding. This is important because in most cases you will need to submit applications for the incentives prior to purchasing materials or commencing with installation.

The ECMs outlined in this report may qualify under the following program(s):

- SmartStart
- Energy Savings Improvement Program (ESIP)

For facilities wanting to pursue only selected individual measures (or planning to phase implementation of selected measures over multiple years), incentives are available through the SmartStart program. To participate in this program, you may utilize internal resources, or an outside firm or contractor, to do the final design of the ECM(s) and do the installation. Program pre-approval is required for some SmartStart incentives, so only after receiving pre-approval should you proceed with ECM installation. The incentive estimates listed above in Figure 3 are based on the SmartStart program. More details on this program and others are available in Section 8.

For larger facilities with limited capital availability to implement ECMs, project financing may be available through the Energy Savings Improvement Program (ESIP). Supported directly by the NJBPU, ESIP provides government agencies with project development, design, and implementation support services, as well as, attractive financing for implementing ECMs. An LGEA report (or other approved energy audit) is required for participation in ESIP. Please refer to Section 8.2 for additional information on the ESIP Program.





The Demand Response Energy Aggregator is a (non-NJCEP) program designed to reduce electric loads at commercial facilities, when wholesale electricity prices are high or when the reliability of the electric grid is threatened due to peak power demand. Demand Response (DR) service providers (a.k.a. Curtailment Service Providers) are registered with PJM, the independent system operator (ISO) for mid-Atlantic state region that is charged with maintaining electric grid reliability. By enabling grid operators to call upon commercial facilities to reduce their electric usage during times of peak demand, the grid is made more reliable and overall transmission costs are reduced for all ratepayers. Curtailment Service Providers provide regular payments to medium and large consumers of electric power for their participation in DR programs. Program participation is voluntary and facilities receive payments whether or not they are called upon to curtail their load during times of peak demand. Refer to Section 7 for additional information on this program.

Additional information on relevant incentive programs is located in Section 8 or: <u>www.njcleanenergy.com/ci.</u>





# **2** FACILITY INFORMATION AND EXISTING CONDITIONS

### 2.1 Project Contacts

Figure 4 – Project Contacts

| Name                      | Role                             | E-Mail                   | Phone #        |  |  |  |
|---------------------------|----------------------------------|--------------------------|----------------|--|--|--|
| Customer                  |                                  |                          |                |  |  |  |
| Rita Giacchi              | Assistant Business Administrator | rgiacchi@jefftwp.org     | 973-663-3387   |  |  |  |
| Designated Representative |                                  |                          |                |  |  |  |
| Joe Yuhas                 | Supervisor Custodian             |                          | (973) 479-9360 |  |  |  |
| TRC Energy Services       |                                  |                          |                |  |  |  |
| Moussa Traore             | Auditor                          | mtraore@trcsolutions.com | (732) 855-0033 |  |  |  |

### 2.2 General Site Information

On March 6, 2017, TRC performed an energy audit at the High School Sewage Treatment Plant located in Oak Ridge, New Jersey. TRC's auditor met with Joe Yuhas to review the facility operations and help focus our investigation on specific energy-using systems.

Jefferson High School Sewage Treatment Plant is a 1,235 square feet facility constructed in 1962. It is comprised of two small building and an outside water treatment area. The two buildings house the air compressors and some process pumps with their control system. Air is exhausted from the main building by a wall-mounted exhaust fan. Information on the rated design flow rate (gallon per day) of the plant was not available. The Sewage Treatment Plant is designed only to serve the high School.

### 2.3 Building Occupancy

The typical schedule is presented in the table below.

F

| Figure 5 - Building Schedule |  |
|------------------------------|--|
|------------------------------|--|

| Building Name                      | Weekday/Weekend | Operating Schedule |  |
|------------------------------------|-----------------|--------------------|--|
| High School Sewage Treatment Plant | Weekday         | 5:00 AM - 11:30 PM |  |
| High School Sewage Treatment Plant | Weekend         | 6:00 AM - 10:30 PM |  |

### 2.4 Building Envelope

The two small buildings are constructed of concrete masonry block with a brick veneer. The roofs are flat. The exterior doors are made of metal. The building has no windows.

### 2.5 On-Site Generation

Jefferson High School Sewage Treatment Plant has one 80 kW backup generator that runs on diesel

### 2.6 Energy-Using Systems

Please see Appendix A: Equipment Inventory & Recommendations for an inventory of the facility's equipment.





### Lighting System

Interior lighting is provided by a combination of 40-Watt linear fluorescent T12 lamps with electronic ballasts and 400-Watt metal halide lamps. Linear fluorescent fixtures are 2-lamp 4-foot long. Interior lighting is controlled by manual wall switches. The facility has minimal exterior light which consists of three 250-Watt metal halide controlled by photocells.



### Heating System

The heating system consists of four electric unit heaters all located in the main building. There are two Qmark 10-MBh units and two Dayton 34-MBh units that serve the main building. The units are controlled with manual switches and are in good condition.

#### Hot Water Heating System

There is one A.O. Smith electric hot water heater with an input rating of 4.5 kW and a 20-gallon storage tank. The water heater is located in the main building and is used for a water quality control system. There is no restroom at the facility and the site contact mentioned that the heater is used for the water treatment process. The water heater is four years old and appears to be in good condition.

# 2.7 Water-Using System

There is no restroom at this facility.







# **3** SITE ENERGY USE AND COSTS

Utility data for electricity was analyzed to identify opportunities for savings. In addition, data for electricity was evaluated to determine the annual energy performance metrics for the building in energy cost per square foot and energy usage per square foot. These metrics are an estimate of the relative energy efficiency of this building. There are a number of factors that could cause the energy use of this building to vary from the "typical" energy usage profile for facilities with similar characteristics. Local weather conditions, building age and insulation levels, equipment efficiency, daily occupancy hours, changes in occupancy throughout the year, equipment operating hours, and energy efficient behavior of occupants all contribute to benchmarking scores. Please refer to the Benchmarking section within Section 3.3 for additional information.

### 3.1 Total Cost of Energy

The following energy consumption and cost data is based on a recent 12-month period of utility billing data that was provided. A profile of the annual energy consumption and energy cost of the facility was developed from this information.

| Utility Summary for High School Sewage Treatment Plant |             |          |  |  |  |  |  |
|--------------------------------------------------------|-------------|----------|--|--|--|--|--|
| Fuel                                                   | Usage       | Cost     |  |  |  |  |  |
| Electricity                                            | 238,692 kWh | \$25,691 |  |  |  |  |  |
| Total                                                  | \$25,691    |          |  |  |  |  |  |

| Figure | 6 - | Utility | Summary |
|--------|-----|---------|---------|
|--------|-----|---------|---------|

The current annual energy cost for this facility is \$25,691 and is 100% electric as shown in the chart below.

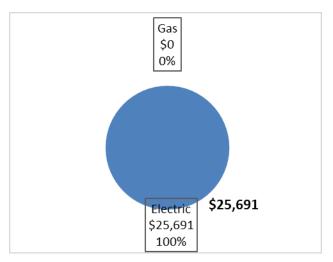



Figure 7 - Energy Cost Breakdown





### 3.2 Electricity Usage

Electricity is provided by JCP&L. The average electric cost over a recent 12-month period was \$0.108/kWh, which is the blended rate that includes energy supply, distribution, and other charges. This rate is used throughout the analyses in this report to assess energy costs and savings. The monthly electricity consumption and peak demand are shown in the chart below. Electricity profile has low usage in the summer months.

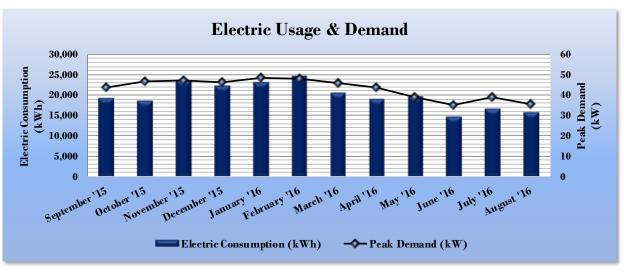



Figure 8 - Electric Usage & Demand

| Electric Billing Data for High School Sewage Treatment Plant |                   |                            |             |                     |                            |  |  |
|--------------------------------------------------------------|-------------------|----------------------------|-------------|---------------------|----------------------------|--|--|
| Period<br>Ending                                             | Days in<br>Period | Electric<br>Usage<br>(kWh) | Demand (kW) | Total Electric Cost | TRC<br>Estimated<br>Usage? |  |  |
| 10/14/15                                                     | 33                | 19,310                     | 44          | \$2,080             | No                         |  |  |
| 11/12/15                                                     | 29                | 18,654                     | 47          | \$2,034             | No                         |  |  |
| 12/14/15                                                     | 32                | 23,476                     | 47          | \$2,509             | No                         |  |  |
| 1/14/16                                                      | 31                | 22,223                     | 47          | \$2,382             | No                         |  |  |
| 2/12/16                                                      | 29                | 23,253                     | 48          | \$2,493             | No                         |  |  |
| 3/15/16                                                      | 32                | 24,686                     | 48          | \$2,632             | No                         |  |  |
| 4/13/16                                                      | 29                | 20,543                     | 46          | \$2,214             | No                         |  |  |
| 5/12/16                                                      | 29                | 18,942                     | 44          | \$2,050             | No                         |  |  |
| 6/13/16                                                      | 32                | 19,753                     | 39          | \$1,921             | No                         |  |  |
| 7/13/16                                                      | 30                | 14,631                     | 35          | \$1,641             | No                         |  |  |
| 8/10/16                                                      | 28                | 16,666                     | 39          | \$1,873             | No                         |  |  |
| 9/9/16                                                       | 30                | 15,901                     | 36          | \$1,790             | No                         |  |  |
| Totals                                                       | 364               | 238,038                    | 48.3        | \$25,620            | 0                          |  |  |
| Annual                                                       | 365               | 238,692                    | 48.3        | \$25,691            |                            |  |  |





### 3.3 Benchmarking

This facility was benchmarked using Portfolio Manager, an online tool created and managed by the United States Environmental Protection Agency (EPA) through the ENERGY STAR<sup>®</sup> program. Portfolio Manager analyzes your building's consumption data, cost information, and operational use details and then compares its performance against a national median for similar buildings of its type. Metrics provided by this analysis are Energy Use Intensity (EUI) and an ENERGY STAR<sup>®</sup> score for select building types.

The EUI is a measure of a facility's energy consumption per square foot, and it is the standard metric for comparing buildings' energy performance. Comparing the EUI of a building with the national median EUI for that building type illustrates whether that building uses more or less energy than similar buildings of its type on a square foot basis. EUI is presented in terms of "site energy" and "source energy." Site energy is the amount of fuel and electricity consumed by a building as reflected in utility bills. Source energy includes fuel consumed to generate electricity consumed at the site, factoring in electric production and distribution losses for the region.

| Energy Use Intensity Comparison - Existing Conditions |                                       |                                                                         |  |  |  |  |
|-------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------|--|--|--|--|
|                                                       | High School Sewage Treatment<br>Plant | National Median<br>Building Type: Water/Wastewater<br>Treatment/Pumping |  |  |  |  |
| Source Energy Use Intensity (kBtu/ft <sup>2</sup> )   | 2070.7                                | 2.027.8                                                                 |  |  |  |  |
| Site Energy Use Intensity (kBtu/ft <sup>2</sup> )     | 659.4                                 | 645.8                                                                   |  |  |  |  |

|        |      |          |     |           | _          |        |           |         |
|--------|------|----------|-----|-----------|------------|--------|-----------|---------|
| Figure | 10 - | Fnergy   |     | Intensity | Comparison | - Fyis | ting Conc | litions |
| inguic | 10 - | LIICI 87 | 030 | incensicy | companison |        |           | 110113  |

Implementation of all recommended measures in this report would improve the building's estimated EUI significantly, as shown in the table below:

Figure 11 - Energy Use Intensity Comparison – Following Installation of Recommended Measures

| Energy Use Intensity 0                              | Comparison - Following Installation | of Recommended Measures                              |
|-----------------------------------------------------|-------------------------------------|------------------------------------------------------|
|                                                     | High School Sewage Treatment        | National Median                                      |
|                                                     | Plant                               | Building Type: Water/Wastewater<br>Treatment/Pumping |
| Source Energy Use Intensity (kBtu/ft <sup>2</sup> ) | 1870.9                              | 2.027.8                                              |
| Site Energy Use Intensity (kBtu/ft <sup>2</sup> )   | 595.8                               | 645.8                                                |

Many types of commercial buildings are also eligible to receive an ENERGY STAR<sup>®</sup> score. This score is a percentile ranking from 1 to 100. It compares your building's energy performance to similar buildings nationwide. A score of 50 represents median energy performance, while a score of 75 means your building performs better than 75 percent of all similar buildings nationwide and may be eligible for ENERGY STAR<sup>®</sup> certification. This building is not eligible to receive a score because the building type is not one that is currently eligible for an ENERGY STAR<sup>®</sup> score.

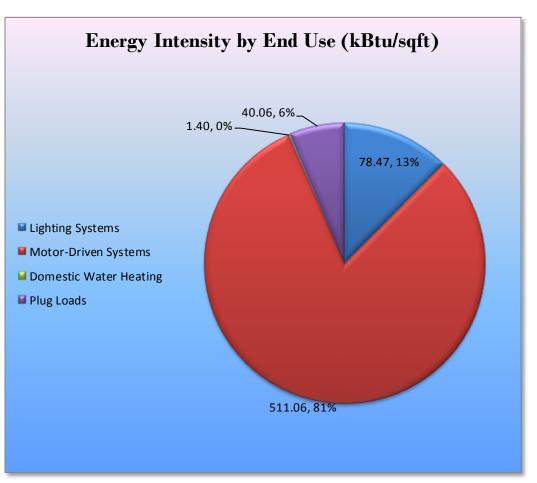
A Portfolio Manager Statement of Energy Performance (SEP) was generated for this facility, see Appendix B: ENERGY STAR<sup>®</sup> Statement of Energy Performance.





For more information on ENERGY STAR<sup>®</sup> certification go to: <u>https://www.energystar.gov/buildings/facility-owners-and-managers/existing-buildings/earn-recognition/energy-star-certification/how-app-1.</u>

A Portfolio Manager account has been created online for your facility and you will be provided with the login information for the account. We encourage you to update your utility information in Portfolio Manager regularly, so that you can keep track of your building's performance. Free online training is available to help you use ENERGY STAR<sup>®</sup> Portfolio Manager to track your building's performance at: https://www.energystar.gov/buildings/training.






### 3.4 Energy End-Use Breakdown

In order to provide a complete overview of energy consumption across building systems, an energy balance was performed at this facility. An energy balance utilizes standard practice engineering methods to evaluate all components of the various electric and fuel-fired systems found in a building to determine their proportional contribution to overall building energy usage. This chart of energy end uses highlights the relative contribution of each equipment category to total energy usage. This can help determine where the greatest benefits might be found from energy efficiency measures.









# 4 ENERGY CONSERVATION MEASURES

#### Level of Analysis

The goal of this audit report is to identify potential energy efficiency opportunities, help prioritize specific measures for implementation, and provide information to the High School Sewage Treatment Plant regarding financial incentives for which they may qualify to implement the recommended measures. For this audit report, most measures have received only a preliminary analysis of feasibility which identifies expected ranges of savings and costs. This level of analysis is usually considered sufficient to demonstrate project cost-effectiveness and help prioritize energy measures. Savings are based on the New Jersey Clean Energy Program Protocols to Measure Resource Savings dated June 29, 2016, approved by the New Jersey Board of Public Utilities. Further analysis or investigation may be required to calculate more precise savings based on specific circumstances. A higher level of investigation may be necessary to support any custom SmartStart or Pay for Performance, or Direct Install incentive applications. Financial incentives for the ECMs identified in this report have been calculated based the NJCEP prescriptive SmartStart program. Some measures and proposed upgrade projects may be eligible for higher incentives than those shown below through other NJCEP programs as described in Section 8.

The following sections describe the evaluated measures.

### 4.1 Recommended ECMs

The measures below have been evaluated by the auditor and are recommended for implementation at the facility.

| Energy Conservation Measure                                    | Annual<br>Electric<br>Savings<br>(kWh) | Peak<br>Demand<br>Savings<br>(kW) | Annual<br>Fuel<br>Savings<br>(MMBtu) |            | Estimated<br>Install Cost<br>(\$) | Estimated<br>Incentive<br>(\$)* | Estimated<br>Net Cost<br>(\$) |      | CO <sub>2</sub> e<br>Emissions<br>Reduction<br>(lbs) |
|----------------------------------------------------------------|----------------------------------------|-----------------------------------|--------------------------------------|------------|-----------------------------------|---------------------------------|-------------------------------|------|------------------------------------------------------|
| Lighting Upgrades                                              | 18,922                                 | 2.4                               | 0.0                                  | \$2,036.56 | \$6,719.09                        | \$445.00                        | \$6,274.09                    | 3.1  | 19,054                                               |
| ECM 1 Install LED Fixtures                                     | 15,108                                 | 1.9                               | 0.0                                  | \$1,626.11 | \$5,432.09                        | \$335.00                        | \$5,097.09                    | 3.1  | 15,214                                               |
| ECM 2 Retrofit Fluorescent Fixtures with LED Lamps and Drivers | 3,814                                  | 0.5                               | 0.0                                  | \$410.45   | \$1,287.00                        | \$110.00                        | \$1,177.00                    | 2.9  | 3,840                                                |
| Lighting Control Measures                                      | 2,300                                  | 0.3                               | 0.0                                  | \$247.60   | \$2,006.00                        | \$265.00                        | \$1,741.00                    | 7.0  | 2,317                                                |
| ECM 3 Install Occupancy Sensor Lighting Controls               | 2,300                                  | 0.3                               | 0.0                                  | \$247.60   | \$2,006.00                        | \$265.00                        | \$1,741.00                    | 7.0  | 2,317                                                |
| Motor Upgrades                                                 | 1,806                                  | 0.5                               | 0.0                                  | \$194.37   | \$2,410.05                        | \$0.00                          | \$2,410.05                    | 12.4 | 1,818                                                |
| ECM 4 Premium Efficiency Motors                                | 1,806                                  | 0.5                               | 0.0                                  | \$194.37   | \$2,410.05                        | \$0.00                          | \$2,410.05                    | 12.4 | 1,818                                                |
| TOTALS                                                         | 23,028                                 | 3.2                               | 0.0                                  | \$2,478.53 | \$11,135.14                       | \$710.00                        | \$10,425.14                   | 4.2  | 23,189                                               |

| Figure | 13 - | Summary | of         | Recommended ECMs |  |
|--------|------|---------|------------|------------------|--|
| riguie | 13 - | Summury | <b>V</b> 1 |                  |  |

\* - All incentives presented in this table are based on NJ Smart Start Building equipment incentives and assume proposed equipment meets minimum performance criteria for that program.

\*\* - Simple Payback Period is based on net measure costs (i.e. after incentives).





### 4.1.1 Lighting Upgrades

Our recommendations for upgrades to existing lighting fixtures are summarized in Figure 14 below.

| Energy Conservation Measure |                                          | Annual<br>Electric<br>Savings<br>(kWh) | Peak<br>Demand<br>Savings<br>(kW) |     |     | Estimated<br>Install Cost<br>(\$) | Estimated<br>Incentive<br>(\$) | Estimated<br>Net Cost<br>(\$) | •          | CO <sub>2</sub> e<br>Emissions<br>Reduction<br>(Ibs) |        |
|-----------------------------|------------------------------------------|----------------------------------------|-----------------------------------|-----|-----|-----------------------------------|--------------------------------|-------------------------------|------------|------------------------------------------------------|--------|
|                             | Lighting Upgrades                        |                                        |                                   | 2.4 | 0.0 | \$2,036.56                        | \$6,719.09                     | \$445.00                      | \$6,274.09 | 3.1                                                  | 19,054 |
|                             | ECM 1 Install LED Fix tures              |                                        | 15,108                            | 1.9 | 0.0 | \$1,626.11                        | \$5,432.09                     | \$335.00                      | \$5,097.09 | 3.1                                                  | 15,214 |
|                             | ECM 2 Retrofit Fluorescent Fixtures with | LED Lamps and Drivers                  | 3,814                             | 0.5 | 0.0 | \$410.45                          | \$1,287.00                     | \$110.00                      | \$1,177.00 | 2.9                                                  | 3,840  |

Figure 14 – Summary of Lighting Upgrade ECMs

During lighting upgrade planning and design, we recommend a comprehensive approach that considers both the efficiency of the lighting fixtures and how they are controlled.

### ECM 1: Install LED Fixtures

Summary of Measure Economics

| Interior/<br>Exterior | Annual<br>Electric<br>Savings<br>(kWh) | Peak<br>Demand<br>Savings<br>(kW) |     |            | Estimated<br>Install Cost<br>(\$) | Estimated<br>Incentive<br>(\$) | Estimated<br>Net Cost<br>(\$) | Simple<br>Payback<br>Period<br>(yrs) | CO <sub>2</sub> e<br>Emissions<br>Reduction<br>(Ibs) |
|-----------------------|----------------------------------------|-----------------------------------|-----|------------|-----------------------------------|--------------------------------|-------------------------------|--------------------------------------|------------------------------------------------------|
| Interior              | 12,874                                 | 1.6                               | 0.0 | \$1,385.68 | \$4,260.06                        | \$35.00                        | \$4,225.06                    | 3.0                                  | 12,964                                               |
| Exterior              | 2,234                                  | 0.4                               | 0.0 | \$240.43   | \$1,172.03                        | \$300.00                       | \$872.03                      | 3.6                                  | 2,249                                                |

Measure Description

We recommend replacing existing fixtures containing 250-Watt and 400-Watt metal halide lamps with new high performance LED light fixtures. This measure saves energy by installing LEDs which use less power than other technologies with a comparable light output.





#### ECM 2: Retrofit Fluorescent Fixtures with LED Lamps and Drivers

Summary of Measure Economics

| Interior/<br>Exterior |       | Peak<br>Demand<br>Savings<br>(kW) |     | Annual<br>Energy Cost<br>Savings<br>(\$) | Estimated<br>Install Cost<br>(\$) | Estimated<br>Incentive<br>(\$) | Estimated<br>Net Cost<br>(\$) | Simple<br>Payback<br>Period<br>(yrs) | CO <sub>2</sub> e<br>Emissions<br>Reduction<br>(Ibs) |
|-----------------------|-------|-----------------------------------|-----|------------------------------------------|-----------------------------------|--------------------------------|-------------------------------|--------------------------------------|------------------------------------------------------|
| Interior              | 3,814 | 0.5                               | 0.0 | \$410.45                                 | \$1,287.00                        | \$110.00                       | \$1,177.00                    | 2.9                                  | 3,840                                                |
| Exterior              | 0     | 0.0                               | 0.0 | \$0.00                                   | \$0.00                            | \$0.00                         | \$0.00                        | 0.0                                  | 0                                                    |

#### Measure Description

We recommend retrofitting existing linear 40-Watt fluorescent T12 fixtures by removing fluorescent tubes and ballasts and replacing them with LEDs and LED drivers (if necessary), which are designed to be used retrofitted fluorescent fixtures. The measure uses the existing fixture housing but replaces the rest of the components with more efficient lighting technology. This measure saves energy by installing LEDs which use less power than other lighting technologies yet provide equivalent lighting output for the space.

Additional savings from lighting maintenance can be anticipated since LEDs have lifetimes which are more than twice that of fluorescent tubes and more than 10 times longer than most incandescent lamps.





### 4.1.2 Lighting Control Measures

Our recommendations for lighting control measures are summarized in Figure 15 below.

| Energy Conservation Measure                      | Annual<br>Electric<br>Savings<br>(kWh) | Peak<br>Demand<br>Savings<br>(kW) |     | •        | Estimated<br>Install Cost<br>(\$) | Estimated<br>Incentive<br>(\$) | Net Cost   |     | CO <sub>2</sub> e<br>Emissions<br>Reduction<br>(Ibs) |
|--------------------------------------------------|----------------------------------------|-----------------------------------|-----|----------|-----------------------------------|--------------------------------|------------|-----|------------------------------------------------------|
| Lighting Control Measures                        | 2,300                                  | 0.3                               | 0.0 | \$247.60 | \$2,006.00                        | \$265.00                       | \$1,741.00 | 7.0 | 2,317                                                |
| ECM 3 Install Occupancy Sensor Lighting Controls | 2,300                                  | 0.3                               | 0.0 | \$247.60 | \$2,006.00                        | \$265.00                       | \$1,741.00 | 7.0 | 2,317                                                |

Figure 15 – Summary of Lighting Control ECMs

During lighting upgrade planning and design, we recommend a comprehensive approach that considers both the efficiency of the lighting fixtures and how they are controlled.

### ECM 3: Install Occupancy Sensor Lighting Controls

Summary of Measure Economics

|       | Peak<br>Demand<br>Savings<br>(kW) |     |          | Estimated<br>Install Cost<br>(\$) | Estimated<br>Incentive<br>(\$) | Estimated<br>Net Cost<br>(\$) | Simple<br>Payback<br>Period<br>(yrs) | CO <sub>2</sub> e<br>Emissions<br>Reduction<br>(Ibs) |
|-------|-----------------------------------|-----|----------|-----------------------------------|--------------------------------|-------------------------------|--------------------------------------|------------------------------------------------------|
| 2,300 | 0.3                               | 0.0 | \$247.60 | \$2,006.00                        | \$265.00                       | \$1,741.00                    | 7.0                                  | 2,317                                                |

#### Measure Description

We recommend installing occupancy sensors to control lighting fixtures that are currently controlled by manual switches in the compressor room. For control of the proposed replacement interior metal halide lighting, consider purchasing fixtures with on-board sensors.

Lighting sensors detect occupancy using ultrasonic and/or infrared sensors. For most spaces, we recommend lighting controls use dual technology sensors, which can eliminate the possibility of any lights turning off unexpectedly. Lighting systems are enabled when an occupant is detected. Fixtures are automatically turned off after an area has been vacant for a preset period. Some controls also provide dimming options and all modern occupancy controls can be easily over-ridden by room occupants to allow them to manually turn fixtures on or off, as desired. Energy savings results from only operating lighting systems when they are required.

Occupancy sensors may be mounted on the wall at existing switch locations, mounted on the ceiling, or in remote locations. In general, wall switch replacement sensors are recommended for single occupant offices and other small rooms. Ceiling-mounted or remote mounted sensors are used in locations without local switching or where wall switches are not in the line-of-sight of the main work area and in large spaces. We recommend a comprehensive approach to lighting design that upgrades both the lighting fixtures and the controls together for maximum energy savings and improved lighting for occupants.





### 4.1.3 Motor Upgrades

Our recommendations for lighting upgrades are summarized in Figure 16 below.

| Figure 16 – Summary of Motor Upgrade | e ECMs |
|--------------------------------------|--------|
|--------------------------------------|--------|

|   |                                 | Energy Conservation Measure |       | Peak<br>Demand<br>Savings<br>(kW) | Annual<br>Natural Gas<br>Savings<br>(MMBtu) | Annual N/A<br>Savings<br>(MMBtu) | Annual N/A<br>Savings<br>(MMBtu) | Annual<br>Energy Cost<br>Savings<br>(\$) | Estimated<br>Install Cost<br>(\$) |        | Estimated<br>Net Cost<br>(\$) |      | CO <sub>2</sub> e<br>Emissions<br>Reduction<br>(Ibs) |
|---|---------------------------------|-----------------------------|-------|-----------------------------------|---------------------------------------------|----------------------------------|----------------------------------|------------------------------------------|-----------------------------------|--------|-------------------------------|------|------------------------------------------------------|
|   | Motor Upgrades                  |                             | 1,806 | 0.5                               | 0.0                                         | 0.0                              | 0.0                              | \$194.37                                 | \$2,410.05                        | \$0.00 | \$2,410.05                    | 12.4 | 1,818                                                |
| ſ | ECM 4 Premium Efficiency Motors |                             | 1,806 | 0.5                               | 0.0                                         | 0.0                              | 0.0                              | \$194.37                                 | \$2,410.05                        | \$0.00 | \$2,410.05                    | 12.4 | 1,818                                                |

### ECM 4: Premium Efficiency Motors

Summary of Measure Economics

|       | Peak<br>Demand<br>Savings<br>(kW) |     |          | Estimated<br>Install Cost<br>(\$) |        | Estimated<br>Net Cost<br>(\$) | Simple<br>Payback<br>Period<br>(yrs) | CO <sub>2</sub> e<br>Emissions<br>Reduction<br>(Ibs) |
|-------|-----------------------------------|-----|----------|-----------------------------------|--------|-------------------------------|--------------------------------------|------------------------------------------------------|
| 1,806 | 0.5                               | 0.0 | \$194.37 | \$2,410.05                        | \$0.00 | \$2,410.05                    | 12.4                                 | 1,818                                                |

#### Measure Description

We recommend replacing standard efficiency motors with *NEMA Premium*<sup>m</sup> efficiency motors. Our evaluation assumes that existing motors will be replaced with motors of equivalent size and type. Although occasionally additional savings can be achieved by downsizing motors to better meet the motor's current load requirements. The base case motor efficiencies are estimated from nameplate information and our best estimates of motor run hours. Efficiencies of proposed motor upgrades are obtained from the *New Jersey's Clean Energy Program Protocols to Measure Resource Savings (2016)*. Savings are based on the difference between baseline and proposed efficiencies and the assumed annual operating hours.





# **5 ENERGY EFFICIENT PRACTICES**

In addition to the quantifiable savings estimated in Section 4, a facility's energy performance can also be improved through application of many low cost or no-cost energy efficiency strategies. By employing certain behavioral and operational changes and performing routine maintenance on building systems, equipment lifetime can be extended; occupant comfort, health and safety can be improved; and energy and O&M costs can be reduced. The recommendations below are provided as a framework for developing a whole building maintenance plan that is customized to your facility. Consult with qualified equipment specialists for details on proper maintenance and system operation.

#### **Ensure Lighting Controls Are Operating Properly**

Lighting controls are very cost-effective energy efficient devices, when installed and operating correctly. As part of a lighting maintenance schedule, lighting controls should be tested annually to ensure proper functioning. For occupancy sensors, this requires triggering the sensor and verifying that the sensor's timer settings are correct. For daylight sensors, maintenance involves cleaning of sensor lenses and confirming setpoints and sensitivity are appropriately configured.

### Perform Routine Motor Maintenance

Motors consist of many moving parts whose collective degradation can contribute to a significant loss of motor efficiency. In order to prevent damage to motor components, routine maintenance should be performed. This maintenance consists of cleaning surfaces and ventilation openings on motors to prevent overheating, lubricating moving parts to reduce friction, inspecting belts and pulleys for wear and to ensure they are at proper alignment and tension, and cleaning and lubricating bearings. Consult a licensed technician to assess these and other motor maintenance strategies.





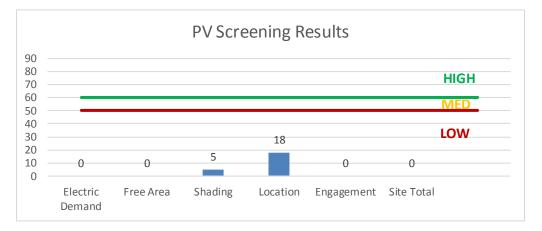
# **6 ON-SITE GENERATION MEASURES**

On-site generation measure options include both renewable (e.g., solar, wind) and non-renewable (e.g., fuel cells) on-site technologies that generate power to meet all or a portion of the electric energy needs of a facility, often repurposing any waste heat where applicable. Also referred to as distributed generation, these systems contribute to Greenhouse Gas (GHG) emission reductions, demand reductions and reduced customer electricity purchases, resulting in the electric system reliability through improved transmission and distribution system utilization.

The State of New Jersey's Energy Master Plan (EMP) encourages new distributed generation of all forms and specifically focuses on expanding use of combined heat and power (CHP) by reducing financial, regulatory and technical barriers and identifying opportunities for new entries. The EMP also outlines a goal of 70% of the State's electrical needs to be met by renewable sources by 2050.

Preliminary screenings were performed to determine the potential that a generation project could provide a cost-effective solution for your facility. Before making a decision to implement, a feasibility study should be conducted that would take a detailed look at existing energy profiles, siting, interconnection, and the costs associated with the generation project including interconnection costs, departing load charges, and any additional special facilities charges.






### 6.1 Photovoltaic

Sunlight can be converted into electricity using photovoltaics (PV) modules. Modules are racked together into an array that produces direct current (DC) electricity. The DC current is converted to alternating current (AC) through an inverter. The inverter is interconnected to the facility's electrical distribution system. The amount of unobstructed area available determines how large of a solar array can be installed. The size of the array combined with the orientation, tilt, and shading elements determines the energy produced.

A preliminary screening based on the facility's electric demand, size and location of free area, and shading elements shows that the facility has a **Low** potential for installing a PV array.

In order to be cost-effective, a solar PV array needs certain minimum criteria, such as flat or south-facing rooftop or other unshaded space on which to place the PV panels. In our opinion, the facility does appear not meet these minimum criteria for cost-effective PV installation.





For more information on solar PV technology and commercial solar markets in New Jersey, or to find a qualified solar installer, who can provide a more detailed assessment of the specific costs and benefits of solar develop of the site, please visit the following links below:

- Basic Info on Solar PV in NJ: <u>http://www.njcleanenergy.com/whysolar</u>
- NJ Solar Market FAQs: <u>http://www.njcleanenergy.com/renewable-energy/program-updates-and-background-information/solar-transition/solar-market-faqs</u>
- Approved Solar Installers in the NJ Market: <u>http://www.njcleanenergy.com/commercial-industrial/programs/nj-</u> smartstart-buildings/tools-and-resources/tradeally/approved\_vendorsearch/?id=60&start=1





# 7 DEMAND RESPONSE

Demand Response (DR) is a program designed to reduce the electric load of commercial facilities when electric wholesale prices are high or when the reliability of the electric grid is threatened due to peak demand. Demand Response service providers (a.k.a. Curtailment Service Providers) are registered with PJM, the independent system operator (ISO) for mid-Atlantic state region that is charged with maintaining electric grid reliability.

By enabling grid operators to call upon Curtailment Service Providers and commercial facilities to reduce electric usage during times of peak demand, the grid is made more reliable and overall transmission costs are reduced for all ratepayers. Curtailment Service Providers provide regular payments to medium and large consumers of electric power for their participation in DR programs. Program participation is voluntary and participants receive payments whether or not their facility is called upon to curtail their electric usage.

Typically an electric customer needs to be capable of reducing their electric demand, within minutes, by at least 100 kW or more in order to participate in a DR program. Customers with a greater capability to quickly curtail their demand during peak hours will receive higher payments. Customers with back-up generators onsite may also receive additional DR payments for their generating capacity if they agree to run the generators for grid support when called upon. Eligible customers who have chosen to participate in a DR programs often find it to be a valuable source of revenue for their facility because the payments can significantly offset annual electric costs.

DR does not include the reduction of electricity consumption based on normal operating practice or behavior. For example, if a company's normal schedule is to close for a holiday, the reduction of electricity due to this closure or scaled-back operation is not considered a demand response activity in most situations.

This facility does not meet the minimum requirements for participation in a DR program.





# 8 **PROJECT FUNDING / INCENTIVES**

The NJCEP is able to provide the incentive programs described below, and other benefits to ratepayers, because of the Societal Benefits Charge (SBC) Fund. The SBC was created by the State of New Jersey's Electricity Restructuring Law (1999), which requires all customers of investor-owned electric and gas utilities to pay a surcharge on their monthly energy bills. As a customer of a state-regulated electric or gas utility and therefore a contributor to the fund your organization is eligible to participate in the LGEA program and also eligible to receive incentive payment for qualifying energy efficiency measures. Also available through the NJBPU are some alternative financing programs described later in this section. Please refer to Figure 18 for a list of the eligible programs identified for each recommended ECM.

|       | Energy Conservation Measure                              | SmartStart<br>Prescriptive | Direct Install | Pay For<br>Performance<br>Existing<br>Buildings | 0,5 | Combined<br>Heat &<br>Power and<br>Fuel Cell |
|-------|----------------------------------------------------------|----------------------------|----------------|-------------------------------------------------|-----|----------------------------------------------|
| ECM 1 | Install LED Fixtures                                     | Х                          |                |                                                 |     |                                              |
| ECM 2 | Retrofit Fluorescent Fixtures with LED Lamps and Drivers | Х                          |                |                                                 |     |                                              |
| ECM 3 | Install Occupancy Sensor Lighting Controls               | Х                          |                |                                                 |     |                                              |
| ECM 4 | Premium Efficiency Motors                                |                            |                |                                                 |     |                                              |

SmartStart is generally well-suited for implementation of individual measures or small group of measures. It provides flexibility to install measures at your own pace using in-house staff or a preferred contractor.

Generally, the incentive values provided throughout the report assume the SmartStart program is utilized because it provides a consistent basis for comparison of available incentives for various measures, though in many cases incentive amounts may be higher through participation in other programs.

Brief descriptions of all relevant financing and incentive programs are located in the sections below. Further information, including most current program availability, requirements, and incentive levels can be found at: <u>www.njcleanenergy.com/ci.</u>





### 8.1 SmartStart

#### Overview

The SmartStart program offers incentives for installing prescriptive and custom energy efficiency measures at your facility. Routinely the program adds, removes or modifies incentives from year to year for various energy efficiency equipment based on market trends and new technologies.

#### **Equipment with Prescriptive Incentives Currently Available:**

| Electric Chillers        | Lighting Controls           |
|--------------------------|-----------------------------|
| Electric Unitary HVAC    | Refrigeration Doors         |
| Gas Cooling              | Refrigeration Controls      |
| Gas Heating              | Refrigerator/Freezer Motors |
| Gas Water Heating        | Food Service Equipment      |
| Ground Source Heat Pumps | Variable Frequency Drives   |
| Lighting                 |                             |

Most equipment sizes and types are served by this program. This program provides an effective mechanism for securing incentives for energy efficiency measures installed individually or as part of a package of energy upgrades.

#### Incentives

The SmartStart prescriptive incentive program provides fixed incentives for specific energy efficiency measures, whereas the custom SmartStart program provides incentives for more unique or specialized technologies or systems that are not addressed through prescriptive incentive offerings for specific devices.

Since your facility is an existing building, only the retrofit incentives have been applied in this report. Custom measure incentives are calculated at \$0.16/kWh and \$1.60/therm based on estimated annual savings, capped at 50% of the total installed incremental project cost, or a project cost buy down to a one year payback (whichever is less). Program incentives are capped at \$500,000 per electric account and \$500,000 per natural gas account, per fiscal year.

#### How to Participate

To participate in the SmartStart program you will need to submit an application for the specific equipment to be installed. Many applications are designed as rebates, although others require application approval prior to installation. Applicants may work with a contractor of their choosing and can also utilize internal personnel, which provides added flexibility to the program. Using internal personnel also helps improve the economics of the ECM by reducing the labor cost that is included in the tables in this report.

Detailed program descriptions, instructions for applying and applications can be found at: <u>www.njcleanenergy.com/SSB.</u>





### 8.2 Energy Savings Improvement Program

The Energy Savings Improvement Program (ESIP) is an alternate method for New Jersey's government agencies to finance the implementation of energy conservation measures. An ESIP is a type of "performance contract," whereby school districts, counties, municipalities, housing authorities and other public and state entities enter in to contracts to help finance building energy upgrades. This is done in a manner that ensures that annual payments are lower than the savings projected from the ECMs, ensuring that ESIP projects are cash flow positive in year one, and every year thereafter. ESIP provides government agencies in New Jersey with a flexible tool to improve and reduce energy usage with minimal expenditure of new financial resources. NJCEP incentive programs can be leveraged to help further reduce the total project cost of eligible measures.

This LGEA report is the first step to participating in ESIP. Next, you will need to select an approach for implementing the desired ECMs:

- (1) Use an Energy Services Company or "ESCO."
- (2) Use independent engineers and other specialists, or your own qualified staff, to provide and manage the requirements of the program through bonds or lease obligations.
- (3) Use a hybrid approach of the two options described above where the ESCO is utilized for some services and independent engineers, or other specialists or qualified staff, are used to deliver other requirements of the program.

After adopting a resolution with a chosen implementation approach, the development of the Energy Savings Plan (ESP) can begin. The ESP demonstrates that the total project costs of the ECMs are offset by the energy savings over the financing term, not to exceed 15 years. The verified savings will then be used to pay for the financing.

The ESIP approach may not be appropriate for all energy conservation and energy efficiency improvements. Entities should carefully consider all alternatives to develop an approach that best meets their needs. A detailed program descriptions and application can be found at: www.njcleanenergy.com/ESIP.

Please note that ESIP is a program delivered directly by the NJBPU and is not an NJCEP incentive program. As mentioned above, you may utilize NJCEP incentive programs to help further reduce costs when developing the ESP. You should refer to the ESIP guidelines at the link above for further information and guidance on next steps.





# 9 ENERGY PURCHASING AND PROCUREMENT STRATEGIES

### 9.1 Retail Electric Supply Options

In 1999, New Jersey State Legislature passed the Electric Discount & Energy Competition Act (EDECA) to restructure the electric power industry in New Jersey. This law deregulated the retail electric markets, allowing all consumers to shop for service from competitive electric suppliers. The intent was to create a more competitive market for electric power supply in New Jersey. As a result, utilities were allowed to charge Cost of Service and customers were given the ability to choose a third party (i.e. non-utility) energy supplier.

Energy deregulation in New Jersey has increased energy buyers' options by separating the function of electricity distribution from that of electricity supply. So, though you may choose a different company from which to buy your electric power, responsibility for your facility's interconnection to the grid and repair to local power distribution will still reside with the traditional utility company serving your region.

If your facility is not purchasing electricity from a third party supplier, consider shopping for a reduced rate from third party electric suppliers. If your facility is purchasing electricity from a third party supplier, review and compare prices at the end of the current contract or every couple years.

A list of third party electric suppliers, who are licensed by the state to provide service in New Jersey, can be found online at: <u>www.state.nj.us/bpu/commercial/shopping.html</u>.

### 9.2 Retail Natural Gas Supply Options

The natural gas market in New Jersey has also been deregulated. Most customers that remain with the utility for natural gas service pay rates that are market-based and that fluctuate on a monthly basis. The utility provides basic gas supply service (BGSS) to customers who choose not to buy from a third party supplier for natural gas commodity.

A customer's decision about whether to buy natural gas from a retail supplier is typically dependent upon whether a customer seeks budget certainty and/or longer-term rate stability. Customers can secure longer-term fixed prices by signing up for service through a third party retail natural gas supplier. Many larger natural gas customers may seek the assistance of a professional consultant to assist in their procurement process.

If your facility is not purchasing natural gas from a third party supplier, consider shopping for a reduced rate from third party natural gas suppliers. If your facility is purchasing natural gas from a third party supplier, review and compare prices at the end of the current contract or every couple years.

A list of third party natural gas suppliers, who are licensed by the state to provide service in New Jersey, can be found online at: <a href="http://www.state.nj.us/bpu/commercial/shopping.html">www.state.nj.us/bpu/commercial/shopping.html</a>.





# **Appendix A: Equipment Inventory & Recommendations**

#### Lighting Inventory & Recommendations

|                    | Existing C          | onditions                                   |                     |                      |           | Proposed Condition        | IS               |                     |                                                      |                      |                      |                              | Energy Impact & Financial Analysis |                                |     |            |                               |                      |                                                |  |
|--------------------|---------------------|---------------------------------------------|---------------------|----------------------|-----------|---------------------------|------------------|---------------------|------------------------------------------------------|----------------------|----------------------|------------------------------|------------------------------------|--------------------------------|-----|------------|-------------------------------|----------------------|------------------------------------------------|--|
| Location           | Fixture<br>Quantity | Fixture Description                         | Control<br>System   | Watts per<br>Fixture | Operating | Fixture<br>Recommendation | Add<br>Controls? | Fixture Description |                                                      | Control<br>System    | Watts per<br>Fixture | Annual<br>Operating<br>Hours | Total Peak<br>kW Savings           | Total Annual<br>kWh<br>Savings |     |            | Total<br>Installation<br>Cost | T otal<br>Incentives | Simple<br>Payback w/<br>Incentives<br>in Years |  |
| Compressor Room    | 1                   | Linear Fluorescent - T12: 4' T12 (40W) - 2L | Wall Switch         | 88                   | 5,876     | Relamp & Reballast        | No               | 1                   | LED - Linear Tubes: (2) 4' Lamps                     | Wall Switch          | 29                   | 5,876                        | 0.04                               | 347                            | 0.0 | \$37.31    | \$117.00                      | \$10.00              | 2.87                                           |  |
| Compressor Room    | 3                   | Metal Halide: (1) 400W Lamp                 | Wall Switch         | 458                  | 5,876     | Fixture Replacement       | Yes              | 3                   | LED - Fixtures: Downlight Pendant                    | Occupancy<br>Sensor  | 145                  | 4,113                        | 0.87                               | 7,101                          | 0.0 | \$764.33   | \$2,635.74                    | \$120.00             | 3.29                                           |  |
| Main Building      | 4                   | Metal Halide: (1) 400W Lamp                 | Wall Switch         | 458                  | 5,876     | Fixture Replacement       | Yes              | 4                   | LED - Fixtures: Downlight Pendant                    | Occupancy<br>Sensor  | 145                  | 4,113                        | 1.16                               | 9,468                          | 0.0 | \$1,019.10 | \$3,514.32                    | \$160.00             | 3.29                                           |  |
| Exterior Wall Pack | 3                   | Metal Halide: (1) 250W Lamp                 | Daylight<br>Dimming | 295                  | 4,380     | Fixture Replacement       | No               | 3                   | LED - Fixtures: Outdoor Wall-Mounted Area<br>Fixture | Day light<br>Dimming | 125                  | 4,380                        | 0.41                               | 2,524                          | 0.0 | \$271.68   | \$1,172.03                    | \$300.00             | 3.21                                           |  |
| Main Building      | 10                  | Linear Fluorescent - T12: 4' T12 (40W) - 2L | Wall Switch         | 88                   | 5,876     | Relamp & Reballast        | Yes              | 10                  | LED - Linear Tubes: (2) 4' Lamps                     | Occupancy<br>Sensor  | 29                   | 4,113                        | 0.55                               | 4,495                          | 0.0 | \$483.82   | \$1,286.00                    | \$120.00             | 2.41                                           |  |





#### **Motor Inventory & Recommendations**

|                      | •                           | Existing C        | Conditions        |      |                         |                 |                              | Proposed                                 | Conditions              |    | Energy Impac                 | t & Financial A             | nalysis                          |                                        |                               |                     |                                                |
|----------------------|-----------------------------|-------------------|-------------------|------|-------------------------|-----------------|------------------------------|------------------------------------------|-------------------------|----|------------------------------|-----------------------------|----------------------------------|----------------------------------------|-------------------------------|---------------------|------------------------------------------------|
| Location             | Area(s)/System(s)<br>Served | Motor<br>Quantity | Motor Application | -    | Full Load<br>Efficiency | VFD<br>Control? | Annual<br>Operating<br>Hours | Install<br>High<br>Efficiency<br>Motors? | Full Load<br>Efficiency |    | <br>Total Peak<br>kW Savings | Total Annual<br>kWh Savings | Total Annual<br>MMBtu<br>Savings | Total Annual<br>Energy Cost<br>Savings | Total<br>Installation<br>Cost | Total<br>Incentives | Simple<br>Payback w/<br>Incentives<br>in Years |
| Rotary Lobe Area     | Rotary Lobe Area            | 1                 | Water Supply Pump | 5.0  | 80.5%                   | No              | 2,745                        | Yes                                      | 89.5%                   | No | 0.26                         | 959                         | 0.0                              | \$103.25                               | \$800.37                      | \$0.00              | 7.75                                           |
| Aeration Tank Blower | Blower Aeration             | 2                 | Process Pump      | 3.0  | 82.7%                   | No              | 2,745                        | Yes                                      | 89.5%                   | No | 0.23                         | 847                         | 0.0                              | \$91.12                                | \$1,609.68                    | \$0.00              | 17.67                                          |
| Compressor Room      | Compressors                 | 1                 | Air Compressor    | 10.0 | 91.7%                   | No              | 4,957                        | No                                       | 91.7%                   | No | 0.00                         | 0                           | 0.0                              | \$0.00                                 | \$0.00                        | \$0.00              | 0.00                                           |
| Compressor Room      | Compressors                 | 1                 | Air Compressor    | 10.0 | 91.7%                   | No              | 4,957                        | No                                       | 91.7%                   | No | 0.00                         | 0                           | 0.0                              | \$0.00                                 | \$0.00                        | \$0.00              | 0.00                                           |
| Filter Blower Pump   | Filter Blower Pump          | 1                 | Process Pump      | 0.8  | 76.0%                   | No              | 2,745                        | No                                       | 76.0%                   | No | 0.00                         | 0                           | 0.0                              | \$0.00                                 | \$0.00                        | \$0.00              | 0.00                                           |
| Main Building        | Main Building               | 1                 | Exhaust Fan       | 0.8  | 75.0%                   | No              | 2,745                        | No                                       | 75.0%                   | No | 0.00                         | 0                           | 0.0                              | \$0.00                                 | \$0.00                        | \$0.00              | 0.00                                           |
| Main Building        | Main Building               | 1                 | Exhaust Fan       | 3.0  | 82.0%                   | No              | 2,745                        | No                                       | 82.0%                   | No | 0.00                         | 0                           | 0.0                              | \$0.00                                 | \$0.00                        | \$0.00              | 0.00                                           |
| Main Building        | Main Building               | 2                 | Process Pump      | 5.0  | 88.5%                   | No              | 2,745                        | No                                       | 88.5%                   | No | 0.00                         | 0                           | 0.0                              | \$0.00                                 | \$0.00                        | \$0.00              | 0.00                                           |
| Main Building        | Main Building               | 1                 | Process Pump      | 7.5  | 88.5%                   | No              | 3,391                        | No                                       | 88.5%                   | No | 0.00                         | 0                           | 0.0                              | \$0.00                                 | \$0.00                        | \$0.00              | 0.00                                           |
| Main Building        | Main Building               | 2                 | Process Pump      | 10.0 | 88.5%                   | No              | 3,391                        | No                                       | 88.5%                   | No | 0.00                         | 0                           | 0.0                              | \$0.00                                 | \$0.00                        | \$0.00              | 0.00                                           |
| Main Building        | Main Building               | 2                 | Process Pump      | 7.5  | 88.5%                   | No              | 3,391                        | No                                       | 88.5%                   | No | 0.00                         | 0                           | 0.0                              | \$0.00                                 | \$0.00                        | \$0.00              | 0.00                                           |
| Main Building        | Main Building               | 2                 | Process Pump      | 7.5  | 88.5%                   | No              | 3,391                        | No                                       | 88.5%                   | No | 0.00                         | 0                           | 0.0                              | \$0.00                                 | \$0.00                        | \$0.00              | 0.00                                           |
| Main Building        | Main Building               | 1                 | Process Pump      | 7.5  | 88.5%                   | No              | 3,391                        | No                                       | 88.5%                   | No | 0.00                         | 0                           | 0.0                              | \$0.00                                 | \$0.00                        | \$0.00              | 0.00                                           |

#### **Electric HVAC Inventory & Recommendations**

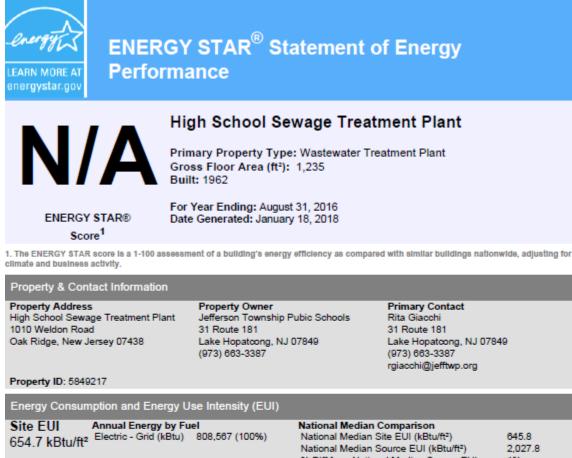
|               |               | Existing (         | Conditions               |                      |       | Proposed | Condition | s |                      |                                              |      |                                        |              | Energy Impac             | t & Financial A             | nalysis |                                        |                               |                     |                                                |
|---------------|---------------|--------------------|--------------------------|----------------------|-------|----------|-----------|---|----------------------|----------------------------------------------|------|----------------------------------------|--------------|--------------------------|-----------------------------|---------|----------------------------------------|-------------------------------|---------------------|------------------------------------------------|
| Location      |               | System<br>Quantity | System Type              | Capacity<br>per Unit |       |          |           |   | Capacity<br>per Unit | Heating<br>Capacity<br>per Unit<br>(kBtu/hr) | Mode | Heating<br>Mode<br>Efficiency<br>(COP) | Install Dual | Total Peak<br>kW Savings | Total Annual<br>kWh Savings | MMRtu   | Total Annual<br>Energy Cost<br>Savings | Total<br>Installation<br>Cost | Total<br>Incentives | Simple<br>Payback w/<br>Incentives<br>in Years |
| Main Building | Main Building | 2                  | Electric Resistance Heat |                      | 34.10 | No       |           |   |                      |                                              |      |                                        | No           | 0.00                     | 0                           | 0.0     | \$0.00                                 | \$0.00                        | \$0.00              | 0.00                                           |
| Main Building | Main Building | 2                  | Electric Resistance Heat |                      | 10.20 | No       |           |   |                      |                                              |      |                                        | No           | 0.00                     | 0                           | 0.0     | \$0.00                                 | \$0.00                        | \$0.00              | 0.00                                           |





#### **DHW Inventory & Recommendations**

|               |                             | Existing (         | Conditions                              | Proposed | Condition          | S           |           |                      |   | Energy Impact            | & Financial A | nalysis |        |        |                      |                                                |
|---------------|-----------------------------|--------------------|-----------------------------------------|----------|--------------------|-------------|-----------|----------------------|---|--------------------------|---------------|---------|--------|--------|----------------------|------------------------------------------------|
| Location      | Area(s)/System(s)<br>Served | System<br>Quantity | System Type                             | Replace? | System<br>Quantity | System Type | Fuel Type | System<br>Efficiency | - | Total Peak<br>kW Savings | Total Annual  | MMRtu   |        |        | T otal<br>Incentives | Simple<br>Payback w/<br>Incentives<br>in Years |
| Main Building | Main Building               | 1                  | Storage Tank Water<br>Heater (≤ 50 Gal) | No       |                    |             |           |                      |   | 0.00                     | 0             | 0.0     | \$0.00 | \$0.00 | \$0.00               | 0.00                                           |


#### Plug Load Inventory

| _             | Existing ( | Conditions            |         |            |
|---------------|------------|-----------------------|---------|------------|
|               |            |                       | Energy  | ENERGY     |
| Location      | Quantity   | Equipment Description | Rate    | STAR       |
|               |            |                       | (W)     | Qualified? |
| Main Building | 1          | Glasco &Sun Control   | 1,800.0 | No         |
| Main Building | 1          | U.V Control Panel     | 1,200.0 | No         |

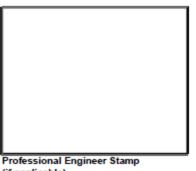




# Appendix B: ENERGY STAR<sup>®</sup> Statement of Energy Performance



Source EUI 2.055.8 kBtu/ ft²


% Diff from National Median Source EUI 1% Annual Emissions Greenhouse Gas Emissions (Metric Tons 90 CO2e/year)

#### Signature & Stamp of Verifying Professional

(Name) verify that the above information is true and correct to the best of my knowledge.

Signature: Date:

Licensed Professional



(if applicable)