From: Frick, Robert J (GE Power & Water) [mailto:robert.frick@ge.com]

Sent: Friday, October 14, 2011 11:39 AM

To: Bachmann, Joananne

Cc: Rush, Mark (GE Power & Water); Brzezinski, Ronald J (GE Power & Water); Pyne, James (GE Power & Water); Olivier,

Simon (GE Power & Water); Rostek, James R (GE Energy)

Subject: RE: NJCEP changes to the REIP Program for Wind and Small Wind Working Group - Tuesday Oct. 18 - 9:30am -

12:30pm

Joanne:

Thank you for including me on this e-mail.

As you may know, GE is the largest supplier of wind turbines in the US, and possibly the largest supplier in the world. We have over 17,000 turbines installed. The turbines that we currently offer range in nameplate rating from 1.5MW to 4.1MW. The smallest rotor diameter (i.e. swept area) is 77m (4656 square meters). The GE wind 1.5-77 wind turbine has by far the most MW installed in New Jersey, with a total of 7.5MW near Atlantic City and another 1.5MW to be erected imminently in Union Beach.

While I would not include GE Energy's wind turbines in the category of "Small Wind" turbines, I have noted there is a recommendation in the proposed changes that would impact our turbines from consideration in NJ. This is the proposed requirement that:

For turbines with a swept area of more than 200 square meters and therefore outside the scope of IEC 61400-2 or AWEA 9.1-2009, submission of:

o Evidence of type certification by an entity that is accredited to provide product conformity certification to IEC Standard 61400-1, IEC Standard 61400-11 and IEC Standard 61400-12-1 o Evidence that a power performance test conforming to IEC 61400-12-1 has been certified by a Nationally Recognized Testing Lab (NRTL) or independent certification body

GE certifies their WTGs per the IEC 61400-1 standard. However, we do not provide a 'Full Type Certification'. GE provides only an abridged 'A-Design Assessment'. The difference in the two approaches is predominantly around 'Manufacturing centers' certification. GE can provide manufacturing's ISO type programs if there's a real issue, which is rare.

I have attached the 1.6-XLE (82.5) A-DA as an example.

I would propose you adopt the abridged "A-design Assessment" as the standard, or you exclude turbines above a certain nameplate rating (ex: >1.0MW) from your classification of "Small Wind Turbines"

Bob

Robert J. Frick ("Bob") Account Manager - Power & Water

GE Energy 475 Creamery Way Exton, PA 19341

Office: 484-875-7054 Cell: 610-212-3856

e-mail: robert.frick@ge.com

Statement of Compliance for the A-Design Assessment

Registration-No. 44 222 10198463b-DA-GL, Rev. 0

Name und Anschrift customer

GE Energy GmbH Holsterfeld 16 48499 Salzbergen GERMANY

Wind Turbine

GE 1.6xle, 60 Hz, GE40xle2, HH 79.7m Non-ESS and ESS Electrical Systems

with the characteristic data given in the attached "Annex to Design Assessment" has been assessed by TÜV NORD concerning the design

WTGS Class IEC S / turbulence category B

v_{ave} = 8.5m/s

Standard and Cold Climate Conditions

Assessed acc. to

The design approval is based on the indicated documents as follows:

TÜV NORD Report No. 8000 198 463-1 EIV TÜV NORD Report No. 8000 198 463-1 EVII TÜV NORD Report No. 8106 951 790-2-E TÜV NORD Report No. 8106 703 224-3 E II TÜV NORD Report No. 8000 198 463-4 E TÜV NORD Report No. 8000 198 463-5 E TÜV NORD Report No. 8000 198 463-6 E II TÜV NORD Report No. 8000 198 463-12 E TÜV NORD Report No. 8000 193 426-9 E GL Report No. 72551-8

Load assumptions 1.6xle, GE40xle2
Load Envelope
Safety Concept and Manuals
Rotor Blade GE40xle2
Machinery Components
Electrical Systems
Tubular steel towers, hh79,7m
Nacelle Cover and Spinner
Commissioning "Windextend"
Commissioning

Rev 0 dated June 2010 Rev 0 dated June 2010 Rev 0 dated June 2010 Rev 0 dated Aug. 2010 Rev 0 dated June 2010 Rev 0 dated Oct. 2009 dated Feb. 2009

Normative references:

Certification scheme:

Germanischer Lloyd WindEnergie GmbH "Guideline for the Certification of Wind Turbines", Edition 2003 with Supplement 2004

in combination with

IEC 61400-1 "Wind turbine generator systems - part 1: Safety requirements", Second Edition, 1999-02 and GL Wind - Technical (only for loads) and Note 067, Certification of Wind Turbines for Extreme temperature (here: Cold Climate), Scope of Assessment, Ed. 2005, Rev. 2

Any change in the design is to be approved by TUV NORD. Without approval this Statement loses its validity.

Please also pay attention to the information stated overleaf

TÜV NORD CERT GmbH Certification Body for Wind Turbines

Dipi-Ing. Christian Hering

Deutscher Akkrediterungs Rat

DAP-ZE-2016.80

Essen, 19th August 2010

Langemarckstraße 20 + 45141 Essen + Fon +49 (0)40 8557-2417 + Fax +49 (0)40 8557-2552

No. 44 222 10198463b-DA-GL, Rev. 0

Principle technical turbine data of the GE 1.6xle, 60 Hz, GE 40xle2, HH 79.7 m Non-ESS and ESS Electrical Systems

Main data GE1.6xle, GE40xle2

Type

Rotor diameter Power regulation

Rated power Hub height

Rated rotational speed Operating range rotational speed

Cut-in wind speed Rated wind speed

Cut-out-wind speed (10 min mean) Extreme wind speed (50-year-gust) 56 0 m/s(STW), 52 5 m/s (CWE) Annual average wind speed

Design life time IEC 61400-1, class

Climatic conditions

Standard weather:

Cold climate

Manufacturer Drawing No.

Rotor

Nacelle

Cone angle Blade pitch angle Orientation

Blade

Type Material Blade length Number of Blades Drawing No.

Horizontal axis wind turbine with

variable rotor speed

82.5 m

Independent electromechanical pitch

system for each blade

1600 kW 79.7 m 17.7 rpm

10.2 ... 19.35 rpm

 $3.0 \, \text{m/s}$ 10.8 m/s 25 m/s

8.5m/s 20 years

S with turbulence category B

-10 °C +40°C (Operation) -20 °C +50°C (Survival) +15°C (Annual average)

air density 1.225 kg/m³

-30 °C +40°C (Operation) -40 °C +50°C (Survival)

+5°C (Annual average)

 air density: 1.269 kg/m³ -30 °C (min_operating temperature),

 air density: 1,452 kg/m³ 40 °C (min temperature per year)

air density; 1 514 kg/m³

GE Energy

104 W 1942 (Nacelle B) 104 W 2615 (Nacelle C) 123 W 1196 (Modular Nacelle) 123 W 1296 (Modular Nacelle)

1.5° 4.0° Variable Upwind

GE40xle2

Glass fibre reinforced epoxy resin

40.3 m

103 W 2724 Rev.B

No. 44 222 10198463b-DA-GL, Rev. 0

Pitch System

Design

Drawing No.

GE Energy

151X1225BA01EL02

Pitch bearing

Manufacturer

Type Designation

Rothe Erde

Ball bearing slewing ring 092.45.1910.110.68.1421 092 45 1910 111 68 1421 092 45 1910 112 68 1421

alternative:

Manufacturer Designation

GE Energy

115 W 2552 G001 115 W 2552 G002 115 W 2552 G003

alternative:

Manufacturer Designation

Kaydon

16532001 16533001 16534001 16535001

16233001

alternative:

Manufacturer Designation

Liebherr

KUD258VJ805-001 KUD258VJ805-002 KUD258VJ805-003

Pitch drive

Type Manufacturer Designation alternative: Manufacturer Designation <u>alternative</u>:

3-stage planetary gearbox

Liebherr DAT 250 / 1468

Carraro 392651

Designation

Manufacturer

Nanjing High Speed Gear Manufacturing

Cast

GE Energy

FDX102M-01-00R1

Hub

Design Type Material Drawing No.

EN-GJS-400-18U-LT 115 W 1807 Rev. A &B

Hub cover

Manufacturer Drawing No.

Jupiter Plast A/S

123W1241, Rev.A

Main shaft

Design Type Material Drawing No. **GE Energy** Forged

34CrNiMo6 103W2231

Main bearing

Type Manufacturer Designation

Double row spherical roller bearing

FAG Schaeffler Group 240/600B.MB.R220,360

No. 44 222 10198463b-DA-GL, Rev. 0

<u>alternative:</u>

Manufacturer

Designation

SKF

240/600 ECA/HM 2C 2HW33

alternative:

Manufacturer Designation

Koyo Seiko Co.; Ltd 240/600 RW 33TCS 280

alternative:

Manufacturer

Designation

NTN corporation

240/600BL1CS312S30

Main bearing housing

Design Type

Material Drawing No. **GE Energy**

Cast

EN-GJS-400-18U-LT

115W7044

Main gearbox

Type

Manufacturer Designation

Ratio

Planetary helical gearbox

Winergy AG PEAB 4419

85.86

Main gearbox elastic foundation Manufacturer Drawing No.

ESM GmbH

Ultrabuchse ML 97/003

Hydraulik braking system

Rotor brakes

Type

No of callipers

Position Manufacturer

Designation

High speed shaft of main gearbox.

Svendborg Brakes

BSAK 3000-MS 40S-103

Rotor lock

Main frame

Design Drawing No.

GE Energy 115W2413

Generator coupling

Manufacturer

Designation

KTR Kupplungstechnik

Radex N-165

alternative:

Manufacturer

ATEC Weiss GmbH & Co. KG ARPEX ARS-4 KRZK 479-4

Designation

Design Type

Material

Drawing No.

GE Energy

Cast

EN-GJS-400-18U-LT

115 W 6053 Rev. D

104 W 2032 Rev. C

No. 44 222 10198463b-DA-GL, Rev. 0

Generator frame Design **GE Energy** Type Welded part

> Material **ASTM A 572/A 572M**

Drawing No. 115 W 7274 115 W 2684 Rev.B

Yaw system Type Active with yaw drives and hydraulic brakes

with yaw bearing slewing ring Yaw gear Type 4-stage planetary gearbox Manufacturer Carraro

Designation CA388829 alternative: Manufacturer Nabtesco

Designation RGS50B alternative:

Manufacturer Nanjing High Speed Gear Manufacturing

Designation FDX205G-00R3

alternative: Manufacturer Liebherr Designation DAT 400/1474

Yaw bearing Type Ball bearing slewing ring

Manufacturer Rothe Erde

Designation 091 45 2334 006 64 1522 alternative:

Manufacturer Liebherr

KUD 478 VA 804-000 Designation alternative:

Manufacturer Kaydon

16531001 & 16232001 Designation

alternative: Manufacturer **GE** Energy Designation 115 W 6873

Yaw brake Type Mechanical with spring washers

Manufacturer GE Energy Permanent yaw brake system Designation

Drawing No. 115 W 6389

Top Box Design **GE ENERGY** Designation 107W5345 P001

Generator (60 Hz) Manufacturer Winergy

Designation IFEC-500SS-06A alternative; Manufacturer Winergy

IFEC-500SS-06A (ESS) Designation alternative:

Manufacturer Hitachi Designation TFF-OAN-DQ (ESS)

No. 44 222 10198463b-DA-GL, Rev. 0

Rated Power 1545 kW/1645kW Reted speed 1800 rpm/1915rpm

Isolation class F
Degree of protection IP54

Converter Design GE Energy

Designation 151X1230KA01SA03 (ESS)

<u>allernative</u>: Design GE Energy

Designation 151X1228KA02SA01 (Non-ESS)

Tower Design Tubular steel fower with 3 sections

Length 77.3n

Drawing No. 123W1554 Rev. A (STW 1 6xle) 123W1550 Rev. A (CWE 1 6xle)

Control and Manufacturer GE Energy

Type Mark Vie (ESS)

Bachmann (NonESS)

End of Annex

safety system

TÜV NORD CERT GmbH Certification Body for Wind Turbines

Dipling Christian Hering

Deutscher Akkrednierungs Rat

DAP-ZE-2016.80

Essen, 19th August 2010

Langemarckstraße 20 • 45141 Essen • Fon •49 (0)40 8557-2417 • Fax •49 (0)40 8557-2552

Page 5 of 5

