

Local Government Energy Audit: Energy Audit Report

Copyright ©2016 TRC Energy Services. All rights reserved.

Reproduction or distribution of the whole, or any part of the contents of this document without written permission of TRC is prohibited. Neither TRC nor any of its employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any data, information, method, product or process disclosed in this document, or represents that its use will not infringe upon any privately-owned rights, including but not limited to, patents, trademarks or copyrights.

Milton Elementary School

Jefferson Township Board of Education

52 School House Road Oak Ridge, NJ 07438

July 18, 2018

Final Report by: **TRC Energy Services**

Disclaimer

The intent of this energy analysis report is to identify energy savings opportunities and recommend upgrades to the facility's energy using equipment and systems. Approximate savings are included in this report to help make decisions about reducing energy use at the facility. This report, however, is not intended to serve as a detailed engineering design document. Further design and analysis may be necessary in order to implement some of the measures recommended in this report.

The energy conservation measures and estimates of energy savings have been reviewed for technical accuracy. However, estimates of final energy savings are not guaranteed, because final savings may depend on behavioral factors and other uncontrollable variables. TRC Energy Services (TRC) and New Jersey Board of Public Utilities (NJBPU) shall in no event be liable should the actual energy savings vary.

Estimated installation costs are based on TRC's experience at similar facilities, pricing from local contractors and vendors, and/or cost estimates from *RS Means*. The owner of the facility is encouraged to independently confirm these cost estimates and to obtain multiple estimates when considering measure installations. Since actual installed costs can vary widely for certain measures and conditions, TRC and NJBPU do not guarantee installed cost estimates and shall in no event be held liable should actual installed costs vary from estimates.

New Jersey's Clean Energy Program (NJCEP) incentive values provided in this report are estimates based on program information available at the time of the report. Incentive levels are not guaranteed. The NJBPU reserves the right to extend, modify, or terminate programs without prior notice. The owner of the facility should review available program incentives and eligibility requirements prior to selecting and installing any energy conservation measures.

Table of Contents

1	Execu	itive Summary	1
	1.1	Facility Summary	1
	1.2	Your Cost Reduction Opportunities	
	Ene	ergy Conservation Measures	1
		ergy Efficient Practices	
	On-	Site Generation Measures	3
	1.3	Implementation Planning	4
2	Facilit	ty Information and Existing Conditions	5
	2.1	Project Contacts	5
	2.2	General Site Information	
	2.3	Building Occupancy	5
	2.4	Building Envelope	6
	2.5	On-Site Generation	6
	2.6	Energy-Using Systems	6
		nting System	
		: Water Heating System	
		Conditioning System (DX) mestic Hot Water Heating System	
		rigeration	
		Iding Plug Load	
	2.7	Water-Using Systems	7
3	Site E	nergy Use and Costs	8
	3.1	Total Cost of Energy	8
	3.2	Electricity Usage	9
	3.3	No. 2 Fuel Oil Usage	
	3.4	Benchmarking	
	3.5	Energy End-Use Breakdown	
4	Energ	y Conservation Measures	13
	4.1	Recommended ECMs	
	4.1.1	Lighting Upgrades	14
		И 1: Install LED Fixtures	
		M 2: Retrofit Fixtures with LED Lamps	
	ECN	A 3: Install LED Exit Signs	15
	4.1.2	Lighting Control Measures	16
	ECN	A 4: Install Occupancy Sensor Lighting Controls	16
	4.1.3	Motor Upgrades	17
	ECN	4 5: Premium Efficiency Motors	17
	4.1.4	Variable Frequency Drive Measures	18

	ECN	1 6: Install VFDs on Hot Water Pumps	18
	4.1.5	Electric Unitary HVAC Measures	19
	ECN	17: Install High Efficiency Air Conditioning Units	19
	4.1.6	Domestic Hot Water Heating System Upgrades	20
	ECN	1 8: Install Low-Flow DHW Devices	20
5	Energ	y Efficient Practices	21
	Clos	e Doors and Windows	21
	Perf	form Proper Lighting Maintenance	21
		elop a Lighting Maintenance Schedule	
		ure Lighting Controls Are Operating Properly	
		n Off Unneeded Motors	
		form Routine Motor Maintenance	
		ctice Proper Use of Thermostat Schedules and Temperature Resets	
		nn and/or Replace HVAC Filters Form Proper Boiler Maintenance	
		orm Proper Water Heater Maintenance	
		Load Controls	
	-	er Conservation	
6		te Generation Measures	
	6.1	Photovoltaic	25
	6.2	Combined Heat and Power	26
7	Proje	ct Funding / Incentives	27
	7.1	SmartStart	28
	7.2	Direct Install	29
	7.3	Energy Savings Improvement Program	30
8	Energ	y Purchasing and Procurement Strategies	31
	8.1	Retail Electric Supply Options	31
	8.2	Retail Natural Gas Supply Options	31

Appendix A: Equipment Inventory & Recommendations

Appendix B: ENERGY STAR® Statement of Energy Performance

Table of Figures

Figure 1 – Previous 12 Month Utility Costs	1
Figure 2 – Potential Post-Implementation Costs	1
Figure 3 – Summary of Energy Reduction Opportunities	2
Figure 4 – Project Contacts	5
Figure 5 - Building Schedule	5
Figure 6 - Utility Summary	8
Figure 7 - Energy Cost Breakdown	8
Figure 8 - Electric Usage & Demand	9
Figure 9 - Electric Usage & Demand	9
Figure 10 –No. 2 Fuel Oil Usage	10
Figure 11 - Energy Use Intensity Comparison — Existing Conditions	10
Figure 12 - Energy Use Intensity Comparison – Following Installation of Recommended Meas	sures 11
Figure 13 - Energy Balance (% and kBtu/SF)	12
Figure 14 – Summary of Recommended ECMs	13
Figure 15 – Summary of Lighting Upgrade ECMs	14
Figure 16 – Summary of Lighting Control ECMs	16
Figure 17 – Summary of Motor Upgrade ECMs	17
Figure 18 – Summary of Variable Frequency Drive ECMs	18
Figure 19 - Summary of Unitary HVAC ECMs	19
Figure 20 - Summary of Domestic Water Heating ECMs	20
Figure 21 - Photovoltaic Screening	25
Figure 22 - Combined Heat and Power Screening	26
Figure 23 - ECM Incentive Program Eligibility	27

I EXECUTIVE SUMMARY

The New Jersey Board of Public Utilities (NJBPU) has sponsored this Local Government Energy Audit (LGEA) Report for Milton Elementary School.

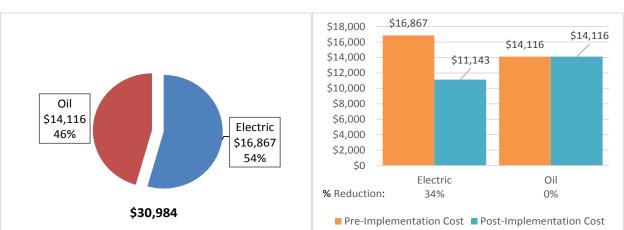
The goal of an LGEA report is to provide you with information on how your facility uses energy, identify energy conservation measures (ECMs) that can reduce your energy use, and provide information and assistance to help facilities implement ECMs. The LGEA report also contains valuable information on financial incentives from New Jersey's Clean Energy Program (NJCEP) for implementing ECMs.

This study was conducted by TRC Energy Services (TRC), as part of a comprehensive effort to assist New Jersey school districts in controlling energy costs and protecting our environment by offering a wide range of energy management options and advice.

I.I Facility Summary

Milton Elementary School is a one-story building totaling 22,052 square feet and has a flat roof that was repaired two years ago The exterior walls are finished with brick masonry and the windows throughout the facility are double paned operable windows. Interior lighting consists mainly of linear fluorescent lamps and fixtures with electronic ballasts. Lighting control is provided by manual wall switches. The building is heated by an oil non-condensing hot water boiler and cooled by window AC units.

A thorough description of the facility and our observations are located in Section 2.


1.2 Your Cost Reduction Opportunities

Energy Conservation Measures

TRC evaluated eight measures which together represent an opportunity for Milton Elementary School to reduce annual energy costs by \$5,725 and annual greenhouse gas emissions by 43,495 lbs CO₂e. We estimate that if all measures were implemented as recommended, the project would pay for itself in 8 years. The breakdown of existing and potential utility costs after project implementation are illustrated in Figure 1 and Figure 2, respectively. Together these measures represent an opportunity to reduce Milton Elementary School's annual energy use by 7%.

Figure 2 – Potential Post-Implementation Costs

A detailed description of Milton Elementary School's existing energy use can be found in Section 3.

Estimates of the total cost, energy savings, and financial incentives for the proposed energy efficient upgrades are summarized below in Figure 3. A brief description of each category can be found below and a description of savings opportunities can be found in Section 4.

Figure 3 – Summary of Energy Reduction Opportunities

Energy Conservation Measure Lighting Upgrades	Recommend?	Annual Electric Savings (kWh)	Peak Demand Savings (kW)	Annual Energy Cost Savings (\$) \$3,913,13	Estimated Install Cost (\$) \$34,183.47	Estimated Incentive (\$)*	Estimated Net Cost (\$)	Simple Payback Period (yrs)**	CO ₂ e Emissions Reduction (lbs)
ECM 1 Install LED Fixtures	Yes	5,085	3.1	\$673.97	\$11,520.59	\$2,915.00	\$8,605.59	12.8	5,121
ECM 2 Retrofit Fixtures with LED Lamps	Yes	23,836	8.2	\$3,159.05	\$21,587.33	\$4,120.00	\$17,467.33	5.5	24,003
ECM 3 Install LED Exit Signs	Yes	604	0.0	\$80.11	\$1,075.55	\$0.00	\$1,075.55	13.4	609
Lighting Control Measures		5,794	1.9	\$767.94	\$2,900.00	\$500.00	\$2,400.00	3.1	5,835
ECM 4 Install Occupancy Sensor Lighting Controls	Yes	5,794	1.9	\$767.94	\$2,900.00	\$500.00	\$2,400.00	3.1	5,835
Motor Upgrades		664	0.4	\$88.02	\$2,392.65	\$0.00	\$2,392.65	27.2	669
ECM 5 Premium Efficiency Motors	Yes	664	0.4	\$88.02	\$2,392.65	\$0.00	\$2,392.65	27.2	669
Variable Frequency Drive (VFD) Measures		2,646	0.8	\$350.67	\$8,272.57	\$0.00	\$8,272.57	23.6	2,664
ECM 6 Install VFDs on Hot Water Pumps	Yes	2,646	0.8	\$350.67	\$8,272.57	\$0.00	\$8,272.57	23.6	2,664
Electric Unitary HVAC Measures		1,816	1.5	\$240.70	\$5,890.19	\$0.00	\$5,890.19	24.5	1,829
ECM 7 Install High Efficiency Electric AC	Yes	1,816	1.5	\$240.70	\$5,890.19	\$0.00	\$5,890.19	24.5	1,829
Domestic Water Heating Upgrade		2,747	0.0	\$364.05	\$64.53	\$0.00	\$64.53	0.2	2,766
ECM 8 Install Low-Flow Domestic Hot Water Devices	Yes	2,747	0.0	\$364.05	\$64.53	\$0.00	\$64.53	0.2	2,766
TOTALS		43,193	16.0	\$5,724.52	\$53,703.41	\$7,535.00	\$46,168.41	8.1	43,495

^{* -} All incentives presented in this table are based on NJ Smart Start Building equipment incentives and assume proposed equipment meets minimum performance criteria for that program.

Lighting Upgrades generally involve the replacement of existing lighting components such as lamps and ballasts (or the entire fixture) with higher efficiency lighting components. These measure save energy by reducing the power used by the lighting components due to improved electrical efficiency.

Lighting Controls measures generally involve the installation of automated controls to turn off lights or reduce light output when not needed. Automated control reduces reliance on occupant behavior for adjusting lights. These measures save energy by reducing the amount of time lights are on.

Motor Upgrades generally involve replacing older standard efficiency motors with high efficiency standard (NEMA Premium). Motors replacements generally assume the same size motors, just higher efficiency. Although occasionally additional savings can be achieved by downsizing motors to better meet current load requirements. This measure saves energy by reducing the power used by the motors, due to improved electrical efficiency.

Variable Frequency Drives (VFDs) are motor control devices. These measures control the speed of a motor so that the motor spins at peak efficiency during partial load conditions. Sensors adapt the speed to flow, temperature, or pressure settings which is much more efficient that usage a valve or damper to control flow rates, or running the motor at full speed when only partial power is needed. These measures save energy by controlling motor usage more efficiently.

Electric Unitary HVAC measures generally involve replacing older inefficient air conditioning systems with modern energy efficient systems. New air conditioning systems can provide equivalent cooling to older air condition systems at a reduced energy cost. These measures save energy by reducing the power used by the air conditioning systems, due to improved electrical efficiency.

^{** -} Simple Payback Period is based on net measure costs (i.e. after incentives).

Domestic Hot Water upgrade measures generally involve replacing older inefficient domestic water heating systems with modern energy efficient systems. New domestic hot water heating systems can provide equivalent, or greater, water heating capacity compared to older systems at a reduced energy cost. These measures save energy by reducing the fuel used for domestic hot water heating due to improved heating efficiency or reducing standby losses.

Energy Efficient Practices

TRC also identified 13 low cost (or no cost) energy efficient practices. A facility's energy performance can be significantly improved by employing certain behavioral or operational adjustments and by performing better routine maintenance on building systems. These practices can extend equipment lifetime, improve occupant comfort, provide better health and safety, as well as reduce annual energy and O&M costs. Potential opportunities identified at Milton Elementary School include:

- Reduce Air Leakage
- Close Doors and Windows
- Perform Proper Lighting Maintenance
- Develop a Lighting Maintenance Schedule
- Ensure Lighting Controls Are Operating Properly
- Turn Off Unneeded Motors
- Perform Routine Motor Maintenance
- Practice Proper Use of Thermostat Schedules and Temperature Resets
- Clean and/or Replace HVAC Filters
- Perform Proper Boiler Maintenance
- Perform Proper Water Heater Maintenance
- Install Plug Load Controls
- Water Conservation

For details on these energy efficient practices, please refer to Section 5.

On-Site Generation Measures

TRC evaluated the potential for installing on-site generation for Milton Elementary School. Based on the configuration of the site and its loads there is a low potential for installing any PV and combined heat and power self-generation measures.

For details on our evaluation and on-site generation potential, please refer to Section 6.

1.3 Implementation Planning

To realize the energy savings from the ECMs listed in this report, a project implementation plan must be developed. Available capital must be considered and decisions need to be made whether it is best to pursue individual ECMs separately, groups of ECMs, or a comprehensive approach where all ECMs are implemented together, possibly in conjunction with other facility upgrades or improvements.

Rebates, incentives, and financing are available from NJCEP, as well as other sources, to help reduce the costs associated with the implementation of energy efficiency projects. Prior to implementing any measure, please review the relevant incentive program guidelines before proceeding. This is important because in most cases you will need to submit applications for the incentives prior to purchasing materials or commencing with installation.

The ECMs outlined in this report may qualify under the following program(s):

- SmartStart
- Direct Install
- Energy Savings Improvement Program (ESIP)

For facilities wanting to pursue only selected individual measures (or planning to phase implementation of selected measures over multiple years), incentives are available through the SmartStart program. To participate in this program you may utilize internal resources, or an outside firm or contractor, to do the final design of the ECM(s) and do the installation. Program pre-approval is required for some SmartStart incentives, so only after receiving pre-approval should you proceed with ECM installation. The incentive estimates listed above in Figure 3 are based on the SmartStart program. More details on this program and others are available in Section 7.

This facility may also qualify for the Direct Install program which can provide turnkey installation of multiple measures, through an authorized network of participating contractors. This program can provide substantially higher incentives that SmartStart, up to 70% of the cost of selected measures, although measure eligibility will have to be assessed and be verified by the designated Direct Install contractor and, in most cases, they will perform the installation work.

For larger facilities with limited capital availability to implement ECMs, project financing may be available through the Energy Savings Improvement Program (ESIP). Supported directly by the NJBPU, ESIP provides government agencies with project development, design, and implementation support services, as well as, attractive financing for implementing ECMs. An LGEA report (or other approved energy audit) is required for participation in ESIP.

Additional information on relevant incentive programs is located in Section 7 or www.njcleanenergy.com/ci.

2 FACILITY INFORMATION AND EXISTING CONDITIONS

2.1 Project Contacts

Figure 4 - Project Contacts

Name	Role	E-Mail	Phone #							
Customer										
Rita Giacchi	Assistant Business Administrator	rgiacchi@jefftwp.org	973-663-3387							
Designated Representative										
Joe Yuhas	Supervisor Custodian		(973) 479-9360							
TRC Energy Services	TRC Energy Services									
Moussa Traore	Auditor	mtraore@trcsolutions.com	(732) 855-0033							

2.2 General Site Information

On March 2, 2017, TRC performed an energy audit at Milton Elementary School located in Oak Ridge, New Jersey. TRC's team met with Joe Yuhas to review the facility operations and help focus our investigation on specific energy-using systems.

Milton Elementary School is a 22,052 square foot single floor facility comprised of classrooms, offices, a cafeteria, copy room, multipurpose room, mechanical room, and storage areas. The building was constructed in 1950.

2.3 Building Occupancy

The school building is open Monday through Friday and operates on a 10 month schedule. The typical schedule is presented in the below.

Figure 5 - Building Schedule

Building Name	Weekday/Weekend	Operating Schedule
Milton Elementary School	Weekday	7:00 AM - 3:30 PM
Milton Elementary School	Weekend	N/A

2.4 Building Envelope

The building's foundation consists of a conventional, reinforced concrete foundation. Exterior walls are finished with brick masonry. The building has a flat roof covered with a new white membrane which was part of a repair about two years ago. The windows throughout the facility are double paned operable windows and appear to be providing a tight weather barrier and were found to be in good condition. The exterior doors are constructed of metal. Overall the building's envelope is in good condition with no signs of outside air infiltration.

2.5 On-Site Generation

Milton Elementary School does not have any on-site electric generation capacity.

2.6 Energy-Using Systems

Please see Appendix A: Equipment Inventory & Recommendations for an inventory of the facility's equipment.

Lighting System

Interior lighting at the facility is provided mostly by linear fluorescent 32-Watt T8 lamps with electronic ballasts. Most spaces use two and four lamp fixtures that are 4-feet long. Lighting control is provided by manual wall switches. Exit signs throughout the building are fluorescent. The exterior lights consists of 125-Watt to 175-Watt metal halide outdoor wall-mounted fixtures. They are controlled with photocells.

Energy savings could be achieved by replacing the existing lighting system with LED linear tubes, LED lamps fixtures and installing occupancy sensors in select areas.

Hot Water Heating System

The hot water system consists of one Weil McClain 1477 kBtu/hr output non-condensing oil-fired boiler. The boiler is 12 years old, and has a combustion efficiency of 80%. The heating hot water generated by the boiler is circulated to the unit ventilators with two 1.5 and one 3.5 horse power (hp) hot water supply pumps. The unit ventilators are equipped with hot water coils only for heating. The boiler was found to be in good condition and is well maintained. The space heating temperature is controlled by manual thermostats.

Air Conditioning System (DX)

The facility cooling system consists of window units that are sized from 0.83 to 2 tons and are manually controlled. There are a total of 12 units, of which five units appeared to be in poor condition. They have been proposed for replacement with more energy efficient units.

Domestic Hot Water Heating System

Domestic hot water for the school consists of one electric Rheem non-condensing hot water heater. The water heater has an 80 gallon storage tank, is six years old and appeared to be in good condition.

Refrigeration

The cafeteria has one two-section solid door refrigerator and one chest freezer that are used to store fresh foods and milk. They were observed running in good condition and are already rated as energy efficient equipment.

Building Plug Load

There are roughly 18 computers with LCD monitors being used in the building. There is no centralized PC power management software installed. The facility has no refrigerated vending machines.

2.7 Water-Using Systems

There are five restrooms at this facility. A sampling of restrooms found that the faucets are rated for 2.2 gallons per minute (gpm) or higher, the toilets are rated at 2.5 gallons per flush (gpf) and the urinals are rated at 2 gpf.

3 SITE ENERGY USE AND COSTS

Utility data for electricity and No. 2 fuel oil was analyzed to identify opportunities for savings. In addition, data for electricity and No. 2 fuel oil was evaluated to determine the annual energy performance metrics for the building in energy cost per square foot and energy usage per square foot. These metrics are an estimate of the relative energy efficiency of this building. There are a number of factors that could cause the energy use of this building to vary from the "typical" energy usage profile for facilities with similar characteristics. Local weather conditions, building age and insulation levels, equipment efficiency, daily occupancy hours, changes in occupancy throughout the year, equipment operating hours, and energy efficient behavior of occupants all contribute to benchmarking scores. Please refer to the Benchmarking section within Section 3.4 for additional information.

3.1 Total Cost of Energy

The following energy consumption and cost data is based on the last 12-month period of utility billing data that was provided for each utility. A profile of the annual energy consumption and energy cost of the facility was developed from this information.

 Utility Summary for Milton Elementary School

 Fuel
 Usage
 Cost

 Electricity
 127,269 kWh
 \$16,867

 No. 2 Fuel Oil
 12,169 Gallons
 \$14,116

 Total
 \$30,984

Figure 6 - Utility Summary

The current annual energy cost for this facility is \$30,984 as shown in the chart below.

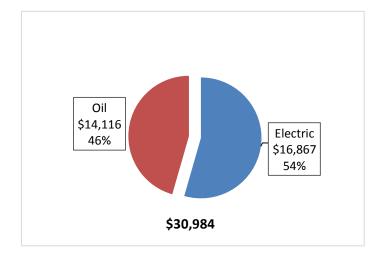


Figure 7 - Energy Cost Breakdown

3.2 Electricity Usage

Electricity is provided by JCP&L. The average electric cost over the past 12 months was \$0.133/kWh, which is the blended rate that includes energy supply, distribution, and other charges. This rate is used throughout the analyses in this report to assess energy costs and savings. The monthly electricity consumption and peak demand are shown in the chart below.

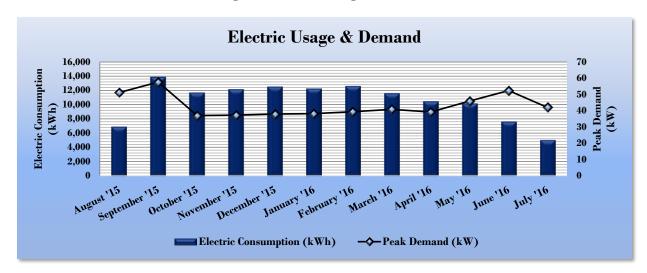


Figure 8 - Electric Usage & Demand

Figure 9 - Electric Usage & Demand

	Electric Billing Data for Milton Elementary School											
Period Ending	Days in Period	Electric Usage (kWh)	Demand (kW)	Demand Cost	Total Electric Cost							
9/14/15	33	6,920	51		\$1,096							
10/14/15	30	13,880	58		\$1,794							
11/13/15	30	11,680	37		\$1,464							
12/14/15	31	12,160	37		\$1,513							
1/15/16	32	12,520	38		\$1,552							
2/12/16	28	12,240	38		\$1,526							
3/14/16	31	12,600	39		\$1,568							
4/13/16	30	11,600	41		\$1,478							
5/12/16	29	10,480	39		\$1,362							
6/13/16	32	10,160	46		\$1,387							
7/13/16	30	7,640	52		\$1,205							
8/10/16	28	5,040	42		\$878							
Totals	364	126,920	57.6	\$0	\$16,821							
Annual	365	127,269	57.6	\$0	\$16,867							

3.3 No. 2 Fuel Oil Usage

No. 2 fuel oil is provided by Suburban. The average oil cost for the past 12 months is \$1.160/Gallon, which is the blended rate used throughout the analyses in this report. The Oil consumption is shown in the table below.

No. 2 Fuel Oil Billing Data for Milton Elementary School **TRC** Oil Period Days in **Fuel Cost Estimated** Usage **Ending** Period (Gallons) Usage? 12/5/15 30 1,228 \$1.425 Yes \$2,093 1/4/16 31 1,804 Yes 2/5/16 29 2,306 \$2,675 Yes 3/4/16 30 1,386 \$1,607 Yes 4/5/16 30 864 \$1,002 Yes 5/5/16 31 646 \$750 Yes 6/5/16 30 0 \$0 Yes 7/5/16 31 0 \$0 Yes 8/5/16 31 0 \$0 Yes 9/5/16 31 730 \$847 Yes 30 10/5/16 1.497 \$1,737 Yes 11/5/16 31 1,708 \$1,981 Yes **Totals** 365 12,169 \$14,116 **Annual** 365 12.169 \$14,116

Figure 10 -No. 2 Fuel Oil Usage

3.4 Benchmarking

This facility was benchmarked using Portfolio Manager, an online tool created and managed by the United States Environmental Protection Agency (EPA) through the ENERGY STAR® program. Portfolio Manager analyzes your building's consumption data, cost information, and operational use details and then compares its performance against a national median for similar buildings of its type. Metrics provided by this analysis are Energy Use Intensity (EUI) and an ENERGY STAR® score for select building types.

The EUI is a measure of a facility's energy consumption per square foot, and it is the standard metric for comparing buildings' energy performance. Comparing the EUI of a building with the national median EUI for that building type illustrates whether that building uses more or less energy than similar buildings of its type on a square foot basis. EUI is presented in terms of "site energy" and "source energy." Site energy is the amount of fuel and electricity consumed by a building as reflected in utility bills. Source energy includes fuel consumed to generate electricity consumed at the site, factoring in electric production and distribution losses for the region.

Figure 11 - Energy Use Intensity Comparison - Existing Conditions

Energy Use Intensity Comparison - Existing Conditions								
	Milton Elementary School	National Median Building Type: School (K-12)						
Source Energy Use Intensity (kBtu/ft²)	139.1	141.4						
Site Energy Use Intensity (kBtu/ft²)	96.2	58.2						

Implementation of all recommended measures in this report would improve the building's estimated EUI significantly, as shown in the table below:

Figure 12 - Energy Use Intensity Comparison - Following Installation of Recommended Measures

Energy Use Intensity Comparison - Following Installation of Recommended Measures							
	Milton Elementary School	National Median					
	William Elementary ochool	Building Type: School (K-12)					
Source Energy Use Intensity (kBtu/ft²)	118.1	141.4					
Site Energy Use Intensity (kBtu/ft²)	89.5	58.2					

Many types of commercial buildings are also eligible to receive an ENERGY STAR® score. This score is a percentile ranking from 1 to 100. It compares your building's energy performance to similar buildings nationwide. A score of 50 represents median energy performance, while a score of 75 means your building performs better than 75 percent of all similar buildings nationwide and may be eligible for ENERGY STAR® certification. This facility has a current score of 61.

A Portfolio Manager Statement of Energy Performance (SEP) was generated for this facility, see Appendix B: ENERGY STAR® Statement of Energy Performance.

A Portfolio Manager account has been created online for your facility and you will be provided with the login information for the account. We encourage you to update your utility information in Portfolio Manager regularly, so that you can keep track of your building's performance. Free online training is available to help you use ENERGY STAR® Portfolio Manager to track your building's performance at: https://www.energystar.gov/buildings/training.

3.5 Energy End-Use Breakdown

In order to provide a complete overview of energy consumption across building systems, an energy balance was performed at this facility. An energy balance utilizes standard practice engineering methods to evaluate all components of the various electric and fuel-fired systems found in a building to determine their proportional contribution to overall building energy usage. This chart of energy end uses highlights the relative contribution of each equipment category to total energy usage. This can help determine where the greatest benefits might be found from energy efficiency measures.

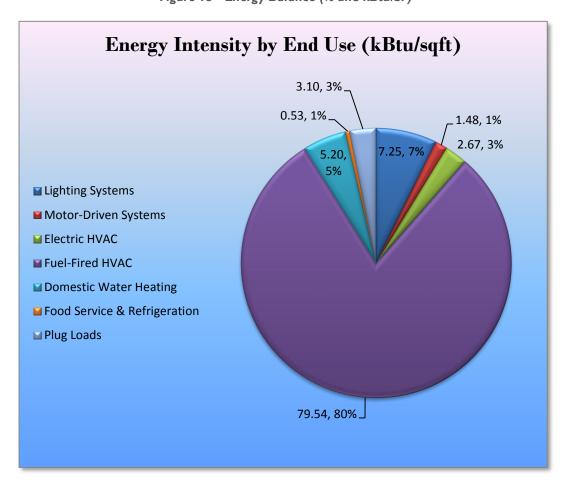


Figure 13 - Energy Balance (% and kBtu/SF)

4 ENERGY CONSERVATION MEASURES

Level of Analysis

The goal of this audit report is to identify potential energy efficiency opportunities, help prioritize specific measures for implementation, and provide information to the Milton Elementary School regarding financial incentives for which they may qualify to implement the recommended measures. For this audit report, most measures have received only a preliminary analysis of feasibility which identifies expected ranges of savings and costs. This level of analysis is usually considered sufficient to demonstrate project cost-effectiveness and help prioritize energy measures. Savings are based on the New Jersey Clean Energy Program Protocols to Measure Resource Savings dated June 29, 2016, approved by the New Jersey Board of Public Utilities. Further analysis or investigation may be required to calculate more precise savings based on specific circumstances. A higher level of investigation may be necessary to support any custom SmartStart or Pay for Performance, or Direct Install incentive applications. Financial incentives for the ECMs identified in this report have been calculated based the NJCEP prescriptive SmartStart program. Some measures and proposed upgrade projects may be eligible for higher incentives than those shown below through other NJCEP programs as described in Section 7.

The following sections describe the evaluated measures.

4.1 Recommended ECMs

The measures below have been evaluated by the auditor and are recommended for implementation at the facility.

Figure 14 – Summary of Recommended ECMs

	Energy Conservation Measure	Annual Electric Savings (kWh)	(kW)	Savings (MMBtu)		Estimated Install Cost (\$)	Estimated Incentive (\$)*	Estimated Net Cost (\$)	Period (yrs)**	CO ₂ e Emissions Reduction (lbs)
	Lighting Upgrades	29,526	11.3	0.0	\$3,913.13	\$34,183.47	\$7,035.00	\$27,148.47	6.9	29,732
ECM 1	Install LED Fixtures	5,085	3.1	0.0	\$673.97	\$11,520.59	\$2,915.00	\$8,605.59	12.8	5,121
ECM 2	Retrofit Fixtures with LED Lamps	23,836	8.2	0.0	\$3,159.05	\$21,587.33	\$4,120.00	\$17,467.33	5.5	24,003
ECM 3	Install LED Exit Signs	604	0.0	0.0	\$80.11	\$1,075.55	\$0.00	\$1,075.55	13.4	609
	Lighting Control Measures	5,794	1.9	0.0	\$767.94	\$2,900.00	\$500.00	\$2,400.00	3.1	5,835
ECM 4	Install Occupancy Sensor Lighting Controls	5,794	1.9	0.0	\$767.94	\$2,900.00	\$500.00	\$2,400.00	3.1	5,835
	Motor Upgrades	664	0.4	0.0	\$88.02	\$2,392.65	\$0.00	\$2,392.65	27.2	669
ECM 5	Premium Efficiency Motors	664	0.4	0.0	\$88.02	\$2,392.65	\$0.00	\$2,392.65	27.2	669
	Variable Frequency Drive (VFD) Measures	2,646	0.8	0.0	\$350.67	\$8,272.57	\$0.00	\$8,272.57	23.6	2,664
ECM 6	Install VFDs on Hot Water Pumps	2,646	0.8	0.0	\$350.67	\$8,272.57	\$0.00	\$8,272.57	23.6	2,664
	Electric Unitary HVAC Measures	1,816	1.5	0.0	\$240.70	\$5,890.19	\$0.00	\$5,890.19	24.5	1,829
ECM 7	Install High Efficiency Electric AC	1,816	1.5	0.0	\$240.70	\$5,890.19	\$0.00	\$5,890.19	24.5	1,829
	Domestic Water Heating Upgrade	2,747	0.0	0.0	\$364.05	\$64.53	\$0.00	\$64.53	0.2	2,766
ECM 8	Install Low-Flow Domestic Hot Water Devices	2,747	0.0	0.0	\$364.05	\$64.53	\$0.00	\$64.53	0.2	2,766
	TOTALS	43,193	16.0	0.0	\$5,724.52	\$53,703.41	\$7,535.00	\$46,168.41	8.1	43,495

^{* -} All incentives presented in this table are based on NJ Smart Start Building equipment incentives and assume proposed equipment meets minimum performance criteria for that program.

^{** -} Simple Payback Period is based on net measure costs (i.e. after incentives).

4.1.1 Lighting Upgrades

Our recommendations for upgrades to existing lighting fixtures are summarized in Figure 15 below.

Figure 15 - Summary of Lighting Upgrade ECMs

Energy Conservation Measure		Annual Electric Savings (kWh)	Peak Demand Savings (kW)			Estimated Install Cost (\$)	Estimated Incentive (\$)	Estimated Net Cost (\$)		CO ₂ e Emissions Reduction (lbs)
	Lighting Upgrades		11.3	0.0	\$3,913.13	\$34,183.47	\$7,035.00	\$27,148.47	6.9	29,732
ECM 1	Install LED Fixtures	5,085	3.1	0.0	\$673.97	\$11,520.59	\$2,915.00	\$8,605.59	12.8	5,121
ECM 2	Retrofit Fixtures with LED Lamps	23,836	8.2	0.0	\$3,159.05	\$21,587.33	\$4,120.00	\$17,467.33	5.5	24,003
ECM 3	Install LED Exit Signs	604	0.0	0.0	\$80.11	\$1,075.55	\$0.00	\$1,075.55	13.4	609

During lighting upgrade planning and design, we recommend a comprehensive approach that considers both the efficiency of the lighting fixtures and how they are controlled.

ECM I: Install LED Fixtures

Summary of Measure Economics

Interior/ Exterior		Peak Demand Savings (kW)	Annual Fuel Savings (MMBtu)	Annual Energy Cost Savings (\$)	Estimated Install Cost (\$)	Estimated Incentive (\$)	Estimated Net Cost (\$)		CO₂e Emissions Reduction (lbs)
Interior	267	0.1	0.0	\$35.41	\$127.30	\$10.00	\$117.30	3.3	269
Exterior	4,818	2.9	0.0	\$638.56	\$11,393.28	\$2,905.00	\$8,488.28	13.3	4,852

Measure Description

We recommend replacing existing fixtures containing HID, or incandescent lamps with new high performance LED light fixtures. This measure saves energy by installing LEDs which use less power than other technologies with a comparable light output.

Additional savings from lighting maintenance can be anticipated since LEDs have lifetimes which are more than twice that of a fluorescent tubes and more than 10 times longer than many incandescent lamps.

ECM 2: Retrofit Fixtures with LED Lamps

Summary of Measure Economics

Interior/ Exterior		Peak Demand Savings (kW)		Annual Energy Cost Savings (\$)	Estimated Install Cost (\$)		Estimated Net Cost (\$)		CO ₂ e Emissions Reduction (Ibs)
Interior	23,836	8.2	0.0	\$3,159.05	\$21,587.33	\$4,120.00	\$17,467.33	5.5	24,003
Exterior	0	0.0	0.0	\$0.00	\$0.00	\$0.00	\$0.00	0.0	0

Measure Description

We recommend retrofitting existing incandescent, halogen, HID or other lighting technologies with LED lamps. Many LED tube lamps are direct replacements for existing fluorescent lamps and can be installed while leaving the fluorescent fixture ballast in place. LED bulbs can be used in existing fixtures as a direct replacement for most other lighting technologies. This measure saves energy by installing LEDs which use less power than other lighting technologies yet provide equivalent lighting output for the space.

Additional savings from lighting maintenance can be anticipated since LEDs have lifetimes which are more than twice that of a fluorescent tubes and more than 10 times longer than many incandescent lamps.

ECM 3: Install LED Exit Signs

Summary of Measure Economics

Interior/ Exterior		Peak Demand Savings (kW)		Annual Energy Cost Savings (\$)	Estimated Install Cost (\$)		Estimated Net Cost (\$)	Simple Payback Period (yrs)	CO ₂ e Emissions Reduction (Ibs)
Interior	604	0.0	0.0	\$80.11	\$1,075.55	\$0.00	\$1,075.55	13.4	609
Exterior	0	0.0	0.0	\$0.00	\$0.00	\$0.00	\$0.00	0.0	0

Measure Description

We recommend replacing all incandescent or compact fluorescent exit signs with LED exit signs. LED exit signs require virtually no maintenance and have a life expectancy of at least 20 years. This measure saves energy by installing LED fixtures, which use less power than other technologies with an equivalent lighting output.

4.1.2 Lighting Control Measures

Our recommendations for lighting control measures are summarized in Figure 16 below.

Figure 16 – Summary of Lighting Control ECMs

	Energy Conservation Measure Lighting Control Measures ECM 4 Install Occupancy Sensor Lighting Controls		Peak Demand Savings (kW)		Energy Cost Savings	Estimated Install Cost (\$)	Estimated Incentive (\$)	Estimated Net Cost (\$)		CO₂e Emissions Reduction (lbs)
			1.9	0.0	\$767.94	\$2,900.00	\$500.00	\$2,400.00	3.1	5,835
ECM -			1.9	0.0	\$767.94	\$2,900.00	\$500.00	\$2,400.00	3.1	5,835

During lighting upgrade planning and design, we recommend a comprehensive approach that considers both the efficiency of the lighting fixtures and how they are controlled.

ECM 4: Install Occupancy Sensor Lighting Controls

Summary of Measure Economics

	Peak Demand Savings (kW)			Estimated Install Cost (\$)		Estimated Net Cost (\$)		CO₂e Emissions Reduction (Ibs)
5,794	1.9	0.0	\$767.94	\$2,900.00	\$500.00	\$2,400.00	3.1	5,835

Measure Description

We recommend installing occupancy sensors to control lighting fixtures that are currently controlled by manual switches in all restrooms, storage rooms, classrooms, offices areas, etc. Lighting sensors detect occupancy using ultrasonic and/or infrared sensors. For most spaces, we recommend lighting controls use dual technology sensors, which can eliminate the possibility of any lights turning off unexpectedly. Lighting systems are enabled when an occupant is detected. Fixtures are automatically turned off after an area has been vacant for a preset period. Some controls also provide dimming options and all modern occupancy controls can be easily over-ridden by room occupants to allow them to manually turn fixtures on or off, as desired. Energy savings results from only operating lighting systems when they are required.

Occupancy sensors may be mounted on the wall at existing switch locations, mounted on the ceiling, or in remote locations. In general, wall switch replacement sensors are recommended for single occupant offices and other small rooms. Ceiling-mounted or remote mounted sensors are used in locations without local switching or where wall switches are not in the line-of-sight of the main work area and in large spaces. We recommend a comprehensive approach to lighting design that upgrades both the lighting fixtures and the controls together for maximum energy savings and improved lighting for occupants.

4.1.3 Motor Upgrades

Our recommendations for motor upgrades are summarized in Figure 17 below.

Figure 17 - Summary of Motor Upgrade ECMs

	Energy Conservation Measure	Annual Electric Savings (kWh)	Peak Demand Savings (kW)	Annual Natural Gas Savings (MMBtu)	Annual No. 2 Fuel Oil Savings (MMBtu)	Annual N/A Savings (MMBtu)	Annual Energy Cost Savings (\$)	Estimated Install Cost (\$)		Estimated Net Cost (\$)		CO ₂ e Emissions Reduction (lbs)
	Motor Upgrades		0.4	0.0	0.0	0.0	\$88.02	\$2,392.65	\$0.00	\$2,392.65	27.2	669
ECM 5	ECM 5 Premium Efficiency Motors		0.4	0.0	0.0	0.0	\$88.02	\$2,392.65	\$0.00	\$2,392.65	27.2	669

ECM 5: Premium Efficiency Motors

Summary of Measure Economics

Annual Electric Savings (kWh)	Peak Demand Savings (kW)			Estimated Install Cost (\$)		Estimated Net Cost (\$)	Simple Payback Period (yrs)	CO ₂ e Emissions Reduction (Ibs)
664	0.4	0.0	\$88.02	\$2,392.65	\$0.00	\$2,392.65	27.2	669

Measure Description

We recommend replacing actual motors with new *NEMA Premium*™ efficiency motors. Our evaluation assumes that existing motors will be replaced with motors of equivalent size and type. Although occasionally additional savings can be achieved by downsizing motors to better meet the motor's current load requirements. The base case motor efficiencies are estimated from nameplate information and our best estimates of motor run hours. Efficiencies of proposed motor upgrades are obtained from the *New Jersey's Clean Energy Program Protocols to Measure Resource Savings (2016)*. Savings are based on the difference between baseline and proposed efficiencies and the assumed annual operating hours.

4.1.4 Variable Frequency Drive Measures

Our recommendations for variable frequency drive (VFD) measures are summarized in Figure 18 below.

Figure 18 - Summary of Variable Frequency Drive ECMs

Energy Conservation Measure		Annual Electric Savings (kWh)	Peak Demand Savings (kW)	Annual Fuel Savings (MMBtu)		Estimated Install Cost (\$)	Estimated Incentive (\$)	Estimated Net Cost (\$)		CO ₂ e Emissions Reduction (Ibs)
	Variable Frequency Drive (VFD) Measures		8.0	0.0	\$350.67	\$8,272.57	\$0.00	\$8,272.57	23.6	2,664
ECM 6	ECM 6 Install VFDs on Hot Water Pumps		8.0	0.0	\$350.67	\$8,272.57	\$0.00	\$8,272.57	23.6	2,664

ECM 6: Install VFDs on Hot Water Pumps

Summary of Measure Economics

	Peak Demand Savings (kW)		_	Estimated Install Cost (\$)		Estimated Net Cost (\$)	Simple Payback Period (yrs)	CO ₂ e Emissions Reduction (Ibs)
2,646	0.8	0.0	\$350.67	\$8,272.57	\$0.00	\$8,272.57	23.6	2,664

Measure Description

We recommend installing a variable frequency drives (VFD) to control the hot water pumps located in the boiler room. This measure requires that a majority of the hot water coils be served by 2-way valves and that a differential pressure sensor is installed in the hot water loop. As the hot water valves close, the differential pressure increases. The VFD modulates pump speed to maintain a differential pressure setpoint. Energy savings results from reducing pump motor speed (and power) as hot water valves close. The magnitude of energy savings is based on the estimated amount of time that the system will operate at reduced load.

4.1.5 Electric Unitary HVAC Measures

Our recommendations for unitary HVAC measures are summarized in Figure 19 below.

Figure 19 - Summary of Unitary HVAC ECMs

	Energy Conservation Measure Electric Unitary HVAC Measures ECM 7 Install High Efficiency Electric AC		Peak Demand Savings (kW)		_	Estimated Install Cost (\$)	Estimated Incentive (\$)	Estimated Net Cost (\$)		CO ₂ e Emissions Reduction (lbs)
			1.5	0.0	\$240.70	\$5,890.19	\$0.00	\$5,890.19	24.5	1,829
ECM 7			1.5	0.0	\$240.70	\$5,890.19	\$0.00	\$5,890.19	24.5	1,829

ECM 7: Install High Efficiency Air Conditioning Units

Summary of Measure Economics

Annual Electric Savings (kWh)	Peak Demand Savings (kW)			Estimated Install Cost (\$)		Estimated Net Cost (\$)		CO ₂ e Emissions Reduction (lbs)
1,816	1.5	0.0	\$240.70	\$5,890.19	\$0.00	\$5,890.19	24.5	1,829

Measure Description

We recommend replacing all window units running with low efficiency with high efficiency air conditioning units. There have been significant improvements in both compressor and fan motor efficiencies over the past several years. Therefore, electricity savings can be achieved by replacing older units with new high efficiency units. A higher EER or SEER rating indicates a more efficient cooling system. The magnitude of energy savings for this measure depends on the relative efficiency of the older unit versus the new high efficiency unit, the average cooling load, and the estimated annual operating hours.

4.1.6 Domestic Hot Water Heating System Upgrades

Our recommendations for domestic water heating system improvements are summarized in Figure 20 below.

Figure 20 - Summary of Domestic Water Heating ECMs

Energy Conservation Measure		Annual Electric Savings (kWh)	Peak Demand Savings (kW)			Estimated Install Cost (\$)	Estimated Incentive (\$)	Estimated Net Cost (\$)		CO ₂ e Emissions Reduction (lbs)
	Domestic Water Heating Upgrade		0.0	0.0	\$364.05	\$64.53	\$0.00	\$64.53	0.2	2,766
ECM 8	ECM 8 Install Low-Flow Domestic Hot Water Devices		0.0	0.0	\$364.05	\$64.53	\$0.00	\$64.53	0.2	2,766

ECM 8: Install Low-Flow DHW Devices

Summary of Measure Economics

	Peak Demand Savings (kW)	Annual Fuel Savings (MMBtu)	Savings	Estimated Install Cost (\$)		Estimated Net Cost (\$)		CO ₂ e Emissions Reduction (Ibs)
2,747	0.0	0.0	\$364.05	\$64.53	\$0.00	\$64.53	0.2	2,766

Measure Description

We recommend installing low-flow domestic hot water devices to reduce overall hot water demand. Energy demand from domestic hot water heating systems can be reduced by reducing water usage in general. Faucet aerators and low-flow showerheads can reduce hot water usage, relative to standard showerheads and aerators, which saves energy. Low-flow devices reduce the overall water flow from the fixture, while still adequate pressure for washing. This reduces the amount of water used per day resulting in energy and water savings.

5 ENERGY EFFICIENT PRACTICES

In addition to the quantifiable savings estimated in Section 4, a facility's energy performance can also be improved through application of many low cost or no-cost energy efficiency strategies. By employing certain behavioral and operational changes and performing routine maintenance on building systems, equipment lifetime can be extended; occupant comfort, health and safety can be improved; and energy and O&M costs can be reduced. The recommendations below are provided as a framework for developing a whole building maintenance plan that is customized to your facility. Consult with qualified equipment specialists for details on proper maintenance and system operation.

Close Doors and Windows

Ensure doors and windows are closed in conditioned spaces. Leaving doors and windows open leads to a significant increase in heat transfer between conditioned spaces and the outside air. Reducing a facility's air changes per hour (ACH) can lead to increased occupant comfort as well as significant heating and cooling savings, especially when combined with proper HVAC controls and adequate ventilation.

Perform Proper Lighting Maintenance

In order to sustain optimal lighting levels, lighting fixtures should undergo routine maintenance. Light levels decrease over time due to lamp aging, lamp and ballast failure, and buildup of dirt and dust on lamps, fixtures and reflective surfaces. Together, these factors can reduce total illumination by 20% - 60% or more, while operating fixtures continue drawing full power. To limit this reduction, lamps, reflectors and diffusers should be thoroughly cleaned of dirt, dust, oil, and smoke film buildup approximately every 6-12 months.

Develop a Lighting Maintenance Schedule

In addition to routine fixture cleaning, development of a maintenance schedule can both ensure maintenance is performed regularly and can reduce the overall cost of fixture re-lamping and re-ballasting. By re-lamping and re-ballasting fixtures in groups, lighting levels are better maintained and the number of site visits by a lighting technician or contractor can be minimized, decreasing the overall cost of maintenance.

Ensure Lighting Controls Are Operating Properly

Lighting controls are very cost effective energy efficient devices, when installed and operating correctly. As part of a lighting maintenance schedule, lighting controls should be tested annually to ensure proper functioning. For occupancy sensors, this requires triggering the sensor and verifying that the sensor's timer settings are correct. For daylight sensors, maintenance involves cleaning of sensor lenses and confirming setpoints and sensitivity are appropriately configured.

Turn Off Unneeded Motors

Electric motors often run unnecessarily, and this is an overlooked opportunity to save energy. These motors should be identified and turned off when appropriate. For example, exhaust fans often run unnecessarily when ventilation requirements are already met. Reducing run hours for these motors can result in significant energy savings. Whenever possible, use automatic devices such as twist timers or occupancy sensors to ensure that motors are turned off when not needed.

Perform Routine Motor Maintenance

Motors consist of many moving parts whose collective degradation can contribute to a significant loss of motor efficiency. In order to prevent damage to motor components, routine maintenance should be performed. This maintenance consists of cleaning surfaces and ventilation openings on motors to prevent overheating, lubricating moving parts to reduce friction, inspecting belts and pulleys for wear and to ensure they are at proper alignment and tension, and cleaning and lubricating bearings. Consult a licensed technician to assess these and other motor maintenance strategies.

Practice Proper Use of Thermostat Schedules and Temperature Resets

Ensure thermostats are correctly set back. By employing proper set back temperatures and schedules, facility heating and cooling costs can be reduced dramatically during periods of low or no occupancy. As such, thermostats should be programmed for a setback of 5-10°F during low occupancy hours (reduce heating setpoints and increase cooling setpoints). Cooling load can be reduced further by increasing the facility's occupied setpoint temperature. In general, during the cooling season, thermostats should be set as high as possible without sacrificing occupant comfort.

Clean and/or Replace HVAC Filters

Air filters work to reduce the amount of indoor air pollution and increase occupant comfort. Over time, filters become less and less effective as particulate buildup increases. In addition to health concerns related to clogged filters, filters that have reached saturation also restrict air flow through the facility's air conditioning or heat pump system, increasing the load on the distribution fans and decreasing occupant comfort levels. Filters should be checked monthly and cleaned or replaced when appropriate.

Perform Proper Boiler Maintenance

Many boiler problems develop slowly over time, so regular inspection and maintenance is essential to retain proper functionality and efficiency of the heating system. Fuel burning equipment should undergo yearly tune-ups to ensure they are operating as safely and efficiently as possible from a combustion standpoint. A tune-up should include a combustion analysis to analyze the exhaust from the boilers and to ensure the boiler is operating safely. Buildup of dirt, dust, or deposits on the internal surfaces of a boiler can greatly affect its heat transfer efficiency. These deposits can accumulate on the water side or fire side of the boiler. Boilers should be cleaned regularly according to the manufacturer's instructions to remove this build up in order to sustain efficiency and equipment life.

Perform Proper Water Heater Maintenance

At least once a year, drain a few gallons out of the water heater using the drain valve. If there is a lot of sediment or debris, then a full flush is recommended. Turn the temperature down and then completely drain the tank. Once a year check for any leaks or heavy corrosion on the pipes and valves. For gas water heaters, check the draft hood and make sure it is placed properly, with a few inches of air space between the tank and where it connects to the vent. Look for any corrosion or wear on the gas line and on the piping. If you noticed any black residue, soot or charred metal, this is a sign you may be having combustion issues and you should have the unit serviced by a professional. For electric water heaters, look for any signs of leaking such as rust streaks or residue around the upper and lower panels covering the electrical components on the tank. For water heaters over three to four years old have a technician inspect the sacrificial anode annually.

Plug Load Controls

There are a variety of ways to limit the energy use of plug loads including increasing occupant awareness, removing under-utilized equipment, installing hardware controls, and using software controls. Some control steps to take are to enable the most aggressive power settings on existing devices or install load sensing or occupancy sensing (advanced) power strips. For additional information refer to "Plug Load Best Practices Guide" http://www.advancedbuildings.net/plug-load-best-practices-guide-offices.

Water Conservation

Installing low-flow faucets or faucet aerators, low-flow showerheads, and kitchen sink pre-rinse spray valves saves both energy and water. These devices save energy by reducing the overall amount of hot water used hence reducing the energy used to heat the water. The flow ratings for EPA WaterSense™ (http://www3.epa.gov/watersense/products) labeled devices are 1.5 gpm for bathroom faucets, 2.0 gpm for showerheads, and 1.28 gpm for pre-rinse spray valves.

Installing dual flush or low-flow toilets and low-flow or waterless urinals are additional ways to reduce the sites water use, however, these devices do not provide energy savings at the site level. Any reduction in water use does however ultimately reduce grid level electricity use since a significant amount of electricity is used to deliver water from reservoirs to end users. The EPA WaterSense™ ratings for urinals is 0.5 gpf and toilets that use as little as 1.28 gpf (this is lower than the current 1.6 gpf federal standard).

Refer to Section 4.1.6 for any low-flow ECM recommendations.

6 ON-SITE GENERATION MEASURES

On-site generation measure options include both renewable (e.g., solar, wind) and non-renewable (e.g., fuel cells) on-site technologies that generate power to meet all or a portion of the electric energy needs of a facility, often repurposing any waste heat where applicable. Also referred to as distributed generation, these systems contribute to Greenhouse Gas (GHG) emission reductions, demand reductions and reduced customer electricity purchases, resulting in the electric system reliability through improved transmission and distribution system utilization.

The State of New Jersey's Energy Master Plan (EMP) encourages new distributed generation of all forms and specifically focuses on expanding use of combined heat and power (CHP) by reducing financial, regulatory and technical barriers and identifying opportunities for new entries. The EMP also outlines a goal of 70% of the State's electrical needs to be met by renewable sources by 2050.

Preliminary screenings were performed to determine the potential that a generation project could provide a cost-effective solution for your facility. Before making a decision to implement, a feasibility study should be conducted that would take a detailed look at existing energy profiles, siting, interconnection, and the costs associated with the generation project including interconnection costs, departing load charges, and any additional special facilities charges.

6.1 Photovoltaic

Sunlight can be converted into electricity using photovoltaics (PV) modules. Modules are racked together into an array that produces direct current (DC) electricity. The DC current is converted to alternating current (AC) through an inverter. The inverter is interconnected to the facility's electrical distribution system. The amount of unobstructed area available determines how large of a solar array can be installed. The size of the array combined with the orientation, tilt, and shading elements determines the energy produced.

A preliminary screening based on the facility's electric demand, size and location of free area, and shading elements shows that the facility has a *Low* potential for installing a PV array.

In order to be cost-effective, a solar PV array needs certain minimum criteria, such as flat or south-facing rooftop or other unshaded space on which to place the PV panels. In our opinion, the facility does appear not meet these minimum criteria for cost-effective PV installation.

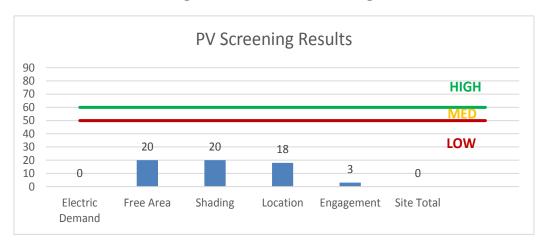


Figure 21 - Photovoltaic Screening

For more information on solar PV technology and commercial solar markets in New Jersey, or to find a qualified solar installer, who can provide a more detailed assessment of the specific costs and benefits of solar develop of the site, please visit the following links below:

- Basic Info on Solar PV in NJ: http://www.njcleanenergy.com/whysolar
- NJ Solar Market FAQs: http://www.njcleanenergy.com/renewable-energy/program-updates-and-background-information/solar-transition/solar-market-faqs
- Approved Solar Installers in the NJ Market: http://www.njcleanenergy.com/commercial-industrial/programs/nj-smartstart-buildings/tools-and-resources/tradeally/approved_vendorsearch/?id=60&start=1

6.2 Combined Heat and Power

Combined heat and power (CHP) is the on-site generation of electricity along with the recovery of heat energy, which is put to beneficial use. Common technologies for CHP include reciprocating engines, microturbines, fuel cells, backpressure steam turbines, and (at large facilities) gas turbines. Electric generation from a CHP system is typically interconnected to local power distribution systems. Heat is recovered from exhaust and ancillary cooling systems and interconnected to the existing hot water (or steam) distribution systems.

CHP systems are typically used to produce a portion of the electric power used onsite by a facility, with the balance of electric power needs supplied by grid purchases. The heat is used to supplement (or supplant) existing boilers for the purpose of space heating and/or domestic hot water heating. Waste heat can also be routed through absorption chillers for the purpose of space cooling. The key criteria used for screening, however, is the amount of time the system operates at full load and the facility's ability to use the recovered heat. Facilities with continuous use for large quantities of waste heat are the best candidates for CHP.

A preliminary screening based on heating and electrical demand, siting, and interconnection shows that the facility has a *Low* potential for installing a cost-effective CHP system.

Lack of gas service, low or infrequent thermal load, and lack of space near the existing boilers are the most significant factors contributing to the non-potential for CHP at the site. In our opinion, the facility does not appear to meet the minimum requirements for a cost-effective CHP installation.

For a list of qualified firms in New Jersey specializing in commercial CHP cost assessment and installation, go to: http://www.njcleanenergy.com/commercial-industrial/programs/nj-smartstart-buildings/tools-and-resources/tradeally/approved_vendorsearch/

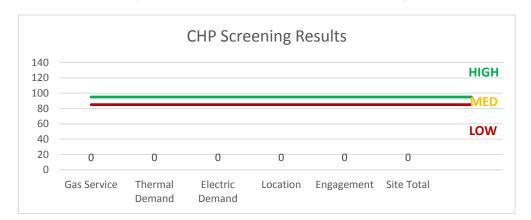


Figure 22 - Combined Heat and Power Screening

7 PROJECT FUNDING / INCENTIVES

The NJCEP is able to provide the incentive programs described below, and other benefits to ratepayers, because of the Societal Benefits Charge (SBC) Fund. The SBC was created by the State of New Jersey's Electricity Restructuring Law (1999), which requires all customers of investor-owned electric and gas utilities to pay a surcharge on their monthly energy bills. As a customer of a state-regulated electric or gas utility and therefore a contributor to the fund your organization is eligible to participate in the LGEA program and also eligible to receive incentive payment for qualifying energy efficiency measures. Also available through the NJBPU are some alternative financing programs described later in this section. Please refer to Figure 23 for a list of the eligible programs identified for each recommended ECM.

Figure 23 - ECM Incentive Program Eligibility

	Energy Conservation Measure	SmartStart Prescriptive	SmartStart Custom	Direct Install
ECM 1	Install LED Fixtures	Х		Х
ECM 2	Retrofit Fixtures with LED Lamps	Х		Х
ECM 3	Install LED Exit Signs			х
ECM 4	Install Occupancy Sensor Lighting Controls	Х		Х
ECM 5	Premium Efficiency Motors			Х
ECM 6	Install VFDs on Hot Water Pumps			Х
ECM 7	Install High Efficiency Electric AC			Х
ECM 8	Install Low-Flow Domestic Hot Water Devices			Х

SmartStart is generally well-suited for implementation of individual measures or small group of measures. It provides flexibility to install measures at your own pace using in-house staff or a preferred contractor. Direct Install caters to small to mid-size facilities that can bundle multiple ECMs together. This can greatly simplify participation and may lead to higher incentive amounts, but requires the use of pre-approved contractors.

Generally, the incentive values provided throughout the report assume the SmartStart program is utilized because it provides a consistent basis for comparison of available incentives for various measures, though in many cases incentive amounts may be higher through participation in other programs.

Brief descriptions of all relevant financing and incentive programs are located in the sections below. Further information, including most current program availability, requirements, and incentive levels can be found at: www.njcleanenergy.com/ci.

7.1 SmartStart

Overview

The SmartStart program offers incentives for installing prescriptive and custom energy efficiency measures at your facility. Routinely the program adds, removes or modifies incentives from year to year for various energy efficiency equipment based on market trends and new technologies.

Equipment with Prescriptive Incentives Currently Available:

Electric Chillers
Electric Unitary HVAC
Gas Cooling
Gas Heating
Gas Water Heating
Ground Source Heat Pumps
Lighting

Lighting Controls
Refrigeration Doors
Refrigeration Controls
Refrigerator/Freezer Motors
Food Service Equipment
Variable Frequency Drives

Most equipment sizes and types are served by this program. This program provides an effective mechanism for securing incentives for energy efficiency measures installed individually or as part of a package of energy upgrades.

Incentives

The SmartStart prescriptive incentive program provides fixed incentives for specific energy efficiency measures, whereas the custom SmartStart program provides incentives for more unique or specialized technologies or systems that are not addressed through prescriptive incentive offerings for specific devices.

Since your facility is an existing building, only the retrofit incentives have been applied in this report. Custom measure incentives are calculated at \$0.16/kWh and \$1.60/therm based on estimated annual savings, capped at 50% of the total installed incremental project cost, or a project cost buy down to a one year payback (whichever is less). Program incentives are capped at \$500,000 per electric account and \$500,000 per natural gas account, per fiscal year.

How to Participate

To participate in the SmartStart program you will need to submit an application for the specific equipment to be installed. Many applications are designed as rebates, although others require application approval prior to installation. Applicants may work with a contractor of their choosing and can also utilize internal personnel, which provides added flexibility to the program. Using internal personnel also helps improve the economics of the ECM by reducing the labor cost that is included in the tables in this report.

Detailed program descriptions, instructions for applying and applications can be found at: www.njcleanenergy.com/SSB.

7.2 Direct Install

Overview

Direct Install is a turnkey program available to existing small to medium-sized facilities with a peak electric demand that does not exceed 200 kW for any recent 12-month period. You will work directly with a preapproved contractor who will perform a free energy assessment at your facility, identify specific eligible measures, and provide a clear scope of work for installation of selected measures. Energy efficiency measures may include lighting and lighting controls, refrigeration, HVAC, motors, variable speed drives and controls.

Incentives

The program pays up to 70% of the total installed cost of eligible measures, up to \$125,000 per project. Direct Install participants will also be held to a fiscal year cap of \$250,000 per entity.

How to Participate

To participate in the Direct Install program you will need to contact the participating contractor who the region of the state where your facility is located. A complete list of Direct Install program partners is provided on the Direct Install website linked below. The contractor will be paid the measure incentives directly by the program which will pass on to you in the form of reduced material and implementation costs. This means up to 70% of eligible costs are covered by the program, subject to program caps and eligibility, while the remaining 30% of the cost is paid to the contractor by the customer.

Since Direct Install offers a free assessment of eligible measures, Direct Install is also available to small businesses and other commercial facilities too that may not be eligible for the more detailed facility audits provided by LGEA.

Detailed program descriptions and applications can be found at: www.njcleanenergy.com/DI.

7.3 Energy Savings Improvement Program

The Energy Savings Improvement Program (ESIP) is an alternate method for New Jersey's government agencies to finance the implementation of energy conservation measures. An ESIP is a type of "performance contract," whereby school districts, counties, municipalities, housing authorities and other public and state entities enter in to contracts to help finance building energy upgrades. This is done in a manner that ensures that annual payments are lower than the savings projected from the ECMs, ensuring that ESIP projects are cash flow positive in year one, and every year thereafter. ESIP provides government agencies in New Jersey with a flexible tool to improve and reduce energy usage with minimal expenditure of new financial resources. NJCEP incentive programs can be leveraged to help further reduce the total project cost of eligible measures.

This LGEA report is the first step to participating in ESIP. Next, you will need to select an approach for implementing the desired ECMs:

- (1) Use an Energy Services Company or "ESCO."
- (2) Use independent engineers and other specialists, or your own qualified staff, to provide and manage the requirements of the program through bonds or lease obligations.
- (3) Use a hybrid approach of the two options described above where the ESCO is utilized for some services and independent engineers, or other specialists or qualified staff, are used to deliver other requirements of the program.

After adopting a resolution with a chosen implementation approach, the development of the Energy Savings Plan (ESP) can begin. The ESP demonstrates that the total project costs of the ECMs are offset by the energy savings over the financing term, not to exceed 15 years. The verified savings will then be used to pay for the financing.

The ESIP approach may not be appropriate for all energy conservation and energy efficiency improvements. Entities should carefully consider all alternatives to develop an approach that best meets their needs. A detailed program descriptions and application can be found at: www.njcleanenergy.com/ESIP.

Please note that ESIP is a program delivered directly by the NJBPU and is not an NJCEP incentive program. As mentioned above, you may utilize NJCEP incentive programs to help further reduce costs when developing the ESP. You should refer to the ESIP guidelines at the link above for further information and guidance on next steps.

8 ENERGY PURCHASING AND PROCUREMENT STRATEGIES

8.1 Retail Electric Supply Options

In 1999, New Jersey State Legislature passed the Electric Discount & Energy Competition Act (EDECA) to restructure the electric power industry in New Jersey. This law deregulated the retail electric markets, allowing all consumers to shop for service from competitive electric suppliers. The intent was to create a more competitive market for electric power supply in New Jersey. As a result, utilities were allowed to charge Cost of Service and customers were given the ability to choose a third party (i.e. non-utility) energy supplier.

Energy deregulation in New Jersey has increased energy buyers' options by separating the function of electricity distribution from that of electricity supply. So, though you may choose a different company from which to buy your electric power, responsibility for your facility's interconnection to the grid and repair to local power distribution will still reside with the traditional utility company serving your region.

If your facility is not purchasing electricity from a third party supplier, consider shopping for a reduced rate from third party electric suppliers. If your facility is purchasing electricity from a third party supplier, review and compare prices at the end of the current contract or every couple years.

A list of third party electric suppliers, who are licensed by the state to provide service in New Jersey, can be found online at: www.state.nj.us/bpu/commercial/shopping.html.

8.2 Retail Natural Gas Supply Options

The natural gas market in New Jersey has also been deregulated. Most customers that remain with the utility for natural gas service pay rates that are market-based and that fluctuate on a monthly basis. The utility provides basic gas supply service (BGSS) to customers who choose not to buy from a third party supplier for natural gas commodity.

A customer's decision about whether to buy natural gas from a retail supplier is typically dependent upon whether a customer seeks budget certainty and/or longer-term rate stability. Customers can secure longer-term fixed prices by signing up for service through a third party retail natural gas supplier. Many larger natural gas customers may seek the assistance of a professional consultant to assist in their procurement process.

If your facility is not purchasing natural gas from a third party supplier, consider shopping for a reduced rate from third party natural gas suppliers. If your facility is purchasing natural gas from a third party supplier, review and compare prices at the end of the current contract or every couple years.

A list of third party natural gas suppliers, who are licensed by the state to provide service in New Jersey, can be found online at: www.state.nj.us/bpu/commercial/shopping.html.

Appendix A: Equipment Inventory & Recommendations

Lighting Inventory & Recommendations

	Existing C	ry & Recommendatio				Proposed Condition	ıs						Energy Impact	& Financial A	nalysis				
Location	Fixture Quantity	Fixture Description	Control System	Watts per Fixture	Annual Operating Hours	Fixture Recommendation	Add Controls?	Fixture Quantity	Fixture Description	Control System	Watts per Fixture	Annual Operating Hours	Total Peak kW Savings	Total Annual kWh Savings	Total Annual MMBtu Savings	Total Annual Energy Cost Savings	Total Installation Cost	Total Incentives	Simple Payback w/ Incentives in Years
Room 5B (Pump Room)	1	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,210	Relamp	No	1	LED - Linear Tubes: (2) 4' Lamps	Wall Switch	29	1,210	0.02	46	0.0	\$6.09	\$58.50	\$10.00	7.97
Room 5B (Pump Room)	1	Incandescent: 150W Screen in Lamp	Wall Switch	150	1,210	Fixture Replacement	No	1	LED - Fixtures: Downlight Solid State Retrofit	Wall Switch	9	1,210	0.09	196	0.0	\$26.00	\$63.65	\$5.00	2.26
Room5C (Boiler Room)	2	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,760	Relamp	No	2	LED - Linear Tubes: (2) 4' Lamps	Wall Switch	29	1,760	0.04	134	0.0	\$17.70	\$117.00	\$20.00	5.48
Room5C (Boiler Room)	1	Exit Signs: Fluorescent	None	12	8,760	Fixture Replacement	No	1	LED Exit Signs: 2 W Lamp	None	6	8,760	0.00	60	0.0	\$8.01	\$107.56	\$0.00	13.43
All Purpose Room	20	Linear Fluorescent - T8: 4' T8 (32W) - 4L	Wall Switch	114	1,430	Relamp	No	20	LED - Linear Tubes: (4) 4' Lamps	Wall Switch	58	1,430	0.73	1,842	0.0	\$244.10	\$1,902.67	\$400.00	6.16
All Purpose Room	2	Exit Signs: Fluorescent	None	12	8,760	Fixture Replacement	No	2	LED Exit Signs: 2 W Lamp	None	6	8,760	0.01	121	0.0	\$16.02	\$215.11	\$0.00	13.43
Stage	6	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,100	Relamp	No	6	LED - Linear Tubes: (2) 4' Lamps	Wall Switch	29	1,100	0.13	250	0.0	\$33.20	\$351.00	\$60.00	8.77
Copy Room	1	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,760	Relamp	No	1	LED - Linear Tubes: (2) 4' Lamps	Wall Switch	29	1,760	0.02	67	0.0	\$8.85	\$58.50	\$10.00	5.48
Copy Room	1	Linear Fluorescent - T8: 4' T8 (32W) - 4L	Wall Switch	114	1,760	Relamp	Yes	1	LED - Linear Tubes: (4) 4' Lamps	Occupancy Sensor	58	1,232	0.05	149	0.0	\$19.69	\$211.13	\$40.00	8.69
Corridor	27	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,650	Relamp	Yes	27	LED - Linear Tubes: (2) 4' Lamps	Occupancy Sensor	29	1,155	0.74	2,136	0.0	\$283.14	\$1,811.50	\$310.00	5.30
Corridor	6	Linear Fluorescent - T8: 4' T8 (32W) - 4L	Wall Switch	114	1,650	Relamp	No	6	LED - Linear Tubes: (4) 4' Lamps	Wall Switch	58	1,650	0.22	638	0.0	\$84.50	\$570.80	\$120.00	5.34
Corridor	7	Exit Signs: Fluorescent	None	12	8,760	Fixture Replacement	No	7	LED Exit Signs: 2 W Lamp	None	6	8,760	0.03	423	0.0	\$56.08	\$752.89	\$0.00	13.43
Room15	12	Linear Fluorescent - T8: 4' T8 (32W) - 4L	Wall Switch	114	1,760	Relamp	Yes	12	LED - Linear Tubes: (4) 4' Lamps	Occupancy Sensor	58	1,232	0.58	1,783	0.0	\$236.27	\$1,257.60	\$260.00	4.22
Room14	12	Linear Fluorescent - T8: 4' T8 (32W) - 4L	Wall Switch	114	1,760	Relamp	Yes	12	LED - Linear Tubes: (4) 4' Lamps	Occupancy Sensor	58	1,232	0.58	1,783	0.0	\$236.27	\$1,257.60	\$260.00	4.22
Room13	19	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,760	Relamp	Yes	19	LED - Linear Tubes: (2) 4' Lamps	Occupancy Sensor	29	1,232	0.52	1,604	0.0	\$212.53	\$1,227.50	\$210.00	4.79
Room12	12	Linear Fluorescent - T8: 4' T8 (32W) - 4L	Wall Switch	114	1,760	Relamp	Yes	12	LED - Linear Tubes: (4) 4' Lamps	Occupancy Sensor	58	1,232	0.58	1,783	0.0	\$236.27	\$1,257.60	\$260.00	4.22
Room11	12	Linear Fluorescent - T8: 4' T8 (32W) - 4L	Wall Switch	114	1,760	Relamp	Yes	12	LED - Linear Tubes: (4) 4' Lamps	Occupancy Sensor	58	1,232	0.58	1,783	0.0	\$236.27	\$1,257.60	\$260.00	4.22
Room10	12	Linear Fluorescent - T8: 4' T8 (32W) - 4L	Wall Switch	114	1,760	Relamp	Yes	12	LED - Linear Tubes: (4) 4' Lamps	Occupancy Sensor	58	1,232	0.58	1,783	0.0	\$236.27	\$1,257.60	\$260.00	4.22
Room10A	4	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,760	Relamp	Yes	4	LED - Linear Tubes: (2) 4' Lamps	Occupancy Sensor	29	1,232	0.11	338	0.0	\$44.74	\$350.00	\$60.00	6.48
Girls Restroom	1	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,760	Relamp	No	1	LED - Linear Tubes: (2) 4' Lamps	Wall Switch	29	1,760	0.02	67	0.0	\$8.85	\$58.50	\$10.00	5.48
Closet	1	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,760	Relamp	No	1	LED - Linear Tubes: (2) 4' Lamps	Wall Switch	29	1,760	0.02	67	0.0	\$8.85	\$58.50	\$10.00	5.48
Room9	6	Linear Fluorescent - T8: 4' T8 (32W) - 4L	Wall Switch	114	1,760	Relamp	Yes	6	LED - Linear Tubes: (4) 4' Lamps	Occupancy Sensor	58	1,232	0.29	891	0.0	\$118.13	\$686.80	\$140.00	4.63
Room8	6	Linear Fluorescent - T8: 4' T8 (32W) - 4L	Wall Switch	114	1,760	Relamp	Yes	6	LED - Linear Tubes: (4) 4' Lamps	Occupancy Sensor	58	1,232	0.29	891	0.0	\$118.13	\$686.80	\$140.00	4.63
Room7	6	Linear Fluorescent - T8: 4' T8 (32W) - 4L	Wall Switch	114	1,760	Relamp	Yes	6	LED - Linear Tubes: (4) 4' Lamps	Occupancy Sensor	58	1,232	0.29	891	0.0	\$118.13	\$686.80	\$140.00	4.63
Boys Restroom	3	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,760	Relamp	Yes	3	LED - Linear Tubes: (2) 4' Lamps	Occupancy Sensor	29	1,232	0.08	253	0.0	\$33.56	\$291.50	\$50.00	7.20

	Existing Co	onditions				Proposed Condition	ns						Energy Impac	t & Financial A	nalysis				
Location	Fixture Quantity	Fixture Description	Control System	Watts per Fixture	Annual Operating Hours	Fixture Recommendation	Add Controls?	Fixture Quantity	Fixture Description	Control System	Watts per Fixture	Annual Operating Hours	Total Peak kW Savings	Total Annual kWh Savings	Total Annual MMBtu Savings	Total Annual Energy Cost Savings	Total Installation Cost	Total Incentives	Simple Payback w/ Incentives in Years
Room6	14	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,760	Relamp	Yes	14	LED - Linear Tubes: (2) 4' Lamps	Occupancy Sensor	29	1,232	0.38	1,182	0.0	\$156.60	\$935.00	\$160.00	4.95
Room5	14	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,760	Relamp	Yes	14	LED - Linear Tubes: (2) 4' Lamps	Occupancy Sensor	29	1,232	0.38	1,182	0.0	\$156.60	\$935.00	\$160.00	4.95
Room3	14	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,760	Relamp	Yes	14	LED - Linear Tubes: (2) 4' Lamps	Occupancy Sensor	29	1,232	0.38	1,182	0.0	\$156.60	\$935.00	\$160.00	4.95
Room4	14	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,760	Relamp	Yes	14	LED - Linear Tubes: (2) 4' Lamps	Occupancy Sensor	29	1,232	0.38	1,182	0.0	\$156.60	\$935.00	\$160.00	4.95
Room2	14	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,760	Relamp	Yes	14	LED - Linear Tubes: (2) 4' Lamps	Occupancy Sensor	29	1,232	0.38	1,182	0.0	\$156.60	\$935.00	\$160.00	4.95
Restroom	3	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,760	Relamp	Yes	3	LED - Linear Tubes: (2) 4' Lamps	Occupancy Sensor	29	1,232	0.08	253	0.0	\$33.56	\$291.50	\$50.00	7.20
Supply Room	1	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,760	Relamp	No	1	LED - Linear Tubes: (2) 4' Lamps	Wall Switch	29	1,760	0.02	67	0.0	\$8.85	\$58.50	\$10.00	5.48
Room1B	4	Linear Fluorescent - T8: 4' T8 (32W) - 4L	Wall Switch	114	1,760	Relamp	Yes	4	LED - Linear Tubes: (4) 4' Lamps	Occupancy Sensor	58	1,232	0.19	594	0.0	\$78.76	\$496.53	\$100.00	5.03
Room1B	1	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,760	Relamp	No	1	LED - Linear Tubes: (2) 4' Lamps	Wall Switch	29	1,760	0.02	67	0.0	\$8.85	\$58.50	\$10.00	5.48
Main Office	1	Linear Fluorescent - T8: 4' T8 (32W) - 4L	Wall Switch	114	1,760	Relamp	No	1	LED - Linear Tubes: (4) 4' Lamps	Wall Switch	58	1,760	0.04	113	0.0	\$15.02	\$95.13	\$20.00	5.00
Main Office	5	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,760	Relamp	Yes	5	LED - Linear Tubes: (2) 4' Lamps	Occupancy Sensor	29	1,232	0.14	422	0.0	\$55.93	\$408.50	\$70.00	6.05
Cafeteria	4	Linear Fluorescent - T8: 4' T8 (32W) - 4L	Wall Switch	114	1,760	Relamp	Yes	4	LED - Linear Tubes: (4) 4' Lamps	Occupancy Sensor	58	1,232	0.19	594	0.0	\$78.76	\$496.53	\$100.00	5.03
Storage	1	Linear Fluorescent - T8: 4' T8 (32W) - 4L	Wall Switch	114	1,210	Relamp	No	1	LED - Linear Tubes: (4) 4' Lamps	Wall Switch	58	1,210	0.04	78	0.0	\$10.33	\$95.13	\$20.00	7.28
Storage	1	Incandescent: 60W A Lamp	Wall Switch	60	1,210	Fixture Replacement	No	1	LED - Fixtures: Downlight Solid State Retrofit	Wall Switch	9	1,210	0.03	71	0.0	\$9.41	\$63.65	\$5.00	6.24
Boys Restroom	2	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,540	Relamp	Yes	2	LED - Linear Tubes: (2) 4' Lamps	Occupancy Sensor	29	1,078	0.05	148	0.0	\$19.58	\$233.00	\$40.00	9.86
Closet	1	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,320	Relamp	No	1	LED - Linear Tubes: (2) 4' Lamps	Wall Switch	29	1,320	0.02	50	0.0	\$6.64	\$58.50	\$10.00	7.31
Room1	32	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,320	Relamp	Yes	32	LED - Linear Tubes: (2) 4' Lamps	Occupancy Sensor	29	924	0.87	2,026	0.0	\$268.46	\$1,988.00	\$340.00	6.14
Exterior Perimeter	12	Metal Halide: 125W Screen in Lamp	Daylight Dimming	125	935	Fixture Replacement	No	12	LED - Fixtures: Outdoor Wall-Mounted Area Fixture	Daylight Dimming	25	935	0.79	1,290	0.0	\$171.01	\$4,688.12	\$1,200.00	20.40
Exterior Perimeter	17	Metal Halide: (1) 175W Lamp	Daylight Dimming	215	935	Fixture Replacement	No	17	LED - Fixtures: Outdoor Wall-Mounted Area Fixture	Daylight Dimming	25	935	2.12	3,473	0.0	\$460.29	\$6,641.51	\$1,700.00	10.74
Exterior Perimeter	1	Incandescent: 60W A Lamp	Daylight Dimming	60	935	Fixture Replacement	No	1	LED - Fixtures: Downlight Solid State Retrofit	Daylight Dimming	9	935	0.03	55	0.0	\$7.27	\$63.65	\$5.00	8.07
Cafeteria	2	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,760	Relamp	No	2	LED - Linear Tubes: (2) 4' Lamps	Wall Switch	29	1,760	0.04	134	0.0	\$17.70	\$117.00	\$20.00	5.48

Motor Inventory & Recommendations

		Existing (Conditions					Proposed	Conditions			Energy Impac	t & Financial A	nalysis				
Location	Area(s)/System(s) Served	Motor Quantity	Motor Application		Full Load Efficiency	VFD Control?	Annual Operating Hours	Install High Efficiency Motors?	Full Load Efficiency	Install VFDs?	Number of VFDs	Total Peak kW Savings	Total Annual kWh Savings		Total Annual Energy Cost Savings	Total Installation Cost	Total Incentives	Simple Payback w/ Incentives in Years
Boiler Room	Boiler Room	1	Combustion Air Fan	0.8	71.0%	No	1,105	No	71.0%	No		0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Boiler Room	School Building - Old Section	1	Heating Hot Water Pump	3.5	77.0%	No	1,105	Yes	89.5%	Yes	1	0.68	1,756	0.0	\$232.66	\$3,884.01	\$0.00	16.69
Boiler Room	School Building - Old Section	1	Heating Hot Water Pump	1.5	74.0%	No	1,105	Yes	86.5%	Yes	1	0.30	785	0.0	\$104.01	\$3,390.61	\$0.00	32.60
Boiler Room	School Building - New Section	1	Heating Hot Water Pump	1.5	75.0%	No	1,105	Yes	86.5%	Yes	1	0.29	770	0.0	\$102.02	\$3,390.61	\$0.00	33.23
Boiler Room	Boiler Room	1	Exhaust Fan	0.8	82.0%	No	1,105	No	82.0%	No		0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Boiler Room	Boiler Room	1	Other	0.8	80.0%	No	1,105	No	80.0%	No		0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Boiler Room	Air Compressor	1	Other	0.3	70.0%	No	1,105	No	70.0%	No		0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Roof Top	Restroom	1	Exhaust Fan	0.3	69.0%	No	1,105	No	69.0%	No		0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
School	School Building	21	Other	0.3	77.0%	No	1,105	No	77.0%	No		0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00

Electric HVAC Inventory & Recommendations

-	•	Existing (Conditions			Proposed	Condition	s						Energy Impac	t & Financial A	nalysis				
Location	Area(s)/System(s) Served	System Quantity	System Type	Capacity per Unit	per Unit			System Type	Capacity per Unit	Heating Capacity per Unit (kBtu/hr)	Cooling Mode Efficiency (SEER/EER)	Heating Mode Efficiency (COP)	Install Dual Enthalpy Economizer?		Total Annual kWh Savings	MMRfu	Total Annual Energy Cost Savings	Total Installation Cost	Total Incentives	Simple Payback w/ Incentives in Years
Room 15	Room 15	1	Window AC	1.25		No							No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Room 14	Room 14	1	Window AC	2.00		No							No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Room 13	Room 13	1	Window AC	0.83		Yes	1	Window AC	0.83		12.00		No	0.23	273	0.0	\$36.24	\$903.67	\$0.00	24.94
Room 12	Room 12	1	Window AC	2.00		No							No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Room 11	Room 11	1	Window AC	1.25		Yes	1	Window AC	1.25		12.00		No	0.37	446	0.0	\$59.08	\$1,360.95	\$0.00	23.04
Room 10	Room 10	1	Window AC	2.00		Yes	1	Window AC	2.00		12.00		No	0.55	659	0.0	\$87.32	\$2,177.52	\$0.00	24.94
Room 9	Room 9	1	Window AC	1.00		No							No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Room 7	Room 7	1	Window AC	2.00		No							No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Room 6	Room 6	1	Window AC	0.50		Yes	1	Window AC	0.50		12.00		No	0.14	165	0.0	\$21.83	\$544.38	\$0.00	24.94
Room 4	Room 4	1	Window AC	0.83		Yes	1	Window AC	0.83		12.00		No	0.23	273	0.0	\$36.24	\$903.67	\$0.00	24.94
Room 2	Room 2	1	Window AC	1.25		No							No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Room 1	Room 1	1	Window AC	2.00		No							No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00

Fuel Heating Inventory & Recommendations

		Existing (Conditions		Proposed	Condition	S				Energy Impac	& Financial A	nalysis				
Location	.,,	System Quantity	System Tyne	•			System Type	Output Capacity per Unit (MBh)	Heating Efficiency	Heating Efficiency Units	Total Peak kW Savings	Total Annual kWh Savings	Total Annual MMBtu Savings		Total Installation Cost	Total Incentives	Simple Payback w/ Incentives in Years
Room 5C - Boiler Room	School Building	1	Non-Condensing Hot Water Boiler	1,477.00	No						0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00

DHW Inventory & Recommendations

		Existing (Conditions	Proposed	Condition	s				Energy Impac	t & Financial A	nalysis				
Location	Area(s)/System(s) Served	System Quantity	System Type	Replace?	System Quantity	System Type	Fuel Type	System Efficiency	,		Total Annual kWh Savings	MMBtu	Total Annual Energy Cost Savings	Total Installation Cost	Total Incentives	Simple Payback w/ Incentives in Years
Room 5C - Boiler Room	School Building	1	Storage Tank Water Heater (> 50 Gal)	No						0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00

Low-Flow Device Recommendations

	Recomme	edation Inputs			Energy Impac	t & Financial A	nalysis				
Location	Device Quantity	Device Type	Existing Flow Rate (gpm)	Proposed Flow Rate (gpm)	Total Peak	Total Annual kWh Savings	MMBtu	Total Annual Energy Cost Savings		Total Incentives	Simple Payback w/ Incentives in Years
School	9	Faucet Aerator (Lavatory)	2.20	1.00	0.00	2,747	0.0	\$364.05	\$64.53	\$0.00	0.18

Commercial Refrigerator/Freezer Inventory & Recommendations

	Existing (Conditions		Proposed Condi	Energy Impac	t & Financial A	nalysis				
Location	Quantity	Refrigerator/Freezer Type	ENERGY STAR Qualified?	Install ENERGY STAR Equipment?	Total Peak	Total Annual kWh Savings	l MMBtu	Total Annual Energy Cost Savings	Total Installation Cost	Total Incentives	Simple Payback w/ Incentives in Years
Cafeteria	1	Stand-Up Refrigerator, Solid Door (31 - 50 cu. ft.)	Yes	No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00

Cooking Equipment Inventory & Recommendations

	Existing Con	nditions		Proposed Conditions	Energy Impac	t & Financial A	nalysis				
Location	Quantity	Equipment Type	High Efficiency Equipement?	,		Total Annual kWh Savings	MMRtu	Total Annual Energy Cost Savings		Total Incentives	Simple Payback w/ Incentives in Years
Cafeteria	1	Insulated Food Holding Cabinet (Full Size)	Yes	No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00

Plug Load Inventory

	Existing C	Conditions		
Location	Quantity	Equipment Description	Energy Rate (W)	ENERGY STAR Qualified?
School	2	Copy Machine	1,400.0	Yes
School	18	Desktop LCD Computer	191.0	Yes
School	12	Small Printer	46.0	Yes
School	2	Printer	460.0	Yes
School	7	Microwave	980.0	No
School	3	Refrigerator	265.0	Yes
School	2	Coffee Machine	1,050.0	No
School	7	Small Freezer	56.0	Yes

Appendix B: ENERGY STAR® Statement of Energy Performance

	RGY STAR [®] Sta ormance	atement of Energy	
	Milton Elementa	ary School	
61	Primary Property Type Gross Floor Area (ft²): Built: 1950		
ENERGY STAR® Score ¹	For Year Ending: August Date Generated: April 28		
The ENERGY STAR score is a 1-100 climate and business activity.	assessment of a building's energy	efficiency as compared with similar buildings nation	onwide, adjusting for
Property & Contact Informati	on		
Property Address Milton Elementary School 52 School House Road Oak Ridge, New Jersey 07438 Property ID: 5864778	Property Owner Jefferson Township F 31 Route 181 Lake Hopatcong, NJ ()	31 Route 181	849
Energy Consumption and En	ergy Use Intensity (EUI)		
	y by Fuel ?) (kBtu) 1,436,028 (77%) (kBtu) 433,120 (23%)	National Median Comparison National Median Site EUI (kBtu/ft²) National Median Source EUI (kBtu/ft²) % Diff from National Median Source EUI Annual Emissions Greenhouse Gas Emissions (Metric Tons CO2e/year)	94.5 142.2 -10%
Signature & Stamp of Ve	erifying Professional		
I(Name)	verify that the above information	n is true and correct to the best of my knowled	ge.
Signature: Licensed Professional	Date:		

(If applicable)