

Local Government Energy Audit: Energy Audit Report

Copyright ©2017 TRC Energy Services. All rights reserved.

Reproduction or distribution of the whole, or any part of the contents of this document without written permission of TRC is prohibited. Neither TRC nor any of its employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any data, information, method, product or process disclosed in this document, or represents that its use will not infringe upon any privately-owned rights, including but not limited to, patents, trademarks or copyrights.

Forked River Elementary

School

Lacey Township Board of Education

110 Lacey Road

Forked River, NJ 08731

March 16, 2018

Final Report by: TRC Energy Services

Disclaimer

The intent of this energy analysis report is to identify energy savings opportunities and recommend upgrades to the facility's energy using equipment and systems. Approximate savings are included in this report to help make decisions about reducing energy use at the facility. This report, however, is not intended to serve as a detailed engineering design document. Further design and analysis may be necessary in order to implement some of the measures recommended in this report.

The energy conservation measures and estimates of energy savings have been reviewed for technical accuracy. However, estimates of final energy savings are not guaranteed, because final savings may depend on behavioral factors and other uncontrollable variables. TRC Energy Services (TRC) and New Jersey Board of Public Utilities (NJBPU) shall in no event be liable should the actual energy savings vary.

Estimated installation costs are based on TRC's experience at similar facilities, pricing from local contractors and vendors, and/or cost estimates from *RS Means*. The owner of the facility is encouraged to independently confirm these cost estimates and to obtain multiple estimates when considering measure installations. Since actual installed costs can vary widely for certain measures and conditions, TRC and NJBPU do not guarantee installed cost estimates and shall in no event be held liable should actual installed costs vary from estimates.

New Jersey's Clean Energy Program (NJCEP) incentive values provided in this report are estimates based on program information available at the time of the report. Incentive levels are not guaranteed. The NJBPU reserves the right to extend, modify, or terminate programs without prior notice. The owner of the facility should review available program incentives and eligibility requirements prior to selecting and installing any energy conservation measures.

Table of Contents

1	Execut	ive Summary	Executive Summary1					
	1.1	Facility Summary	1					
	1.2	Your Cost Reduction Opportunities	1					
	Ener	gy Conservation Measures	1					
	•	gy Efficient Practices						
	On-S	ite Generation Measures	3					
	1.3	Implementation Planning	3					
2	Facility	Information and Existing Conditions	5					
	2.1	Project Contacts	5					
	2.2	General Site Information	5					
	2.3	Building Occupancy	5					
	2.4	Building Envelope	5					
	2.5	On-Site Generation	6					
	2.6	Energy-Using Systems	6					
	Light	ing System	6					
		Vater Heating System						
		t Expansion Air Conditioning System (DX)						
		estic Hot Water Heating System						
		Service						
		ing Plug Load						
	2.7	Water-Using Systems	7					
3 Site Energy Use and Costs								
•			8					
•	3.1							
J		Total Cost of Energy	8					
J	3.1		8 9					
	3.1 3.2	Total Cost of Energy Electricity Usage	8 9 10					
5	3.1 3.2 3.3	Total Cost of Energy Electricity Usage Natural Gas Usage	8 9 10 11					
4	3.1 3.2 3.3 3.4 3.5	Total Cost of Energy Electricity Usage Natural Gas Usage Benchmarking	8 9 10 11 12					
	3.1 3.2 3.3 3.4 3.5	Total Cost of Energy Electricity Usage Natural Gas Usage Benchmarking Energy End-Use Breakdown	8 9 10 11 12 . 13					
	3.1 3.2 3.3 3.4 3.5 Energy	Total Cost of Energy Electricity Usage Natural Gas Usage Benchmarking Energy End-Use Breakdown Conservation Measures	8 9 10 11 12 . 13 13					
	 3.1 3.2 3.3 3.4 3.5 Energy 4.1 4.1.1 	Total Cost of Energy Electricity Usage Natural Gas Usage Benchmarking Energy End-Use Breakdown Conservation Measures Recommended ECMs	8 9 10 11 12 . 13 13 14					
	3.1 3.2 3.3 3.4 3.5 Energy 4.1 4.1.1 ECM	Total Cost of Energy Electricity Usage Natural Gas Usage Benchmarking Energy End-Use Breakdown Conservation Measures Recommended ECMs Lighting Upgrades	8 9 10 11 12 . 13 13 14 .14					
	3.1 3.2 3.3 3.4 3.5 Energy 4.1 4.1.1 ECM	Total Cost of Energy Electricity Usage Natural Gas Usage Benchmarking Energy End-Use Breakdown Conservation Measures Recommended ECMs Lighting Upgrades 1: Install LED Fixtures	8 9 10 11 12 .13 13 14 .14 .15					
	3.1 3.2 3.3 3.4 3.5 Energy 4.1 4.1.1 ECM ECM 4.1.2	Total Cost of Energy Electricity Usage Natural Gas Usage Benchmarking Energy End-Use Breakdown Conservation Measures Recommended ECMs Lighting Upgrades 1: Install LED Fixtures 2: Retrofit Fixtures with LED Lamps	8 9 10 11 12 .13 14 .14 .15 15					
	3.1 3.2 3.3 3.4 3.5 Energy 4.1 4.1.1 ECM ECM 4.1.2 ECM	Total Cost of Energy Electricity Usage Natural Gas Usage Benchmarking Energy End-Use Breakdown Conservation Measures Recommended ECMs Lighting Upgrades 1: Install LED Fixtures 2: Retrofit Fixtures with LED Lamps Lighting Control Measures	8 9 10 11 12 .13 13 14 .14 .15 15 .15					
	3.1 3.2 3.3 3.4 3.5 Energy 4.1 4.1.1 ECM ECM 4.1.2 ECM	Total Cost of Energy Electricity Usage Natural Gas Usage Benchmarking Energy End-Use Breakdown Conservation Measures Recommended ECMs Lighting Upgrades 1: Install LED Fixtures 2: Retrofit Fixtures with LED Lamps Lighting Control Measures 3: Install Occupancy Sensor Lighting Controls	8 9 10 11 12 .13 13 14 .14 .15 15 .15 .16					
	3.1 3.2 3.3 3.4 3.5 Energy 4.1 4.1.1 ECM ECM 4.1.2 ECM ECM ECM	Total Cost of Energy Electricity Usage Natural Gas Usage Benchmarking	8 9 10 11 12 .13 13 14 .15 .15 .16 17					

	Redu	Ice Air Leakage	
		e Doors and Windows	
	Use \	Window Treatments/Coverings	
	Perfo	orm Proper Lighting Maintenance	
	Deve	lop a Lighting Maintenance Schedule	
	Ensu	re Lighting Controls Are Operating Properly	
		orm Routine Motor Maintenance	
	Pract	tice Proper Use of Thermostat Schedules and Temperature Resets	
		n Evaporator/Condenser Coils on AC Systems	
	Chec	k for and Seal Duct Leakage	
	Perfo	orm Proper Boiler Maintenance	
	Perfo	orm Proper Water Heater Maintenance	20
	Wate	er Conservation	20
6	On-Site	e Generation Measures	21
	6.1	Photovoltaic	21
	6.2	Combined Heat and Power	
7	Demar	nd Response	23
8		t Funding / Incentives	
	8.1	SmartStart	25
	8.2	Direct Install	
	8.3	Energy Savings Improvement Program	
~			
9	Energy	Purchasing and Procurement Strategies	
	9.1	Retail Electric Supply Options	
	9.2	Retail Natural Gas Supply Options	
	-	···· ·································	

Appendix A: Equipment Inventory & Recommendations

Appendix B: ENERGY STAR[®] Statement of Energy Performance

Table of Figures

Figure 1 – Previous 12 Month Utility Costs
Figure 2 –Potential Post-Implementation Costs2
Figure 3 – Summary of Energy Reduction Opportunities2
Figure 4 –Project Contacts
Figure 5 -Building Schedule
Figure 6 -Utility Summary8
Figure 7 -Energy Cost Breakdown8
Figure 8-Electric Usage & Demand9
Figure 9-Electric Usage & Demand9
Figure 10-Natural Gas Usage10
Figure 11-Natural Gas Usage10
Figure 12 -Energy Use Intensity Comparison –Existing Conditions11
Figure 13 -Energy Use Intensity Comparison –Following Installation of Recommended Measures
Figure 14 -Energy Balance (kBtu/SF,%)12
Figure 15 –Summary of Recommended ECMs13
Figure 16 –Summary of Lighting Upgrade ECMs14
Figure 17 –Summary of Lighting Control ECMs15
Figure 18-Summary of Domestic Water Heating ECMs17
Figure 19 - ECM Incentive Program Eligibility24

I EXECUTIVE SUMMARY

The New Jersey Board of Public Utilities (NJBPU) has sponsored this Local Government Energy Audit (LGEA) Report for Forked River Elementary School.

The goal of an LGEA report is to provide you with information on how your facility uses energy, identify energy conservation measures (ECMs) that can reduce your energy use, and provide information and assistance to help facilities implement ECMs. The LGEA report also contains valuable information on financial incentives from New Jersey's Clean Energy Program (NJCEP) for implementing ECMs.

This study was conducted by TRC, as part of a comprehensive effort to assist Lacey Township Board of Education in controlling energy costs and protecting our environment by offering a wide range of energy management options and advice.

I.I Facility Summary

Forked River Elementary School is a 45,800 square foot facility comprised of a single story public school building serving grades K - 4.

Lighting at Forked River Elementary School consists primarily of a mixture of T8 and T12 fluorescent sources, which are inefficient compared to currently available alternatives. A few highly-efficient LED fixtures have been installed, mainly on the building exterior. Cooling and ventilation are provided by relatively efficient split system air conditioners and heat pumps ranging in age from 6 to 12 years. Heating is provided by three condensing hot water boilers, approximately eight (8) years old. Most areas are heated by unit ventilators. Forced air heating for the multi-use room is provided by an air handling unit. HVAC systems are monitored and controlled through a building management system. A thorough description of the facility and our observations are located in Section 2.

1.2 Your Cost Reduction Opportunities

Energy Conservation Measures

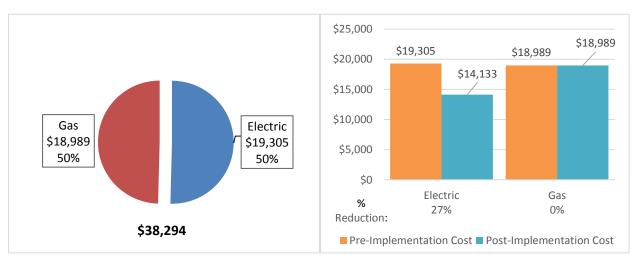

TRC evaluated five (5) measures which together represent an opportunity for Forked River Elementary School to reduce annual energy costs by \$5,172 and annual greenhouse gas emissions by 61,157 lbs CO₂e. We estimate that if all measures were implemented as recommended, the project would pay for itself in 9.1 years. The breakdown of existing and potential utility costs after project implementation are illustrated in Figure 1 and Figure 2, respectively. Together these measures represent an opportunity to reduce Forked River Elementary School's annual energy use by 9%.

Figure 1 – Previous 12 Month Utility Costs

A detailed description of Forked River Elementary School's existing energy use can be found in Section 3.

Estimates of the total cost, energy savings, and financial incentives for the proposed energy efficient upgrades are summarized below in Figure 3. A brief description of each category can be found below and a description of savings opportunities can be found in Section 4.

	Energy Conservation Measure	Recommend?	Annual Electric Savings (kWh)	Peak Demand Savings (kW)	Annual Fuel Savings (MMBtu)	•	Estimated Install Cost (\$)	Estimated Incentive (\$)*	Estimated Net Cost (\$)		CO ₂ e Emissions Reduction (Ibs)
	Lighting Upgrades		45,504	18.0	0.0	\$3,875.01	\$40,626.77	\$2,670.00	\$37,956.77	9.8	45,822
ECM 1	Install LED Fixtures	Yes	8,764	1.2	0.0	\$746.36	\$9,536.77	\$420.00	\$9,116.77	12.2	8,826
ECM 2	Retrofit Fixtures with LED Lamps	Yes	36,739	16.8	0.0	\$3,128.66	\$31,090.00	\$2,250.00	\$28,840.00	9.2	36,996
	Lighting Control Measures		6,853	3.1	0.0	\$583.59	\$10,258.00	\$1,215.00	\$9,043.00	15.5	6,901
ECM 3	Install Occupancy Sensor Lighting Controls	Yes	5,915	2.7	0.0	\$503.71	\$9,258.00	\$1,215.00	\$8,043.00	16.0	5,956
ECM 4	Install High/Low Lighitng Controls	Yes	938	0.4	0.0	\$79.88	\$1,000.00	\$0.00	\$1,000.00	12.5	945
	Domestic Water Heating Upgrade		8,376	0.0	0.0	\$713.29	\$164.91	\$0.00	\$164.91	0.2	8,435
ECM 5	Install Low-Flow Domestic Hot Water Devices	Yes	8,376	0.0	0.0	\$713.29	\$164.91	\$0.00	\$164.91	0.2	8,435
	TOTALS		60,732	21.1	0.0	\$5,171.89	\$51,049.68	\$3,885.00	\$47,164.68	9.1	61,157

Figure 3 – Summary of Energy Reduction Opportunities

* - All incentives presented in this table are based on NJ Smart Start Building equipment incentives and assume proposed equipment meets minimum performance criteria for that program.

** - Simple Payback Period is based on net measure costs (i.e. after incentives).

Lighting Upgrades generally involve the replacement of existing lighting components such as lamps and ballasts (or the entire fixture) with higher efficiency lighting components. These measures save energy by reducing the power used by the lighting components due to improved electrical efficiency.

Lighting Controls measures generally involve the installation of automated controls to turn off lights or reduce light output when not needed. Automated control reduces reliance on occupant behavior for adjusting lights. These measures save energy by reducing the amount of time lights are on.

Domestic Hot Water upgrade measures generally involve replacing older inefficient domestic water heating systems with modern energy efficient systems. New domestic hot water heating systems can provide equivalent, or greater, water heating capacity compared to older systems at a reduced energy

cost. These measures save energy by reducing the fuel used for domestic hot water heating due to improved heating efficiency or reducing standby losses.

Energy Efficient Practices

TRC Energy Services also identified 13 low cost or no cost energy efficient practices. A facility's energy performance can be significantly improved by employing certain behavioral or operational adjustments and by performing better routine maintenance on building systems. These practices can extend equipment lifetime, improve occupant comfort, provide better health and safety, as well as reduce annual energy and O&M costs. Potential opportunities identified at Forked River Elementary School include:

- Reduce Air Leakage
- Close Doors and Windows
- Use Window Treatments/Coverings
- Perform Proper Lighting Maintenance
- Develop a Lighting Maintenance Schedule
- Ensure Lighting Controls Are Operating Properly
- Perform Routine Motor Maintenance
- Practice Proper Use of Thermostat Schedules and Temperature Resets
- Clean Evaporator/Condenser Coils on AC Systems
- Check for and Seal Duct Leakage
- Perform Proper Boiler Maintenance
- Perform Proper Water Heater Maintenance
- Water Conservation

For details on these Energy Efficient Practices, please refer to Section 5.

On-Site Generation Measures

TRC Energy Services evaluated the potential for installing on-site generation for Forked River Elementary School. The site has a 108 kW photovoltaic (PV) array that supplies electricity to the school. Based on the configuration of the site and its loads there is a low potential for installing additional PV or any combined heat and power self-generation measures. For details on our evaluation and on-site generation potential, please refer to Section 6.

I.3 Implementation Planning

To realize the energy savings from the ECMs listed in this report, a project implementation plan must be developed. Available capital must be considered and decisions need to be made whether it is best to pursue individual ECMs separately, groups of ECMs, or a comprehensive approach where all ECMs are implemented together, possibly in conjunction with other facility upgrades or improvements.

Rebates, incentives, and financing are available from NJCEP, as well as other sources, to help reduce the costs associated with the implementation of energy efficiency projects. Prior to implementing any measure, please review the relevant incentive program guidelines before proceeding. This is important because in most cases you will need to submit applications for the incentives prior to purchasing materials or commencing with installation.

The ECMs outlined in this report may qualify under the following program(s):

- SmartStart
- Direct Install

For facilities wanting to pursue only selected individual measures (or planning to phase implementation of selected measures over multiple years), incentives are available through the SmartStart program. To participate in this program, you may utilize internal resources, or an outside firm or contractor, to do the final design of the ECM(s) and do the installation. Program pre-approval is required for some SmartStart incentives, so only after receiving pre-approval should you proceed with ECM installation. The incentive estimates listed above in Figure 3 are based on the SmartStart program. More details on this program and others are available in Section 8.

This facility may also qualify for the Direct Install program which can provide turnkey installation of multiple measures, through an authorized network of participating contractors. This program can provide substantially higher incentives that SmartStart, up to 70% of the cost of selected measures, although measure eligibility will have to be assessed and be verified by the designated Direct Install contractor and, in most cases, they will perform the installation work.

For larger facilities with limited capital availability to implement ECMs, project financing may be available through the Energy Savings Improvement Program (ESIP). Supported directly by the NJBPU, ESIP provides government agencies with project development, design, and implementation support services, as well as, attractive financing for implementing ECMs. An LGEA report (or other approved energy audit) is required for participation in ESIP. Please refer to Section 8.3 for additional information on the ESIP Program.

The Demand Response Energy Aggregator is a (non-NJCEP) program designed to reduce electric loads at commercial facilities, when wholesale electricity prices are high or when the reliability of the electric grid is threatened due to peak power demand. Demand Response (DR) service providers (a.k.a. Curtailment Service Providers) are registered with PJM, the independent system operator (ISO) for mid-Atlantic state region that is charged with maintaining electric grid reliability. By enabling grid operators to call upon commercial facilities to reduce their electric usage during times of peak demand, the grid is made more reliable and overall transmission costs are reduced for all ratepayers. Curtailment Service Providers provide regular payments to medium and large consumers of electric power for their participation in DR programs. Program participation is voluntary and facilities receive payments whether or not they are called upon to curtail their load during times of peak demand. Refer to Section 7 for additional information on this program.

Additional information on relevant incentive programs is located in Section 8. You may also check the following website for more details: <u>www.njcleanenergy.com/ci.</u>

2 FACILITY INFORMATION AND EXISTING CONDITIONS

2.1 Project Contacts

Figure 4 – Project Contacts

Name	Role	E-Mail	Phone #			
Customer						
Datriak & DeCaerro	Business	ndagaarra@laaay.cabaala.arr	(609) 971-2000			
Patrick S. DeGeorge	Administrator	pdegeorge@laceyschools.org	x 1001			
Designated Representative						
David Klink						
TRC Energy Services						
Smruti Srinivasan	Auditor	SSrinivasan@trcsolutions.com	(732) 855-0033			

2.2 General Site Information

On March 20, 2017, TRC performed an energy audit at Forked River Elementary School located in Forked River, New Jersey. TRC's team met with David Klink to review the facility operations and help focus our investigation on specific energy-using systems.

Forked River Elementary School is a 45,800 square foot facility comprised of a single story public school building serving grades K - 4. The building was constructed in 1952. The facility has replaced some of its existing T12 fluorescent fixtures with T8 fluorescent fixtures. The site installed photovoltaic panels as part of a district-wide effort.

2.3 Building Occupancy

The school building is open Monday through Friday from approximately 9:00 AM through 4:00 PM during the school year September through June. During a typical day, the facility is occupied by a total of approximately 530 staff and students. The typical schedule is presented in the table below.

Building Name	Weekday/Weekend	Operating Schedule
Forked River ES	Weekday	9AM - 4PM
Forked River ES	Weekend	not occupied

Figure 5 -Building Schedule

2.4 Building Envelope

The construction is brick façade over concrete blocks, with double pane non-insulated windows. The roof is flat, composition type with photovoltaic solar panels.

2.5 On-Site Generation

As part of a 2009 district-wide effort, Forked River Elementary School installed a 108 kW solar energy project consisting of rooftop mounted photovoltaic panels. During the summer, solar production exceeds the building usage and the array exports to the grid.

2.6 Energy-Using Systems

Please see Appendix A: Equipment Inventory & Recommendations for an inventory of the facility's equipment.

Lighting System

Approximately half of the light fixtures use 34-Watt linear T12 fluorescent lamps and magnetic ballasts. A significant number of light fixtures contain somewhat more efficient 32 Watt linear fluorescent T8 lamps and electronic ballasts. Compact fluorescent lamps have been installed replacing incandescent lamps in storage spaces. Building exit signs use LED sources. Interior lighting control is provided mostly by manually operated switches, however, occupancy sensors have been installed in faculty restrooms and other areas.

Exterior lighting consists primarily of LED source building mounted fixtures and metal halide (MH) source parking and doorway fixtures. Exterior fixtures are controlled to operate only during non-daylight hours.

Hot Water Heating System

The heating water system consists of three (3) Mach condensing hot water boilers rated at 1,920 MBh output. The boilers have a nominal combustion efficiency of 96%. The boilers provide hot water to the heating loop via two (2) 5 hp pumps which are equipped with variable speed drives (VFD). Heat is distributed to the classrooms and offices by distributed perimeter convection heaters. Heat for the multipurpose room is provided via an air handling unit (AHU-1). The boilers are approximately eight (8) years old and in operational condition.

Direct Expansion Air Conditioning System (DX)

Space cooling is limited to a portion of the building; cooling is generally limited to office areas, computer rooms, and the library. Most cooled areas are served by split system air conditioners or heat pumps with capacities ranging between 1 and 3 tons.

The HVAC systems are controlled by the building EMS which schedules and optimizes cooling systems based on control algorithms and control inputs including zone and outside air temperature sensor readings.

Domestic Hot Water Heating System

The domestic hot water heating system for the facility consists of several distributed electrical hot water heaters, each typically rated at 4.5 kW with a storage capacity of 40 gallons.

Food Service

The school has an all-electric warming kitchen. Food warming equipment consists of a full-sized convection oven and an insulated food holding cabinet. The kitchen also contains a Hobart door type dishwasher with electric booster heater.

Refrigeration

The facility has two (2) cold storage areas, a walk-in cooler box and a walk-in freezer. The cooler and freezer are served by three (3) evaporator fans each.

Building Plug Load

There are approximately 106 computer work stations throughout the facility, the majority with LCD monitors. Classroom areas are equipped with smart boards and projectors. The facility plug load includes several copiers, printers, and other office equipment. A small service kitchen includes a coffee machine, refrigerator, microwave, and toaster. The faculty room has a refrigerated beverage vending machine; it is equipped with a vending machine controller.

2.7 Water-Using Systems

There are several faculty and student restrooms at this facility. A sampling of restrooms found that all of the faucets are rated for 2.2 gallons per minute (gpm) or higher. Replacement of sink aerators with low flow devices is recommended.

3 SITE ENERGY USE AND COSTS

Utility data for electricity and natural gas was analyzed to identify opportunities for savings. In addition, data for electricity and natural gas was evaluated to determine the annual energy performance metrics for the building in energy cost per square foot and energy usage per square foot. These metrics are an estimate of the relative energy efficiency of this building. There are a number of factors that could cause the energy use of this building to vary from the "typical" energy usage profile for facilities with similar characteristics. Local weather conditions, building age and insulation levels, equipment efficiency, daily occupancy hours, changes in occupancy throughout the year, equipment operating hours, and energy efficient behavior of occupants all contribute to benchmarking scores. Please refer to the Benchmarking section within Section 3.4 for additional information.

3.1 Total Cost of Energy

The following energy consumption and cost data is based on the last 12-month period of utility billing data that was provided for each utility. A profile of the annual energy consumption and energy cost of the facility was developed from this information.

Utility Summary for Forked River Elementary School					
Fuel	Usage	Cost			
Electricity	226,695 kWh	\$19,305			
Natural Gas	16,027 Therms	\$18,989			
Total	\$38,294				

Figure	6	-Utility	Summary
inguic	•	-Ounty	Sammary

The current annual energy cost for this facility is \$38,294 as shown in the chart below.

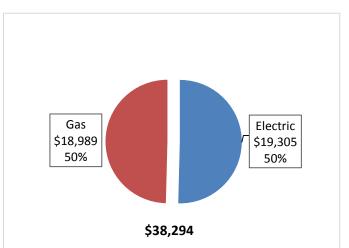


Figure 7 -Energy Cost Breakdown

3.2 Electricity Usage

Electricity is provided by JCP&L and supplemented by on-site generation. The average electric cost over the past 12 months was \$0.085/kWh, which is the blended rate that includes energy supply, distribution, and other charges. Solar production accounts for over 45% of the facility total electricity use. Costs are not tabulated for the energy produced by the solar panels, which, brings down the site's overall cost of electricity. This rate is used throughout the analyses in this report to assess energy costs and savings. The monthly electricity consumption and peak demand are shown in the chart below. The electrical use pattern of reduced usage for July and August is consistent with reduced occupancy during the summer months. This suggests the district is adjusting equipment operating schedules to match reduced summer occupancy patterns.

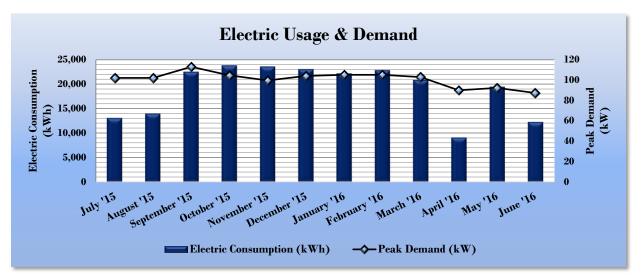


Figure 8-Electric Usage & Demand

Figure 9-Electric Usage & Demand

	Summary Electric Billing Data for Forked River Elementary School						
Period Ending	Days in Period	Electric Usage (kWh)	Demand (kW)	Demand Cost	Total Electric Cost		
7/29/15	30	13,040	102	\$279	\$423		
8/25/15	29	13,937	102	\$289	\$417		
9/24/15	32	22,458	113	\$610	\$1,550		
10/23/15	30	23,744	105	\$522	\$925		
11/24/15	32	23,506	100	\$493	\$2,263		
12/26/15	30	22,987	104	\$516	\$2,404		
1/26/16	33	22,108	105	\$525	\$3,275		
2/23/16	29	22,783	105	\$525	\$2,195		
3/24/16	29	20,793	103	\$519	\$2,046		
4/22/16	29	9,065	90	\$447	\$971		
5/25/16	29	19,398	92	\$460	\$1,655		
6/22/16	32	12,255	87	\$463	\$1,128		
Totals	364	226,074	113.1	\$5,651	\$19,252		
Annual	365	226,695	113.1	\$5,666	\$19,305		

3.3 Natural Gas Usage

Natural gas is provided by New Jersey Natural Gas. The average gas cost for the past 12 months is \$1.185/therm, which is the blended rate used throughout the analyses in this report. The monthly gas consumption is shown in the chart below. The gas use indicates seasonal variation due to winter heating. The absence of summer gas use reflects that the facility uses natural gas solely for space heating.

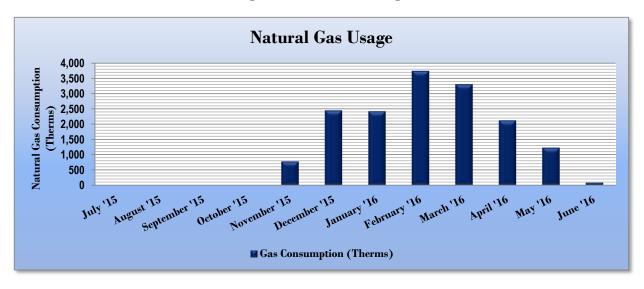


Figure 10-Natural Gas Usage

Gas E	Gas Billing Data for Forked River Elementary School						
Period Ending	Days in Period	Natural Gas Usage (Therms)	Natural Gas Cost				
7/17/15	28	0	\$528				
8/14/15	28	0	\$423				
9/15/15	32	0	\$528				
10/16/15	31	0	\$528				
11/16/15	31	776	\$1,139				
12/18/15	32	2,447	\$2,482				
1/18/16	31	2,421	\$2,462				
2/18/16	31	3,742	\$3,516				
3/17/16	28	3,302	\$3,165				
4/18/16	32	2,121	\$2,222				
5/19/16	31	1,227	\$1,508				
6/20/16	32	79	\$592				
Totals	367	16,115	\$19,093				
Annual	365	16,027	\$18,989				

3.4 Benchmarking

This facility was benchmarked using Portfolio Manager, an online tool created and managed by the United States Environmental Protection Agency (EPA) through the ENERGY STAR[®] program. Portfolio Manager analyzes your building's consumption data, cost information, and operational use details and then compares its performance against a national median for similar buildings of its type. Metrics provided by this analysis are Energy Use Intensity (EUI) and an ENERGY STAR[®] Score for select building types.

The EUI is a measure of a facility's energy consumption per square foot, and it is the standard metric for comparing buildings' energy performance. Comparing the EUI of a building with the national median EUI for that building type illustrates whether that building uses more or less energy than similar buildings of its type on a square foot basis. EUI is presented in terms of "site energy" and "source energy." Site energy is the amount of fuel and electricity consumed by a building as reflected in utility bills. Source energy includes fuel consumed to generate electricity consumed at the site, factoring in electric production and distribution losses for the region.

Energy Use Intensity Comparison - Existing Conditions					
	Forked Biver Flomontary School	National Median			
	Forked River Elementary School	Building Type: School (K-12)			
Source Energy Use Intensity (kBtu/ft ²)	89.8	141.4			
Site Energy Use Intensity (kBtu/ft ²)	51.9	58.2			

Figure 12 - Energy Use Intensity Comparison - Existing Conditions

Implementation of all recommended measures in this report would improve the building's estimated EUI significantly, as shown in the table below:

Figure 13 -Energy Use Intensity Comparison –Following Installation of Recommended Measures

Energy Use Intensity C	Comparison - Following Installation	of Recommended Measures
	Forked River Elementary School	National Median
	Forked River Elementary School	Building Type: School (K-12)
Source Energy Use Intensity (kBtu/ft ²)	75.6	141.4
Site Energy Use Intensity (kBtu/ft ²)	47.4	58.2

Many types of commercial buildings are also eligible to receive an ENERGY STAR[®] score. This score is a percentile ranking from 1 to 100. It compares your building's energy performance to similar buildings nationwide. A score of 50 represents median energy performance, while a score of 75 means your building performs better than 75 percent of all similar buildings nationwide and may be eligible for ENERGY STAR[®] certification. This facility has a current score of 85.

A Portfolio Manager Statement of Energy Performance (SEP) was generated for this facility, see Appendix B: ENERGY STAR[®] Statement of Energy Performance.

For more information on ENERGY STAR[®] certification go to: <u>https://www.energystar.gov/buildings/facility-owners-and-managers/existing-buildings/earn-recognition/energy-star-certification/how-app-1.</u>

A Portfolio Manager account has been created online for your facility and you will be provided with the login information for the account. We encourage you to update your utility information in Portfolio Manager regularly, so that you can keep track of your building's performance. Free online training is available to help you use ENERGY STAR[®] Portfolio Manager to track your building's performance at: https://www.energystar.gov/buildings/training.

3.5 Energy End-Use Breakdown

In order to provide a complete overview of energy consumption across building systems, an energy balance was performed at this facility. An energy balance utilizes standard practice engineering methods to evaluate all components of the various electric and fuel-fired systems found in a building to determine their proportional contribution to overall building energy usage. This chart of energy end uses highlights the relative contribution of each equipment category to total energy usage. This can help determine where the greatest benefits might be found from energy efficiency measures.

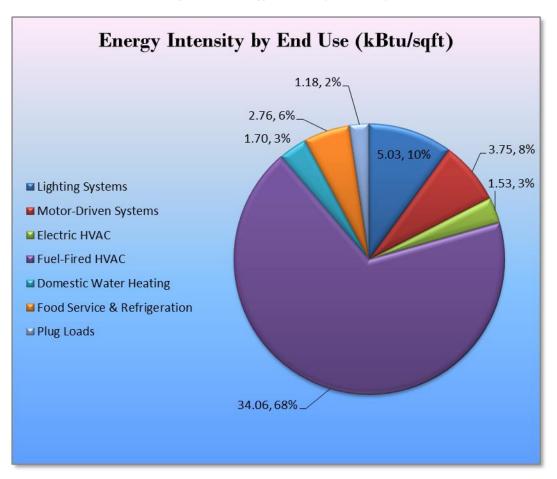


Figure 14 -Energy Balance (kBtu/SF,%)

4 ENERGY CONSERVATION MEASURES

Level of Analysis

The goal of this audit report is to identify potential energy efficiency opportunities, help prioritize specific measures for implementation, and provide information to the Forked River Elementary School regarding financial incentives for which they may qualify to implement the recommended measures. For this audit report, most measures have received only a preliminary analysis of feasibility which identifies expected ranges of savings and costs. This level of analysis is usually considered sufficient to demonstrate project cost-effectiveness and help prioritize energy measures. Savings are based on the New Jersey Clean Energy Program Protocols to Measure Resource Savings dated June 29, 2016, approved by the New Jersey Board of Public Utilities. Further analysis or investigation may be required to calculate more precise savings based on specific circumstances. A higher level of investigation may be necessary to support any custom SmartStart or Pay for Performance, or Direct Install incentive applications. Financial incentives for the ECMs identified in this report have been calculated based the NJCEP prescriptive SmartStart program. Some measures and proposed upgrade projects may be eligible for higher incentives than those shown below through other NJCEP programs as described in Section 8.

The following sections describe the evaluated measures.

4.1 Recommended ECMs

The measures below have been evaluated by the auditor and are recommended for implementation at the facility.

	Energy Conservation Measure	Annual Electric Savings (kWh)	Peak Demand Savings (kW)	Annual Fuel Savings (MMBtu)	Annual Energy Cost Savings (\$)	Estimated Install Cost (\$)	Estimated Incentive (\$)*	Estimated Net Cost (\$)	Simple Payback Period (yrs)**	CO ₂ e Emissions Reduction (Ibs)
	Lighting Upgrades	45,504	18.0	0.0	\$3,875.01	\$40,626.77	\$2,670.00	\$37,956.77	9.8	45,822
ECM 1 Install L	LED Fixtures	8,764	1.2	0.0	\$746.36	\$9,536.77	\$420.00	\$9,116.77	12.2	8,826
ECM 2 Retrofit	Fixtures with LED Lamps	36,739	16.8	0.0	\$3,128.66	\$31,090.00	\$2,250.00	\$28,840.00	9.2	36,996
	Lighting Control Measures	6,853	3.1	0.0	\$583.59	\$10,258.00	\$1,215.00	\$9,043.00	15.5	6,901
ECM 3 Install 0	Occupancy Sensor Lighting Controls	5,915	2.7	0.0	\$503.71	\$9,258.00	\$1,215.00	\$8,043.00	16.0	5,956
ECM 4 Install H	High/Low Lighitng Controls	938	0.4	0.0	\$79.88	\$1,000.00	\$0.00	\$1,000.00	12.5	945
	Domestic Water Heating Upgrade	8,376	0.0	0.0	\$713.29	\$164.91	\$0.00	\$164.91	0.2	8,435
ECM 5 Install L	Low-Flow Domestic Hot Water Devices	8,376	0.0	0.0	\$713.29	\$164.91	\$0.00	\$164.91	0.2	8,435
	TOTALS	60,732	21.1	0.0	\$5,171.89	\$51,049.68	\$3,885.00	\$47,164.68	9.1	61,157

Figure	15	_Summan	<i>.</i>	f Recommended ECMs
rigure	13	-summary		Recommended ECMS

* - All incentives presented in this table are based on NJ Smart Start Building equipment incentives and assume proposed equipment meets minimum performance criteria for that program.

** - Simple Payback Period is based on net measure costs (i.e. after incentives).

4.1.1 Lighting Upgrades

Recommended upgrades to existing lighting fixtures are summarized in Figure 16 below.

Energy Conservation Measure		Annual Electric Savings (kWh)	Peak Demand Savings (kW)		-	Estimated Install Cost (\$)	Estimated Incentive (\$)	Estimated Net Cost (\$)	· ·	CO ₂ e Emissions Reduction (Ibs)
	Lighting Upgrades	45,504	18.0	0.0	\$3,875.01	\$40,626.77	\$2,670.00	\$37,956.77	9.8	45,822
ECM 1	Install LED Fix tures	8,764	1.2	0.0	\$746.36	\$9,536.77	\$420.00	\$9,116.77	12.2	8,826
ECM 2	Retrofit Fixtures with LED Lamps	36,739	16.8	0.0	\$3,128.66	\$31,090.00	\$2,250.00	\$28,840.00	9.2	36,996

Figure 16 – Summary of Lighting Upgrade ECMs

During lighting upgrade planning and design, we recommend a comprehensive approach that considers both the efficiency of the lighting fixtures and how they are controlled.

ECM I: Install LED Fixtures

Summary of Measure Economics

Interior/ Exterior		Peak Demand Savings (kW)			Estimated Install Cost (\$)	Estimated Incentive (\$)	Estimated Net Cost (\$)	Simple Payback Period (yrs)	CO ₂ e Emissions Reduction (Ibs)
Interior	40	0.0	0.0	\$3.43	\$225.40	\$10.00	\$215.40	62.9	41
Exterior	8,724	1.1	0.0	\$742.93	\$9,311.37	\$410.00	\$8,901.37	12.0	8,785

Measure Description

We recommend replacing existing exterior fixtures containing HID lamps with new high-performance LED light fixtures both in the parking lot and doorways. Also recommended for replacement is the interior fluorescent fixture in the faculty restroom. This measure saves energy by installing LEDs which use less power than other technologies with a comparable light output.

Additional savings from lighting maintenance can be anticipated since LEDs have lifetimes which are more than twice that of HID sources, such as the existing metal halide fixtures.

ECM 2: Retrofit Fixtures with LED Lamps

Summary of Measure Economics

Interior/ Exterior		Peak Demand Savings (kW)			Estimated Install Cost (\$)	Estimated Incentive (\$)	Estimated Net Cost (\$)	Simple Payback Period (yrs)	CO ₂ e Emissions Reduction (Ibs)
Interior	36,739	16.8	0.0	\$3,128.66	\$31,090.00	\$2,250.00	\$28,840.00	9.2	36,996
Exterior	0	0.0	0.0	\$0.00	\$0.00	\$0.00	\$0.00	0.0	0

Measure Description

We recommend retrofitting existing fluorescent fixtures with LED lamps. Many LED tube lamps are direct replacements for existing fluorescent lamps and can be installed while leaving the fluorescent fixture ballast in place. This measure saves energy by installing LEDs which use less power than other lighting technologies yet provide equivalent lighting output for the space.

Additional savings from lighting maintenance can be anticipated since LEDs have lifetimes which are more than twice that of a fluorescent tube.

4.1.2 Lighting Control Measures

Figure	17	-Summary	of	Lighting	Control	ECM s
--------	----	----------	----	----------	---------	--------------

Energy Conservation Measure		Peak Demand Savings (kW)		•	Estimated Install Cost (\$)	Estimated Incentive (\$)	Estimated Net Cost (\$)	•	CO ₂ e Emissions Reduction (Ibs)
Lighting Control Measures	6,853	3.1	0.0	\$583.59	\$10,258.00	\$1,215.00	\$9,043.00	15.5	6,901
ECM 3 Install Occupancy Sensor Lighting Controls	5,915	2.7	0.0	\$503.71	\$9,258.00	\$1,215.00	\$8,043.00	16.0	5,956
ECM 4 Install High/Low Lighting Controls	938	0.4	0.0	\$79.88	\$1,000.00	\$0.00	\$1,000.00	12.5	945

During lighting upgrade planning and design, we recommend a comprehensive approach that considers both the efficiency of the lighting fixtures and how they are controlled.

ECM 3: Install Occupancy Sensor Lighting Controls

Summary of Measure Economics

	Peak Demand Savings (kW)			Estimated Install Cost (\$)		Estimated Net Cost (\$)	Simple Payback Period (yrs)	CO ₂ e Emissions Reduction (Ibs)
5,915	2.7	0.0	\$503.71	\$9,258.00	\$1,215.00	\$8,043.00	16.0	5,956

Measure Description

We recommend installing occupancy sensors to control lighting fixtures that are currently controlled by manual switches in classrooms, offices areas, and similar spaces. Lighting sensors detect occupancy using

ultrasonic and/or infrared sensors. For most spaces, we recommend lighting controls use dual technology sensors, which can eliminate the possibility of any lights turning off unexpectedly. Lighting systems are enabled when an occupant is detected. Fixtures are automatically turned off after an area has been vacant for a preset period. Some controls also provide dimming options and all modern occupancy controls can be easily over-ridden by room occupants to allow them to manually turn fixtures on or off, as desired. Energy savings results from only operating lighting systems when they are required.

Occupancy sensors may be mounted on the wall at existing switch locations, mounted on the ceiling, or in remote locations. In general, wall switch replacement sensors are recommended for single occupant offices and other small rooms. Ceiling-mounted or remote mounted sensors are used in locations without local switching or where wall switches are not in the line-of-sight of the main work area and in large spaces. We recommend a comprehensive approach to lighting design that upgrades both the lighting fixtures and the controls together for maximum energy savings and improved lighting for occupants.

ECM 4: Install High/Low Lighting Controls

	Peak Demand Savings (kW)			Estimated Install Cost (\$)	Estimated Incentive (\$)	Estimated Net Cost (\$)	Simple Payback Period (yrs)	CO ₂ e Emissions Reduction (Ibs)
938	0.4	0.0	\$79.88	\$1,000.00	\$0.00	\$1,000.00	12.5	945

Summary of Measure Economics

Measure Description

We recommend installing occupancy sensors to provide dual level lighting control for lighting fixtures in spaces that are infrequently occupied but may require some level of continuous lighting for safety or security reasons. Typical areas for such lighting control are stairwells, interior corridors, parking lots, and parking garages.

Lighting fixtures with these controls operate at default low levels when the area is not occupied to provide minimal lighting to meet security or safety requirements. Sensors detect occupancy using ultrasonic and/or infrared sensors. The lighting systems are switched to full lighting levels whenever an occupant is detected. Fixtures are automatically switched back to low level after an area has been vacant for a preset period of time. Energy savings results from only providing full lighting levels when it is required.

For this type of measure the occupancy sensors will generally be ceiling or fixture mounted. Sufficient sensor coverage needs to be provided to ensure that lights turn on in each area as an occupant approaches.

Additional savings from reduced lighting maintenance may also result from this measure, due to reduced lamp operation.

4.1.3 Domestic Hot Water Heating System Upgrades

Our recommendations for domestic water heating system improvements are summarized in Figure 18 below.

Figure 18-Summary of Domestic Water Heating ECMs

Energy Conservation Measure		Peak Demand Savings (kW)			Estimated Install Cost (\$)	Estimated Incentive (\$)	Net Cost		CO ₂ e Emissions Reduction (Ibs)
Domestic Water Heating Upgrade	8,376	0.0	0.0	\$713.29	\$164.91	\$0.00	\$164.91	0.2	8,435
ECM 5 Install Low-Flow Domestic Hot Water Devices	8,376	0.0	0.0	\$713.29	\$164.91	\$0.00	\$164.91	0.2	8,435

ECM 5: Install Low-Flow DHW Devices

Summary of Measure Economics

	Peak Demand Savings (kW)		Annual Energy Cost Savings (\$)	Estimated Install Cost (\$)	Estimated Incentive (\$)	Estimated Net Cost (\$)	Simple Payback Period (yrs)	CO ₂ e Emissions Reduction (lbs)
8,376	0.0	0.0	\$713.29	\$164.91	\$0.00	\$164.91	0.2	8,435

Measure Description

We recommend installing low-flow domestic hot water devices to reduce overall hot water demand. Energy demand from domestic hot water heating systems can be reduced by reducing water usage in general. Faucet aerators can reduce hot water usage, relative to standard aerators, which saves energy.

Low-flow devices reduce the overall water flow from the fixture, while still providing adequate pressure for washing. This reduces the amount of water used per day resulting in energy and water savings.

5 ENERGY EFFICIENT PRACTICES

In addition to the quantifiable savings estimated in Section 4, a facility's energy performance can also be improved through application of many low cost or no-cost energy efficiency strategies. By employing certain behavioral and operational changes and performing routine maintenance on building systems, equipment lifetime can be extended; occupant comfort, health and safety can be improved; and energy and O&M costs can be reduced. The recommendations below are provided as a framework for developing a whole building maintenance plan that is customized to your facility. Consult with qualified equipment specialists for details on proper maintenance and system operation.

Reduce Air Leakage

Air leakage, or infiltration, occurs when outside air enters a building uncontrollably through cracks and openings. Properly sealing such cracks and openings can significantly reduce heating and cooling costs, improve building durability, and create a healthier indoor environment. This includes caulking or installing weather stripping around leaky doors and windows allowing for better control of indoor air quality through controlled ventilation.

Close Doors and Windows

Ensure doors and windows are closed in conditioned spaces. Leaving doors and windows open leads to a significant increase in heat transfer between conditioned spaces and the outside air. Reducing a facility's air changes per hour (ACH) can lead to increased occupant comfort as well as significant heating and cooling savings, especially when combined with proper HVAC controls and adequate ventilation.

Use Window Treatments/Coverings

A substantial amount of heat gain can occur through uncovered or untreated windows, especially older single pane windows and east or west-facing windows. Treatments such as high-reflectivity films or covering windows with shades or shutters can reduce solar heat gain and, consequently, cooling load and can reduce internal heat loss and the associated heating load.

Perform Proper Lighting Maintenance

In order to sustain optimal lighting levels, lighting fixtures should undergo routine maintenance. Light levels decrease over time due to lamp aging, lamp and ballast failure, and buildup of dirt and dust on lamps, fixtures and reflective surfaces. Together, these factors can reduce total illumination by 20% - 60% or more, while operating fixtures continue drawing full power. To limit this reduction, lamps, reflectors and diffusers should be thoroughly cleaned of dirt, dust, oil, and smoke film buildup approximately every 6 - 12 months.

Develop a Lighting Maintenance Schedule

In addition to routine fixture cleaning, development of a maintenance schedule can both ensure maintenance is performed regularly and can reduce the overall cost of fixture re-lamping and re-ballasting. By re-lamping and re-ballasting fixtures in groups, lighting levels are better maintained and the number of site visits by a lighting technician or contractor can be minimized, decreasing the overall cost of maintenance.

Ensure Lighting Controls Are Operating Properly

Lighting controls are very cost-effective energy efficient devices, when installed and operating correctly. As part of a lighting maintenance schedule, lighting controls should be tested annually to ensure proper functioning. For occupancy sensors, this requires triggering the sensor and verifying that the sensor's timer settings are correct. For daylight sensors, maintenance involves cleaning of sensor lenses and confirming setpoints and sensitivity are appropriately configured.

Perform Routine Motor Maintenance

Motors consist of many moving parts whose collective degradation can contribute to a significant loss of motor efficiency. In order to prevent damage to motor components, routine maintenance should be performed. This maintenance consists of cleaning surfaces and ventilation openings on motors to prevent overheating, lubricating moving parts to reduce friction, inspecting belts and pulleys for wear and to ensure they are at proper alignment and tension, and cleaning and lubricating bearings. Consult a licensed technician to assess these and other motor maintenance strategies.

Practice Proper Use of Thermostat Schedules and Temperature Resets

Ensure thermostats are correctly set back. By employing proper set back temperatures and schedules, facility heating and cooling costs can be reduced dramatically during periods of low or no occupancy. As such, thermostats should be programmed for a setback of 5-10°F during low occupancy hours (reduce heating setpoints and increase cooling setpoints). Cooling load can be reduced further by increasing the facility's occupied setpoint temperature. In general, during the cooling season, thermostats should be set as high as possible without sacrificing occupant comfort.

Clean Evaporator/Condenser Coils on AC Systems

Dirty evaporators and condensers coils cause a restriction to air flow and restrict heat transfer. This results in increased evaporator and condenser fan load and a decrease in cooling system performance. Keeping the coils clean allows the fans and cooling system to operate more efficiently.

Check for and Seal Duct Leakage

Duct leakage in commercial buildings typically accounts for 5 to 25 percent of the supply airflow. In the case of rooftop air handlers, duct leakage can occur to the outside of the building, significantly increasing cooling and heating costs. By sealing sources of leakage, cooling, heating, and ventilation energy use can be reduced significantly, depending on the severity of air leakage.

Perform Proper Boiler Maintenance

Many boiler problems develop slowly over time, so regular inspection and maintenance is essential to retain proper functionality and efficiency of the heating system. Fuel burning equipment should undergo yearly tune-ups to ensure they are operating as safely and efficiently as possible from a combustion standpoint. A tune-up should include a combustion analysis to analyze the exhaust from the boilers and to ensure the boiler is operating safely. Buildup of dirt, dust, or deposits on the internal surfaces of a boiler can greatly affect its heat transfer efficiency. These deposits can accumulate on the water side or fire side of the boiler. Boilers should be cleaned regularly according to the manufacturer's instructions to remove this build up in order to sustain efficiency and equipment life.

Perform Proper Water Heater Maintenance

At least once a year, drain a few gallons out of the water heater using the drain valve. If there is a lot of sediment or debris, then a full flush is recommended. Turn the temperature down and then completely drain the tank. Once a year check for any leaks or heavy corrosion on the pipes and valves. For gas water heaters, check the draft hood and make sure it is placed properly, with a few inches of air space between the tank and where it connects to the vent. Look for any corrosion or wear on the gas line and on the piping. If you noticed any black residue, soot or charred metal, this is a sign you may be having combustion issues and you should have the unit serviced by a professional. For electric water heaters, look for any signs of leaking such as rust streaks or residue around the upper and lower panels covering the electrical components on the tank. For water heaters over three to four years old have a technician inspect the sacrificial anode annually.

Water Conservation

Installing low-flow faucets or faucet aerators, low-flow showerheads, and kitchen sink pre-rinse spray valves saves both energy and water. These devices save energy by reducing the overall amount of hot water used hence reducing the energy used to heat the water. The flow ratings for EPA WaterSense™ (<u>http://www3.epa.gov/watersense/products</u>) labeled devices are 1.5 gpm for bathroom faucets, 2.0 gpm for showerheads, and 1.28 gpm for pre-rinse spray valves.

Installing dual flush or low-flow toilets and low-flow or waterless urinals are additional ways to reduce the sites water use, however, these devices do not provide energy savings at the site level. Any reduction in water use does however ultimately reduce grid level electricity use since a significant amount of electricity is used to deliver water from reservoirs to end users. The EPA WaterSense[™] ratings for urinals is 0.5 gallons per flush (gpf) and toilets that use as little as 1.28 gpf (this is lower than the current 1.6 gpf federal standard).

Refer to Section 4.1.3 for any low-flow ECM recommendations.

6 ON-SITE GENERATION MEASURES

On-site generation measure options include both renewable (e.g., solar, wind) and non-renewable (e.g., fuel cells) on-site technologies that generate power to meet all or a portion of the electric energy needs of a facility, often repurposing any waste heat where applicable. Also referred to as distributed generation, these systems contribute to Greenhouse Gas (GHG) emission reductions, demand reductions and reduced customer electricity purchases, resulting in the electric system reliability through improved transmission and distribution system utilization.

The State of New Jersey's Energy Master Plan (EMP) encourages new distributed generation of all forms and specifically focuses on expanding use of combined heat and power (CHP) by reducing financial, regulatory and technical barriers and identifying opportunities for new entries. The EMP also outlines a goal of 70% of the State's electrical needs to be met by renewable sources by 2050.

Preliminary screenings were performed to determine the potential that a generation project could provide a cost-effective solution for your facility. Before making a decision to implement, a feasibility study should be conducted that would take a detailed look at existing energy profiles, siting, interconnection, and the costs associated with the generation project including interconnection costs, departing load charges, and any additional special facilities charges.

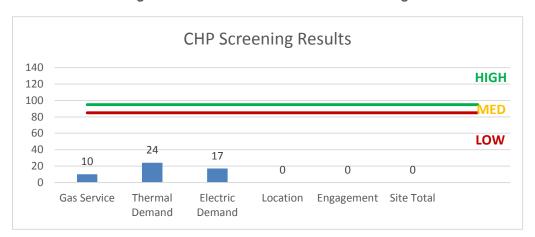
6.1 Photovoltaic

Sunlight can be converted into electricity using photovoltaics (PV) modules. Modules are racked together into an array that produces direct current (DC) electricity. The DC current is converted to alternating current (AC) through an inverter. The inverter is interconnected to the facility's electrical distribution system. The amount of unobstructed area available determines how large of a solar array can be installed. The size of the array combined with the orientation, tilt, and shading elements determines the energy produced.

The district installed a photovoltaic array at this site in 2009, using much of the available roof area for this self-generation measure. The existing PV array currently produces over 45% of the total electricity used at the site and the school is exporting electricity to the grid during the summer. In our opinion, the facility does appear not meet the criteria for additional cost-effective PV installation.

6.2 Combined Heat and Power

Combined heat and power (CHP) is the on-site generation of electricity along with the recovery of heat energy, which is put to beneficial use. Common technologies for CHP include reciprocating engines, microturbines, fuel cells, backpressure steam turbines, and (at large facilities) gas turbines. Electric generation from a CHP system is typically interconnected to local power distribution systems. Heat is recovered from exhaust and ancillary cooling systems and interconnected to the existing hot water (or steam) distribution systems.


CHP systems are typically used to produce a portion of the electric power used onsite by a facility, with the balance of electric power needs supplied by grid purchases. The heat is used to supplement (or supplant) existing boilers for the purpose of space heating and/or domestic hot water heating. Waste heat can also be routed through absorption chillers for the purpose of space cooling. The key criteria used for screening, however, is the amount of time the system operates at full load and the facility's ability to use the recovered heat. Facilities with continuous use for large quantities of waste heat are the best candidates for CHP.

A preliminary screening based on heating and electrical demand, siting, and interconnection shows that the facility has a Low potential for installing a cost-effective CHP system.

Low or infrequent thermal load, and lack of space near the existing boilers are the most significant factors contributing to the potential for CHP at the site. In our opinion, the facility does not appear to meet the minimum requirements for a cost-effective CHP installation.

7 DEMAND RESPONSE

Demand Response is a program designed to reduce the electric load of commercial facilities when electric wholesale prices are high or when the reliability of the electric grid is threatened due to peak demand. DR service providers (a.k.a. Curtailment Service Providers) are registered with PJM, the independent system operator (ISO) for mid-Atlantic state region that is charged with maintaining electric grid reliability.

By enabling grid operators to call upon Curtailment Service Providers and commercial facilities to reduce electric usage during times of peak demand, the grid is made more reliable and overall transmission costs are reduced for all ratepayers. Curtailment Service Providers provide regular payments to medium and large consumers of electric power for their participation in DR programs. Program participation is voluntary and participants receive payments whether or not their facility is called upon to curtail their electric usage.

Typically an electric customer needs to be capable of reducing their electric demand, within minutes, by at least 100 kW or more in order to participate in a DR program. Customers with a greater capability to quickly curtail their demand during peak hours will receive higher payments. Customers with back-up generators onsite may also receive additional DR payments for their generating capacity if they agree to run the generators for grid support when called upon. Eligible customers who have chosen to participate in a DR programs often find it to be a valuable source of revenue for their facility because the payments can significantly offset annual electric costs.

Participating customers can often quickly reduce their peak load through simple measures, such as temporarily raising temperature set points on thermostats, so that air conditioning units run less frequently, or agreeing to dim or shut off less critical lighting. This usually requires some level of building automation and controls capability to ensure rapid load reduction during a DR program participants may need to install smart meters or may need to also sub-meter larger energy-using equipment, such as chillers, in order to demonstrate compliance with DR program requirements.

DR does not include the reduction of electricity consumption based on normal operating practice or behavior. For example, if a company's normal schedule is to close for a holiday, the reduction of electricity due to this closure or scaled-back operation is not considered a demand response activity in most situations.

The first step toward participation in a DR program is to contact a Curtailment Service Provider. A list of these providers is available on PJM's website and it includes contact information for each company, as well as the states where they have active business (<u>http://www.pjm.com/markets-and-operations/demand-response/csps.aspx</u>). PJM also posts training materials that are developed for program members interested in specific rules and requirements regarding DR activity

(<u>http://www.pjm.com/training/training%20material.aspx</u>), along with a variety of other DR program information.

Curtailment Service Providers typically offer free assessments to determine a facility's eligibility to participate in a DR program. They will provide details regarding program rules and requirements for metering and controls, assess a facility's ability to temporarily reduce electric load, and provide details on payments to be expected for participation in the program. Providers usually offer multiple options for Demand Response to larger facilities and may also install controls or remote monitoring equipment of their own to help ensure compliance with all terms and conditions of a DR contract.

Forked River Elementary School has a low electrical load. In our opinion, the facility does not appear to meet the minimum requirements for participation in a DR program.

8 **PROJECT FUNDING / INCENTIVES**

The NJCEP is able to provide the incentive programs described below, and other benefits to ratepayers, because of the Societal Benefits Charge (SBC) Fund. The SBC was created by the State of New Jersey's Electricity Restructuring Law (1999), which requires all customers of investor-owned electric and gas utilities to pay a surcharge on their monthly energy bills. As a customer of a state-regulated electric or gas utility and therefore a contributor to the fund your organization is eligible to participate in the LGEA program and also eligible to receive incentive payment for qualifying energy efficiency measures. Also available through the NJBPU are some alternative financing programs described later in this section. Please refer to Figure 19 for a list of the eligible programs identified for each recommended ECM.

	Energy Conservation Measure	SmartStart Prescriptive	Direct Install
ECM 1	Install LED Fixtures	х	x
ECM 2	Retrofit Fixtures with LED Lamps	х	x
ECM 3	Install Occupancy Sensor Lighting Controls	х	x
ECM 4	Install High/Low Lighitng Controls	х	Х
ECM 5	Install Low-Flow Domestic Hot Water Devices		x

Figure	19 - ECM	Incentive	Program	Eligibility
--------	----------	-----------	---------	-------------

SmartStart is generally well-suited for implementation of individual measures or small group of measures. It provides flexibility to install measures at your own pace using in-house staff or a preferred contractor. Direct Install caters to small to mid-size facilities that can bundle multiple ECMs together. This can greatly simplify participation and may lead to higher incentive amounts, but requires the use of pre-approved contractors. The Pay for Performance (P4P) program is a "whole-building" energy improvement program designed for larger facilities. It requires implementation of multiple measures meeting minimum savings thresholds, as well as use of pre-approved consultants. The Large Energy Users Program (LEUP) is available to New Jersey's largest energy users giving them flexibility to install as little or as many measures, in a single facility or several facilities, with incentives capped based on the entity's annual energy consumption. LEUP applicants can use in-house staff or a preferred contractor.

Generally, the incentive values provided throughout the report assume the SmartStart program is utilized because it provides a consistent basis for comparison of available incentives for various measures, though in many cases incentive amounts may be higher through participation in other programs.

Brief descriptions of all relevant financing and incentive programs are located in the sections below. Further information, including most current program availability, requirements, and incentive levels can be found at: <u>www.njcleanenergy.com/ci.</u>

8.1 SmartStart

Overview

The SmartStart program offers incentives for installing prescriptive and custom energy efficiency measures at your facility. Routinely the program adds, removes or modifies incentives from year to year for various energy efficiency equipment based on market trends and new technologies.

Equipment with Prescriptive Incentives Currently Available:

Electric Chillers	Lighting Controls
Electric Unitary HVAC	Refrigeration Doors
Gas Cooling	Refrigeration Controls
Gas Heating	Refrigerator/Freezer Motors
Gas Water Heating	Food Service Equipment
Ground Source Heat Pumps	Variable Frequency Drives
Lighting	

Most equipment sizes and types are served by this program. This program provides an effective mechanism for securing incentives for energy efficiency measures installed individually or as part of a package of energy upgrades.

Incentives

The SmartStart prescriptive incentive program provides fixed incentives for specific energy efficiency measures, whereas the custom SmartStart program provides incentives for more unique or specialized technologies or systems that are not addressed through prescriptive incentive offerings for specific devices.

Since your facility is an existing building, only the retrofit incentives have been applied in this report. Custom Measure incentives are calculated at \$0.16/kWh and \$1.60/therm based on estimated annual savings, capped at 50% of the total installed incremental project cost, or a project cost buy down to a one-year payback (whichever is less. Program incentives are capped at \$500,000 per electric account and \$500,000 per natural gas account, per fiscal year.

How to Participate

To participate in the SmartStart program you will need to submit an application for the specific equipment to be installed. Many applications are designed as rebates, although others require application approval prior to installation. Applicants may work with a contractor of their choosing and can also utilize internal personnel, which provides added flexibility to the program. Using internal personnel also helps improve the economics of the ECM by reducing the labor cost that is included in the tables in this report.

Detailed program descriptions, instructions for applying and applications can be found at: <u>www.njcleanenergy.com/SSB.</u>

8.2 Direct Install

Overview

Direct Install is a turnkey program available to existing small to medium-sized facilities with a peak electric demand that does not exceed 200 kW for a recent 12-month period. You will work directly with a preapproved contractor who will perform a free energy assessment at your facility, identify specific eligible measures, and provide a clear scope of work for installation of selected measures. Energy efficiency measures may include lighting and lighting controls, refrigeration, HVAC, motors, variable speed drives and controls.

Incentives

The program pays up to 70% of the total installed cost of eligible measures, up to \$125,000 per project. Direct Install participants will also be held to a fiscal year cap of \$250,000 per entity.

How to Participate

To participate in the Direct Install program, you will need to contact the participating contractor who the region of the state where your facility is located. A complete list of Direct Install program partners is provided on the Direct Install website linked below. The contractor will be paid the measure incentives directly by the program which will pass on to you in the form of reduced material and implementation costs. This means up to 70% of eligible costs are covered by the program, subject to program caps and eligibility, while the remaining 30% of the cost is paid to the contractor by the customer.

Since Direct Install offers a free assessment of eligible measures, Direct Install is also available to small businesses and other commercial facilities too that may not be eligible for the more detailed facility audits provided by LGEA.

Detailed program descriptions and applications can be found at: <u>www.njcleanenergy.com/DI.</u>

8.3 Energy Savings Improvement Program

The Energy Savings Improvement Program (ESIP) is an alternate method for New Jersey's government agencies to finance the implementation of energy conservation measures. An ESIP is a type of "performance contract," whereby school districts, counties, municipalities, housing authorities and other public and state entities enter in to contracts to help finance building energy upgrades. This is done in a manner that ensures that annual payments are lower than the savings projected from the ECMs, ensuring that ESIP projects are cash flow positive in year one, and every year thereafter. ESIP provides government agencies in New Jersey with a flexible tool to improve and reduce energy usage with minimal expenditure of new financial resources. NJCEP incentive programs can be leveraged to help further reduce the total project cost of eligible measures.

This LGEA report is the first step to participating in ESIP. Next, you will need to select an approach for implementing the desired ECMs:

- (1) Use an Energy Services Company or "ESCO."
- (2) Use independent engineers and other specialists, or your own qualified staff, to provide and manage the requirements of the program through bonds or lease obligations.
- (3) Use a hybrid approach of the two options described above where the ESCO is utilized for some services and independent engineers, or other specialists or qualified staff, are used to deliver other requirements of the program.

After adopting a resolution with a chosen implementation approach, the development of the Energy Savings Plan (ESP) can begin. The ESP demonstrates that the total project costs of the ECMs are offset by

the energy savings over the financing term, not to exceed 15 years. The verified savings will then be used to pay for the financing.

The ESIP approach may not be appropriate for all energy conservation and energy efficiency improvements. Entities should carefully consider all alternatives to develop an approach that best meets their needs. A detailed program descriptions and application can be found at: www.njcleanenergy.com/ESIP.

Please note that ESIP is a program delivered directly by the NJBPU and is not an NJCEP incentive program. As mentioned above, you may utilize NJCEP incentive programs to help further reduce costs when developing the ESP. You should refer to the ESIP guidelines at the link above for further information and guidance on next steps.

9 ENERGY PURCHASING AND PROCUREMENT STRATEGIES

9.1 Retail Electric Supply Options

In 1999, New Jersey State Legislature passed the Electric Discount & Energy Competition Act (EDECA) to restructure the electric power industry in New Jersey. This law deregulated the retail electric markets, allowing all consumers to shop for service from competitive electric suppliers. The intent was to create a more competitive market for electric power supply in New Jersey. As a result, utilities were allowed to charge Cost of Service and customers were given the ability to choose a third party (i.e. non-utility) energy supplier.

Energy deregulation in New Jersey has increased energy buyers' options by separating the function of electricity distribution from that of electricity supply. So, though you may choose a different company from which to buy your electric power, responsibility for your facility's interconnection to the grid and repair to local power distribution will still reside with the traditional utility company serving your region.

If your facility is not purchasing electricity from a third party supplier, consider shopping for a reduced rate from third party electric suppliers. If your facility is purchasing electricity from a third party supplier, review and compare prices at the end of the current contract or every couple years.

A list of third party electric suppliers, who are licensed by the state to provide service in New Jersey, can be found online at: <u>www.state.nj.us/bpu/commercial/shopping.html</u>.

9.2 Retail Natural Gas Supply Options

The natural gas market in New Jersey has also been deregulated. Most customers that remain with the utility for natural gas service pay rates that are market-based and that fluctuate on a monthly basis. The utility provides basic gas supply service (BGSS) to customers who choose not to buy from a third party supplier for natural gas commodity.

A customer's decision about whether to buy natural gas from a retail supplier is typically dependent upon whether a customer seeks budget certainty and/or longer-term rate stability. Customers can secure longer-term fixed prices by signing up for service through a third party retail natural gas supplier. Many larger natural gas customers may seek the assistance of a professional consultant to assist in their procurement process.

If your facility is not purchasing natural gas from a third party supplier, consider shopping for a reduced rate from third party natural gas suppliers. If your facility is purchasing natural gas from a third party supplier, review and compare prices at the end of the current contract or every couple years.

A list of third party natural gas suppliers, who are licensed by the state to provide service in New Jersey, can be found online at: www.state.nj.us/bpu/commercial/shopping.html.

Appendix A: Equipment Inventory & Recommendations

Lighting Inventory & Recommendations

	Existing C	Conditions	<u>115</u>			Proposed Condition	ns						Energy Impact	& Financial Ar	nalysis				
Location	Fixture Quantity	Fixture Description	Control System	Watts per Fixture	Annual Operating Hours	Fixture Recommendation	Add Controls?	Fixture Quantity	Fixture Description	Control System	Watts per Fixture	Annual Operating Hours	Total Peak kW Savings	Total Annual kWh Savings	Total Annual MMBtu Savings	Total Annual Energy Cost Savings	Total Installation Cost	Total Incentives	Simple Payback w/ Incentives in Years
Boiler	6	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,250	Relamp	No	6	LED - Linear Tubes: (2) 4' Lamps	Wall Switch	29	1,250	0.13	285	0.0	\$24.24	\$351.00	\$60.00	12.01
Boiler	2	Exit Signs: LED - 2 W Lamp	None	6	8,760	None	No	2	Exit Signs: LED - 2 W Lamp	None	6	8,760	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Kitchen	4	Linear Fluorescent - T12: 4' T12 (40W) - 2L	Occupancy Sensor	88	1,029	Relamp	No	4	LED - Linear Tubes: (2) 4' Lamps	Occupancy Sensor	29	1,029	0.15	279	0.0	\$23.78	\$234.00	\$0.00	9.84
Kitchen	1	Exit Signs: LED - 2 W Lamp	None	6	8,760	None	No	1	Exit Signs: LED - 2 W Lamp	None	6	8,760	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Café	24	U-Bend Fluorescent - T8: U T8 (32W) - 3L	Wall Switch	114	1,250	Relamp	No	24	LED - Linear Tubes: (3) U-Lamp	Wall Switch	50	1,250	1.01	2,225	0.0	\$189.50	\$1,917.60	\$0.00	10.12
Café	3	Exit Signs: LED - 2 W Lamp	None	6	8,760	None	No	3	Exit Signs: LED - 2 W Lamp	None	6	8,760	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Stage	2	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,250	Relamp	No	2	LED - Linear Tubes: (2) 4' Lamps	Wall Switch	29	1,250	0.04	95	0.0	\$8.08	\$117.00	\$20.00	12.01
Stage	4	Compact Fluorescent: ceiling mount	Wall Switch	42	1,250	None	No	4	Compact Fluorescent: ceiling mount	Wall Switch	42	1,250	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Stage	1	Exit Signs: LED - 2 W Lamp	None	6	8,760	None	No	1	Exit Signs: LED - 2 W Lamp	None	6	8,760	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Receiving	5	Linear Fluorescent - T12: 4' T12 (40W) - 2L	Wall Switch	88	1,250	Relamp	Yes	5	LED - Linear Tubes: (2) 4' Lamps	Occupancy Sensor	29	875	0.22	487	0.0	\$41.44	\$562.50	\$35.00	12.73
Boys RR	2	U-Bend Fluorescent - T12: U T12 (34W) - 2L	Wall Switch	72	1,250	Relamp	No	2	LED - Linear Tubes: (2) U-Lamp	Wall Switch	33	1,250	0.05	112	0.0	\$9.55	\$126.40	\$0.00	13.24
Girls RR	2	U-Bend Fluorescent - T12: U T12 (34W) - 2L	Wall Switch	72	1,250	Relamp	No	2	LED - Linear Tubes: (2) U-Lamp	Wall Switch	33	1,250	0.05	112	0.0	\$9.55	\$126.40	\$0.00	13.24
Fac RR	1	Compact Fluorescent: 40W circline	Occupancy Sensor	52	1,029	Fixture Replacement	No	1	LED - Fixtures: Close to Ceiling Mount	Occupancy Sensor	18	1,029	0.02	40	0.0	\$3.43	\$225.40	\$10.00	62.87
Fac RR	1	LED - Fixtures: Ceiling Mount	Occupancy Sensor	28	1,029	None	No	1	LED - Fixtures: Ceiling Mount	Occupancy Sensor	28	1,029	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Girls RR	2	Linear Fluorescent - T8: 4' T8 (32W) - 4L	Wall Switch	114	1,250	Relamp	No	2	LED - Linear Tubes: (4) 4' Lamps	Wall Switch	58	1,250	0.07	161	0.0	\$13.71	\$190.27	\$40.00	10.96
Boys RR	2	Linear Fluorescent - T8: 4' T8 (32W) - 4L	Wall Switch	114	1,250	Relamp	No	2	LED - Linear Tubes: (4) 4' Lamps	Wall Switch	58	1,250	0.07	161	0.0	\$13.71	\$190.27	\$40.00	10.96
Fac RR (2)	4	U-Bend Fluorescent - T12: U T12 (34W) - 2L	Occupancy Sensor	72	1,029	Relamp	No	4	LED - Linear Tubes: (2) U-Lamp	Occupancy Sensor	33	1,029	0.10	185	0.0	\$15.72	\$252.80	\$0.00	16.08
Boys RR	2	LED - Fixtures: Ambient - 4' - Direct Fixture	Wall Switch	40	1,250	None	No	2	LED - Fixtures: Ambient - 4' - Direct Fixture	Wall Switch	40	1,250	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Girls RR	2	LED - Fixtures: Ambient - 4' - Indirect Fixture	Wall Switch	40	1,250	None	No	2	LED - Fixtures: Ambient - 4' - Indirect Fixture	Wall Switch	40	1,250	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Rm 9	2	Linear Fluorescent - T8: 4' T8 (32W) - 4L	Wall Switch	114	1,250	Relamp	Yes	2	LED - Linear Tubes: (4) 4' Lamps	Occupancy Sensor	58	875	0.10	211	0.0	\$17.97	\$306.27	\$60.00	13.70
Nurse Ofc	1	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,250	Relamp	No	1	LED - Linear Tubes: (2) 4' Lamps	Wall Switch	29	1,250	0.02	47	0.0	\$4.04	\$58.50	\$10.00	12.01
Boys RR	1	Linear Fluorescent - T12: 4' T12 (40W) - 2L	Wall Switch	88	1,250	Relamp	No	1	LED - Linear Tubes: (2) 4' Lamps	Wall Switch	29	1,250	0.04	85	0.0	\$7.22	\$58.50	\$0.00	8.10
Girls RR	1	Linear Fluorescent - T12: 4' T12 (40W) - 2L	Wall Switch	88	1,250	Relamp	No	1	LED - Linear Tubes: (2) 4' Lamps	Wall Switch	29	1,250	0.04	85	0.0	\$7.22	\$58.50	\$0.00	8.10
Walkway	4	Compact Fluorescent ceiling mount	Wall Switch	28	1,250	None	No	4	Compact Fluorescent: ceiling mount	Wall Switch	28	1,250	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Rm 1-8	121	Linear Fluorescent - T12: 4' T12 (40W) - 2L	Wall Switch	88	1,250	Relamp	Yes	121	LED - Linear Tubes: (2) 4' Lamps	Occupancy Sensor	29	875	5.37	11,776	0.0	\$1,002.79	\$9,238.50	\$280.00	8.93

	Existing C	Conditions				Proposed Condition	ıs						Energy Impac	t & Financial A	nalysis				
Location	Fixture Quantity	Fixture Description	Control System	Watts per Fixture	Annual Operating Hours	Fixture Recommendation	Add Controls?	Fixture Quantity	Fixture Description	Control System	Watts per Fixture	Annual Operating Hours	Total Peak kW Savings	Total Annual kWh Savings	Total Annual MMBtu Savings	Total Annual Energy Cost Savings	Total Installation Cost	T otal Incentives	Simple Payback w/ Incentives in Years
Storage	6	Linear Fluorescent - T12: 4' T12 (40W) - 2L	Wall Switch	88	1,250	Relamp	No	6	LED - Linear Tubes: (2) 4' Lamps	Wall Switch	29	1,250	0.23	509	0.0	\$43.34	\$351.00	\$0.00	8.10
Nurse	3	Linear Fluorescent - T12: 4' T12 (40W) - 2L	Wall Switch	88	1,250	Relamp	No	3	LED - Linear Tubes: (2) 4' Lamps	Wall Switch	29	1,250	0.12	254	0.0	\$21.67	\$175.50	\$0.00	8.10
Rm 9-15	86	Linear Fluorescent - T12: 4' T12 (40W) - 2L	Wall Switch	88	1,250	Relamp	Yes	86	LED - Linear Tubes: (2) 4' Lamps	Occupancy Sensor	29	875	3.82	8,369	0.0	\$712.73	\$6,921.00	\$245.00	9.37
Library	36	Linear Fluorescent - T5HO: 4' T5HO (54W) - 1L	Wall Switch	62	1,250	None	Yes	36	Linear Fluorescent - T5HO: 4' T5HO (54W) - 1L	Occupancy Sensor	62	875	0.44	963	0.0	\$81.97	\$1,080.00	\$140.00	11.47
Rms 16-18	51	Linear Fluorescent - T12: 4' T12 (40W) - 2L	Wall Switch	88	1,250	Relamp	Yes	51	LED - Linear Tubes: (2) 4' Lamps	Occupancy Sensor	29	875	2.26	4,963	0.0	\$422.66	\$3,793.50	\$105.00	8.73
19A, B	18	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,250	Relamp	Yes	18	LED - Linear Tubes: (2) 4' Lamps	Occupancy Sensor	29	875	0.49	1,079	0.0	\$91.88	\$1,285.00	\$220.00	11.59
Rm 20-25	66	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,250	Relamp	Yes	66	LED - Linear Tubes: (2) 4' Lamps	Occupancy Sensor	29	875	1.80	3,956	0.0	\$336.91	\$5,211.00	\$835.00	12.99
Rm 31-35	45	Linear Fluorescent - T8: 4' T8 (32W) - 2L	Wall Switch	62	1,250	Relamp	Yes	45	LED - Linear Tubes: (2) 4' Lamps	Occupancy Sensor	29	875	1.23	2,697	0.0	\$229.71	\$3,982.50	\$625.00	14.62
Hall	50	Linear Fluorescent - T8: 4' T8 (32W) - 3L	Wall Switch	93	1,250	Relamp	Yes	50	LED - Linear Tubes: (3) 4' Lamps	High/Low Control	44	875	2.05	4,496	0.0	\$382.85	\$4,760.00	\$750.00	10.47
Parking	4	Metal Halide: (1) 400W Lamp	Day light Dimming	458	4,380	Fixture Replacement	No	4	LED - Fixtures: Outdoor Pole/Arm-Mounted Area/Roadway Fixture	Day light Dimming	100	4,380	0.94	7,213	0.0	\$614.25	\$7,811.97	\$400.00	12.07
Doorway	2	Metal Halide: (1) 150W Lamp	Day light Dimming	190	4,380	Fixture Replacement	No	2	LED - Fixtures: Outdoor Porch Wall Mount	Day light Dimming	40	4,380	0.20	1,511	0.0	\$128.68	\$1,499.40	\$10.00	11.57
Ext	13	LED - Fixtures: Outdoor Wall-Mounted Area Fixture	Day light Dimming	28	4,380	None	No	13	LED - Fixtures: Outdoor Wall-Mounted Area Fixture	Day light Dimming	28	4,380	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Doorway	5	Compact Fluorescent: Wall mounted 24W CFL	Day light Dimming	24	4,380	None	No	5	Compact Fluorescent: Wall mounted 24W CFL	Day light Dimming	24	4,380	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00

Motor Inventory & Recommendations

		Existing (Conditions					Proposed	Conditions		Energy Impac	t & Financial A	nalysis				
Location	Area(s)/System(s) Served	Motor Quantity	Motor Application		Full Load Efficiency	VFD Control?	Annual Operating Hours	Install High Efficiency Motors?	Full Load Efficiency		 	Total Annual kWh Savings	Total Annual MMBtu Savings	Total Annual Energy Cost Savings	T otal Installation Cost	T otal Incentives	Simple Payback w/ Incentives in Years
Boiler Room	Building Heating	2	Heating Hot Water Pump	5.0	90.2%	Yes	1,372	No	90.2%	No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Near DHW	Trane AHU-1 Multi use	1	Ventilation Fan	5.0	87.5%	No	2,745	No	87.5%	No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Roof	Server Rm	1	Supply Fan	1.7	70.0%	No	2,745	No	70.0%	No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Roof	Rm 15	1	Supply Fan	2.0	70.0%	No	2,745	No	70.0%	No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Roof	Library	1	Supply Fan	0.2	70.0%	No	2,745	No	70.0%	No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Roof	Nurse	1	Supply Fan	0.2	70.0%	No	2,745	No	70.0%	No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Roof	CST	1	Supply Fan	0.1	70.0%	No	2,745	No	70.0%	No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Roof	Faculty Lounge	1	Supply Fan	0.2	70.0%	No	2,745	No	70.0%	No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Roof	Speech	1	Supply Fan	1.7	70.0%	No	2,745	No	70.0%	No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Roof	Rm 7	1	Supply Fan	0.2	70.0%	No	2,745	No	70.0%	No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Roof	31, 32, 33, 35	4	Supply Fan	0.1	70.0%	No	2,745	No	70.0%	No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Roof	Lab	1	Supply Fan	0.1	70.0%	No	2,745	No	70.0%	No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Various	Heat for Rooms	35	Supply Fan	0.3	70.0%	No	1,289	No	70.0%	No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Roof	Restrooms	11	Exhaust Fan	0.3	70.0%	No	1,289	No	70.0%	No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00

Electric HVAC Inventory & Recommendations

		Existing (Conditions	_		Proposed	Condition	S						Energy Impac	t & Financial A	nalysis				
Location	Area(s)/System(s) Served	System Quantity	System Type		Capacity per Unit			System Type	per Unit	Capacity per Unit	Cooling Mode Efficiency (SEER/EER)	Heating Mode Efficiency (COP)	Install Dual Enthalpy Economizer?		Total Annual kWh Savings	MMBtu	Total Annual Energy Cost Savings	Total Installation Cost	Total Incentives	Simple Payback w/ Incentives in Years
Roof	Server Rm	1	Split-System AC	1.00		No							No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Roof	Rm 15	1	Split-System AC	3.00		No							No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Roof	Library	1	Split-System AC	3.50		No							No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Roof	Nurse	1	Split-System Air-Source HP	1.50	1.10	No							No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Roof	CST	1	Split-System Air-Source HP	0.75	0.90	No							No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Roof	Faculty Lounge	1	Split-System AC	2.00		No							No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Roof	Speech	1	Split-System AC	1.00		No							No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Roof	Rm 7	1	Split-System Air-Source HP	3.00	3.00	No							No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Roof	31, 32, 33, 35	4	Split-System AC	1.50		No							No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Roof	Lab	1	Split-System AC	1.00		No							No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00

Fuel Heating Inventory & Recommendations

		Existing	Conditions		Proposed	Condition	S				Energy Impact	& Financial Ar	nalysis				
Location	Area(s)/System(s) Served	System Quantity	System Type	•			System Type	Output Capacity per Unit (MBh)	Heating Efficiency	Heating Efficiency Units	Total Peak kW Savings	Total Annual kWh Savings	Total Annual MMBtu Savings	Total Annual Energy Cost Savings		T otal Incentives	Simple Payback w/ Incentives in Years
Bolier Room	Building	3	Condensing Hot Water Boiler	1,920.00	No						0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00

DHW Inventory & Recommendations

		Existing C	conditions	Proposed	Condition	S				Energy Impact	& Financial Ar	nalysis				
Location	Area(s)/System(s) Served	System Quantity	System Type	Replace	System Quantity	System Type	Fuel Type	System Efficiency	Efficiency Units	Total Peak kW Savings	Total Annual	MMBtu	Total Annual Energy Cost Savings	Total Installation Cost	Total Incentives	Simple Payback w/ Incentives in Years
Boiler Rm	Bldg	1	Storage Tank Water Heater (≤ 50 Gal)	No						0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Receiving	Bldg	1	Storage Tank Water Heater (≤ 50 Gal)	No						0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Receiving	Bldg	1	Storage Tank Water Heater (≤ 50 Gal)	No						0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Closet	Bldg	1	Storage Tank Water Heater (≤ 50 Gal)	No						0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Closet	Bldg	1	Storage Tank Water Heater (≤ 50 Gal)	No						0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00

Low-Flow Device Recommendations

	Recomme	edation Inputs			Energy Impact	t & Financial Ar	nalysis				
Location	Device Quantity	Device Type	Existing Flow Rate (gpm)	Proposed Flow Rate (gpm)	Total Peak	Total Annual kWh Savings	MMBtu	Total Annual Energy Cost Savings	T otal Installation Cost	T otal Incentives	Simple Payback w/ Incentives in Years
Restrooms	23	Faucet Aerator (Lavatory)	2.50	1.00	0.00	8,376	0.0	\$713.29	\$164.91	\$0.00	0.23

Walk-In Cooler/Freezer Inventory & Recommendations

	Existing (Conditions	Proposed Cond	litions		Energy Impac	t & Financial A	nalysis				
Location	Cooler/ Freezer Quantity	Case Type/Temperature	Install EC Evaporator Fan Motors?	Install Electric Defrost Control?	Install Evaporator Fan Control?		Total Annual kWh Savings	MMBtu	Total Annual Energy Cost Savings	Total Installation Cost	T otal Incentives	Simple Payback w/ Incentives in Years
Kitchen	1	Medium Temp Freezer (0F to 30F)	No	No	No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Kitchen	1	Cooler (35F to 55F)	No	No	No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00

Cooking Equipment Inventory & Recommendations

	Existing Con	ditions		Proposed Conditions	Energy Impact	t & Financial Ar	nalysis				
Location	Quantity	Equipment Type	High Efficiency Equipement?	Install High Efficiency Equipment?	Total Peak kW Savings	Total Annual	MMBtu	Total Annual Energy Cost Savings		T otal Incentives	Simple Payback w/ Incentives in Years
Kitchen	1	Electric Convection Oven (Full Size)	No	No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00
Kitchen	1	Insulated Food Holding Cabinet (Full Size)	No	No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00

Dishwasher Inventory & Recommendations

_		Existing Conditions				Proposed Conditions	Energy Impact & Financial Analysis							
	Location	Quantity	Dishwasher Type	Water Heater Fuel Type	Booster Heater Fuel Type	ENERGY STAR Qualified?	Install ENERGY STAR Equipment?	Total Peak kW Savings	Total Annual	MMRfu	Total Annual Energy Cost Savings	Total Installation Cost	T otal Incentives	Payback w/ Incentives in Years
	Kitchen	1	Door Type (High Temp)	Electric	Electric	No	No	0.00	0	0.0	\$0.00	\$0.00	\$0.00	0.00

Plug Load Inventory

-	Existing C	Existing Conditions					
Location	Quantity	Equipment Description	Energy Rate (W)	ENERGY STAR Qualified?			
Forked River ES	106	Computer	75.0	Yes			
Forked River ES	1	Printer Small	30.0	No			
Forked River ES	1	Printer- Large	515.0	Yes			
Forked River ES	1	Microwave	1,000.0	No			
Forked River ES	1	Large Fridge	600.0	Yes			
Forked River ES	1	C offee achine	400.0	Yes			
Forked River ES	1	Toaster Oven	1,200.0	Yes			
Forked River ES	25	Smart Board	7.0	Yes			
Forked River ES	25	Smart Board/other projector	230.0	Yes			

Vending Machine Inventory & Recommendations

	Existing Conditions		Proposed Conditions	Energy Impact & Financial Analysis						
Location	Quantity	Vending Machine Type	Install Controls?	Total Peak kW Savings	Total Annual kWh Savings	MMRfu	Total Annual Energy Cost Savings	Total Installation Cost	T otal Incentives	Simple Payback w/ Incentives in Years
Faculty Lounge	1	Refrigerated	No	0.00	0	0.0	\$0.00	\$230.00	\$0.00	0.00
Faculty Lounge	1	Non-Refrigerated	No	0.00	0	0.0	\$0.00	\$230.00	\$0.00	0.00

Appendix B: ENERGY STAR[®] Statement of Energy Performance

LEARN MORE AT energystar.gov		GY STAR [®] Statement of Energy mance
8 ENERGY SCORE	STAR®	Forked River Elementary School Primary Property Type: K-12 School Gross Floor Area (ft²): 46,000 Built: 1959 For Year Ending: May 31, 2016 Date Generated: May 25, 2017
1. The ENERGY STAR a climate and business a		sessment of a building's energy efficiency as compared with similar buildings nationwide, adjusting for

Property & Con	tact Information					
Property Address Forked River Elementary School 110 Lacey Road Forked River, New Jersey 08731		Property Owner 		Primary Contact 		
Property ID: 2388	3308					
Energy Consur	nption and Energy U	se Intensity (EUI)				
Site EUI	Annual Energy by Fu	el	National Median C	omparison		
52.2 kBtu/ft ²	Natural Gas (kBtu)	1,612,891 (67%)	National Median Si	te EUI (kBtu/ft²)	77.2	
JZ.Z KDIU/II	Electric - Solar (kBtu)	228,366 (10%)	National Median So	purce EUI (kBtu/ft²)	125.1	
	Electric - Grid (kBtu)	559,066 (23%)	% Diff from Nationa	al Median Source EUI	-32%	
Source EUI			Annual Emissions			
84.5 kBtu/ft²			Greenhouse Gas E CO2e/year)	missions (Metric Tons	161	

Signature & Stamp of Verifying Professional

I ______ (Name) verify that the above information is true and correct to the best of my knowledge.

Signature: _____Date: _____

Licensed Professional

, (___)__-___

-	_
	_ I
	_ I
	- I
	- I
	- I
	- I
	- I
	_ I
	- I
	- I
	- I
Professional Engineer Stamp	_