

Assessment of Biomass Energy Potential in New Jersey

Serpil Guran, Ph.D., Director

Dave Specca, Assistant Director

Rutgers EcoComplex

NJBPU Biopower Working Group Meeting, 9/28/2015, EcoComplex

Outline

- Need for an Assessment
- Findings
 - Biomass Feedstocks
 - Technology Assessment
 - GHG Emissions Reduction Potential
 - Policy recommendations

Biomass-to-Bioenergy Supply Chain

Feedstock Supply: Produce large, sustainable supplies of regionally available biomass and implement cost-effective biomass feedstock infrastructure, equipment, and systems for biomass harvesting, collection, storage, preprocessing, and transportation

Bioenergy Production: Develop and deploy cost-effective, integrated biomass conversion technologies for the production of biofuels and bioproducts

Bioenergy Distribution: Implement biofuels distribution infrastructure (storage, blending, transportation — both before and after blending and dispensing)

Bioenergy End Use: Assess impact of fuel blends on end-user vehicles.

RUTGERS New Jersey Agricultural Experiment Station

RUTGERS

New Jersey Agricultural Experiment Station

ASSESSMENT OF BIOMASS ENERGY POTENTIAL IN NEW JERSEY

VERSION 2.0 JULY 2015

EcoComplex Clean Energy Innovation Center

2.0 Project Team

- Margaret Brennan, Ph.D. Associate Director, NJAES
- Serpil Guran, Ph.D.
- David Specca
- Jacqueline Melillo
- Brett Cowan
- Chris Sipos

- Director, Rutgers EcoComplex
 - Assistant Director, Rutgers EcoComplex
 - Senior Program Manager, OVPED
 - Intern, Rutgers EcoComplex
 - Intern, Rutgers EcoComplex

Version 2.0 is an updated and enhanced version of the 2007 NJAES study.¹

¹Brennan[,] Margaret, David Specca, Brian Schilling, David Tulloch, Steven Paul, Kevin Sullivan, Zane Helsel, Priscilla Hayes, Jacqueline Melillo, Bob Simkins, Caroline Phillipuk, A.J. Both, Donna Fennell, Stacy Bonos, Mike Westendorf and Rhea Brekke. 2007. "Assessment of Biomass Energy Potential in New Jersey." New Jersey Agricultural Experiment Station Publication No. 2007-1. Rutgers, The State University of New Jersey, New Brunswick, NJ.

Assessment of Biomass Energy* Potential in New Jersey 2.0 Project Goals

- Update the 2007 Feedstock Assessment characteristics and quantity of biomass feedstocks.
- Update the 2007 Technology Assessment updated efficiencies and technology adoption information.
- > Update statewide mapping of waste/biomass resources and bioenergy potential.
- > Estimate potential greenhouse gas emissions reductions based on various scenarios.
- Develop policy recommendations for moving New Jersey into the forefront of bioenergy innovation.
- The ultimate goal is for these deliverables to establish a well-informed base upon which to develop viable bioenergy programs for New Jersey.

*Biomass energy is a broad definition for biologically-derived renewable materials that can be used to produce heat, electric power, transportation fuels and bio-based intermediaries, products and chemicals.

Major Findings

- 1. New Jersey produces an estimated **7.07 million dry tons** (MDT) of biomass¹ annually.
- 2. Almost **72%** of New Jersey's biomass resource is produced directly by the state's population, much of it in the form of solid waste (e.g., municipal waste).
- 3. Biomass is primarily concentrated in the counties of central and northeastern New Jersey.
- 4. Agriculture and forestry management are also important potential sources of biomass, and account for the majority of the remaining amount.
- 5. A screening process was developed to estimate the practically recoverable quantity of biomass, in the state. Approximately **4.11 MDT** (~58%) of New Jersey's biomass could ultimately be available to produce energy, in the form of power, heat, or transportation fuels.
- 6. New Jersey's estimated 4.11 MDT of biomass could deliver up to 654 MW of power, (~ 6.4% of NJ's electricity consumption) or 230 million gallons of gasoline equivalent (~ 4.3% of transportation fuel consumed) if the appropriate technologies and infrastructure were in place.

¹This total includes biogas and landfill gas quantities converted to dry ton equivalents on an energy basis. This does NOT include biomass that is currently used for incineration or sewage sludge because these are not classified as Class I renewable feedstocks in New Jersey

New Jersey Agricultural Experiment Station

The results of this process indicate that approximately 4.11 MDT (~58%) of New Jersey's biomass could ultimately be available to produce energy in the form of power, heat, or transportation fuels.

Note: This screening process is preliminary and would require considerably more analysis to reach any final conclusions. The screening analysis has been incorporated into the database, and provides flexible "scenario analysis" capabilities for the user.

New Jersey has waste and biomass resources that would result in potential GHG emissions reductions if more efficient technologies are utilized.

- In Section IV, several scenarios provide GHG reduction potentials based on available waste and biomass feedstocks and conversion technologies.
- This section also compares GHG emissions with fossil fuel emissions which waste and biomass energy may displace.
- The example scenarios for potential GHG reductions in New Jersey are:
 - Flared portion of landfill gas (LFG) utilization for power generation and transportation fuels production.
 - Potential biogas production from food waste and yard waste AD (Anaerobic Digestion) for power generation and transportation fuels production.
 - Biodiesel, produced from yellow grease, utilized for transportation fuel.
 - Second generation ethanol from forestry biomass through gasification with mixed alcohol synthesis, utilized as gasoline blendstock (E10).

II. Biomass Supply Analysis

New Jersey produces an estimated 7.07 million dry tons (MDT) of biomass annually. Individual county amounts range from 128,474 to 611,410 dry tons per year.

Current Gross Quantity (dry tons)										
		-			Solid Waste		Other			
County	Sugar/Starch	r/Starch Ligno Fats & Oils Recycled Landfilled C&D no Biomass recycled	C&D non- recycled wood	Wastes	Totals					
Atlantic	2,549	118,397	1,266	37,947	84,846	20,944	50,564	316,512		
Bergen	4	93,737	3,790	166,837	195,159	86,593	65,289	611,410		
Burlington	32,090	214,810	21,093	77,962	95,210	23,711	86,409	551,286		
Camden	2,444	73,270	2,337	75,827	30,227	20,583	15,225	219,914		
Cape May	772	90,167	407	22,539	32,505	21,897	31,893	200,181		
Cumberland	27,282	128,487	8,877	34,772	40,639	6,815	15,768	262,641		
Essex	0	40,659	3,283	112,229	36,171	19,283	38,772	250,398		
Gloucester	18,272	81,807	9,438	76,846	9,064	10,686	131,590	337,704		
Hudson	0	4,129	2,656	114,940	131,773	25,802	5,393	284,693		
Hunterdon	27,926	134,938	4,727	16,169	17,525	8,298	26,905	236,487		
Mercer	8,511	119,709	5,377	70,081	84,207	20,757	22,470	331,112		
Middlesex	9,513	73,388	6,882	197,133	190,952	31,407	88,379	597,654		
Monmouth	9,428	125,283	7,561	99,977	153,488	64,421	51,189	511,347		
Morris	3,297	113,251	2,295	101,478	101,154	19,766	40,024	381,265		
Ocean	1,007	158,073	2,675	91,931	139,858	88,561	46,770	528,874		
Passaic	4	57,969	2,099	104,049	119,978	50,443	4,304	338,846		
Salem	63,270	118,525	20,597	7,507	14,301	2,480	35,486	262,166		
Somerset	8,088	50,999	2,447	46,273	71,276	33,212	16,974	229,270		
Sussex	9,414	151,081	660	15,611	26,896	3,523	28,111	235,294		
Union	0	36,023	2,247	43,600	10,202	22,938	13,466	128,474		
Warren	51,380	139,757	4,963	11,293	5,335	874	37,422	251,024		
New Jersey	275,250	2,124,461	115,675	1,524,999	1,590,766	582,996	852,403	7,066,550		

Biogas and Landfill Gas (in Other Wastes) has been converted to dry tons. Other Waste: Agricultural Livestock Waste , Waste Water Treatment Plant Waste and Biogas, and Landfill Gas.

Biomass Supply Analysis: Geographic Distribution by Feedstock

New Jersey Agricultural Experiment Station

Biomass Resources by Feedstock Category 2010

Almost 72% of New Jersey's biomass resource is produced directly by the state's population, much of it in the form of municipal solid waste.

Total = 7.07 million dry tons/ y^1

Total = 5.10 million dry tons/y²

In the past, generating energy from solid waste typically involved incineration. Several new technologies described in Section III make the conversion possible without incineration.

2 This total includes biogas and landfill gas quantities converted to dry tons.

^{1.} Note that these are gross quantities, not taking into account differences in heat content per ton.

Biomass Supply Analysis: Landfill Gas Generation and Use»

2012

Land Fill Gas Capture, Use and Availability

Landfill Gas Totals by County in 2012 (mmscf/yr)									
County	Total Captured	Currently Used	Net Available						
Atlantic	1,638.00	737.42	900.58						
Bergen	1,194.16	0.00	1,194.16						
Burlington	2,677.52	1,019.15	1,658.36						
Camden	319.87	297.00	22.87						
Cape May	803.06	70.64	732.41						
Cumberland	890.10	699.90	190.20						
Gloucester	2,709.59	0.00	2,709.59						
Middlesex	4,428.56	3,642.69	785.87						
Monmouth	2,010.75	1,788.50	222.25						
Morris	446.88	0.00	446.88						
Ocean	3,153.60	2,242.74	910.86						
Salem	660.77	351.63	309.14						
Sussex	306.94	289.18	17.76						
Warren	276.53	182.89	93.63						
Total	21,516.31	11,321.74	10,194.57						

GERS

Biomass Contained in NJ's Incinerated Solid Waste

Current Gross Quantity (dry tons) 2010									
		Solid Waste Based Biomass							
County				C&D non-					
	Recycled	Landfilled	Incinerated	recycled wood	Total				
Atlantic	37,947	84,846	1,524	20,944	145,260				
Bergen	166,837	195,159	22,669	86,593	471,258				
Burlington	77,962	95,210	17,209	23,711	214,092				
Camden	75,827	30,227	99,732	20,583	226,369				
Cape May	22,539	32,505	6	21,897	76,947				
Cumberland	34,772	40,639	59	6,815	82,286				
Essex	112,229	36,171	126,022	19,283	293,705				
Gloucester	76,846	9,064	56,667	10,686	153,263				
Hudson	114,940	131,773	334	25,802	272,850				
Hunterdon	16,169	17,525	9,682	8,298	51,674				
Mercer	70,081	84,207	43	20,757	175,088				
Middlesex	197,133	190,952	6,669	31,407	426,161				
Monmouth	99,977	153,488	123	64,421	318,009				
Morris	101,478	101,154	4,539	19,766	226,938				
Ocean	91,931	139,858	56	88,561	320,405				
Passaic	104,049	119,978	26,905	50,443	301,375				
Salem	7,507	14,301	41	2,480	24,327				
Somerset	46,273	71,276	16,725	33,212	167,487				
Sussex	15,611	26,896	1,063	3,523	47,092				
Union	43,600	10,202	114,239	22,938	190,978				
Warren	11,293	5,335	18,410	874	35,912				
New Jersey	1,524,999	1,590,766	522,717	582,996	4,221,478				

New Jersey Agricultural Experiment Station

Agriculture and forestry management are also important potential sources of biomass, and account for the majority of the remaining amount.

- Biomass from agricultural sources include both crops and crop residues. The use of agricultural crops for energy production would require the decision to convert the current food supply chain into energy production, which could have other major policy implications. Crop residues, on the other hand, are generally underutilized and undervalued, which should allow for an easier decision to use these resources.
- In the case of energy crops, New Jersey would also need to decide whether to maintain the current crop varieties, or introduce new crops that may be better suited to energy production (e.g.. poplar or switchgrass).

17

There are several reasons for not practically recovering all of New Jersey's biomass:

1. Lack of collection and transport infrastructure for certain feedstocks

New Jersey's municipal solid waste and agricultural crops maintain a well established collection and delivery infrastructure. For agricultural and forestry residues, such a system may have to be created or revamped in order for owners of collection operations to consider and/or implement retrieval of aforementioned residues.

2. Co-mingling of significant quantities of biomass with other wastes

Further source separation practices will be needed if New Jersey is to take advantage of wastes that are now fully separated, such as food waste and C&D wood. This will require a change in behavior for businesses and residents which may be difficult to achieve.

3. Competition from existing uses

Much of New Jersey's urban waste biomass is currently recycled and used in alternative markets. These markets are well established, and may offer a higher value than (present) energy costs, especially given the technology costs for energy conversion.

New Jersey Agricultural Experiment Station

The results of this process indicate that approximately 4.11 MDT (~58%) of New Jersey's biomass could ultimately be available to produce energy in the form of power, heat, or transportation fuels.

Note: This screening process is preliminary and would require considerably more analysis to reach any final conclusions. The screening analysis has been incorporated into the database, and provides flexible "scenario analysis" capabilities for the user.

This chart provides one example of how the solid waste resource potential can be impacted when considering possible alternative uses.

^{1.} Includes amounts currently incinerated. (New chart does not include incinerated solid waste) Note that these are gross quantities, not taking into account differences in heat content per ton

Mapping out a strategy for effective biomass resource utilization is a valuable next step for New Jersey in understanding the actual potential.

	Biomass Resource Utilization Strategy									
Biomass Locational Mapping	Understand Quality Characteristics	Determine Infrastructure Requirements	Determine Most Appropriate Use	Develop Collection Plan	Develop Separation Plan					
Use GIS mapping to determine location of resources, including central nodes that might make good plant locations	Compile quality characteristics of proximal resources to determine compatibility with prospective facility	Evaluate collection, delivery, and handling infrastructure needed to process resources at each facility or node	For those resources that have an alternative use, decide whether the alternative use is preferred to energy production	For resources not currently collected, develop a viable collection plan	For resources not currently separated from the waste stream, develop separation plan					

Bioenergy Calculator

- A unique **Bioenergy Calculator** and interactive biomass resource database were developed to aggregate all biomass and technology information.
- This database contains a number of important features: Detailed biomass resource data, by county, for more than **40 biomass resources**.
- Summary of energy generation data for **7 major bioenergy technologies** that takes into consideration advances in energy output and efficiency over time.
- The database was designed to analyze the biomass resource data and technology assessment data in an interactive fashion. The database is:
 - Structured by county and resource type.
 - Contains technology performance estimates to convert biomass quantities into energy (electricity and fuel) potential.

Statewide Biomass Totals

New Jersey Agricultural Experiment Station

	7,401,548	TOTAL BIOMASS	
10,504,494	852,403	Subtotal (other wastes - all)	
7,270,030	13,606	Subtotal (other wastes - gaseous)	
5,158,454	10,195	Landfill Gas	
2,111,576	3,411	Wastewater treatment plant biogas	
3,234,404	MMSCF	Waste methane sources	
1,526,044	127,170	Wastewater treatment plant biosolids	
12,707	198	Turkeys	OTHER WASTES
156,642	13,053	Poultry (layers)	
23,694	3,210	Swine	
8,321	2,818	Goats	
15,927	5,394	Sheep	
971 707	100 603	Equine	
157 500	51 657	Deiry Cours	
	2	Agricultural livestock waste	
611,256	115,675	Subtotal	
118,031	3,934	Oils - Grease trap waste "brown"	
493 225	288 25. 600'01	Oils - Hsed cook in on oil "vellow"	BIO-OILS
	78 870	Oils - field crop or virgin	
32,110,931	4,033,760	Subtotal	
2,138,055	147,229	Other Paper/Mag/JunkMail	
0	269,912		
	174 800	Mired Office Paner	
1,140,134	323 362 L	Wood Scraps	
1,070,039	66,877	Food Waste	SULID WASTES
		Recycled Materials	
10,399,042	917,995	C&D (Non-recycled wood)	
6,270,595	599,722	Other Biomass, Landfilled	
9,057,784	779,661	Waste paper, Landfilled	
2,029,282	211,384	Food waste, Landfilled	
		Solid wastes - Landfilled	
,			
22,710,079	2, 124, 461	Subtotal	
3,947,037	233,000	Leaves	
2 047 CEZ	252 055	Grass Cilppings	
4,757,705	268,797	Brush/Iree Parts	
	202 000	Yard waste	
2,051,182	125,562	Processing Residues (lignocellulosic)	
7,148,123	916,426	Forestry Residues	
0	38,846	Wheat	LIGNOCELLULOSIC BIOMASS
1,055,631	135,337	Other Hay	
0	84,725	Alfalfa Hav	
1,700,901	60 N75	Corn for Silane	
1 766 021	361.027 001.92	Rye Com for Grain	
66,166	5,257	Sweet Com	
		Agricultural crop residuals	
0	0	Energy crops - lignocellulosic	
	210,200		
NA	0 0	Processing Residues (waste sugars)	
NA	42,086	Wheat	
NA	217,669	Corn for Grain	SUGARS/ST ARCHES
NA	8,030	Rye	
NA	7,465	Sorghum	
	feint And	Enerov crops - starch/sugar based	
Energy Available	Quantity	EEEDGTOCKO	
Contract Not	Current Cross		

Bioenergy Calculator – Main Page

	Totals from Selected technology:						
Pick from Drop-Down Menu Below:	2010	2015	2020	2025			
Gasification-Stand Alone BIGCC	5,196,222	5,327,560	5,493,585	5,654,998	MWh/yr		
Cellulosic Ethanol	146,741,506	181,165,636	214,272,765	249,155,206	gallons/yr		

				Net Usable Quar	ntity (Dry Tons)		E	lectricity Production	n Potential (MWh/Yr)	
	Current Gross	Current Net								
	Quantity	Energy Available								
FEEDSTOCKS	(Dry Tons)	(MMBtu)	<u>2010</u>	<u>2015</u>	<u>2020</u>	<u>2025</u>	<u>2010</u>	<u>2015</u>	<u>2020</u>	<u>2025</u>
Energy crops - starch/sugar based										
Sorghum	7,465	NA	0	0	0	0	-	-	-	-
Rye	8,030	NA	0	0	0	0	-	-	-	-
Corn for Grain	217,669	NA	0	0	0	0	-	-	-	-
Wheat	42,086	NA	0	0	0	0	-	-	-	-
Processing Residues (waste sugars)	0	NA	0	0	0	0	-	-	-	-
Subtotal	275,250	0	0	0	0	0	-		-	-
Energy crops - lignocellulosic	0	0	0	0	0	0	-	-	-	-
Agricultural crop residuals										
Sweet Corn	5,257	66,166	4,206	4,206	4,206	4,206	6,787	6,787	6,787	6,787
Rye	28,106	0	0	0	0	0	-	-	-	-
Corn for Grain	132,135	1,766,931	112,314	112,314	112,314	112,314	181,250	181,250	181,250	181,250
Corn for Silage	69,075	815,018	51,806	51,806	51,806	51,806	83,604	83,604	83,604	83,604
Alfalfa Hay	84,725	0	0	0	0	0	-	-	-	-
Other Hay	135,337	1,055,631	67,669	67,669	67,669	67,669	108,286	108,286	108,286	108,286
Wheat	38,846	0	0	0	0	0	-	-	-	-
Forestry Residues	916,426	7,148,123	458,213	458,213	458,213	458,213	733,248	733,248	733,248	733,248
Processing Residues (lignocellulosic)	125,562	2,051,182	125,562	125,562	125,562	125,562	210,409	210,409	210,409	210,409
Yard waste										
Brush/Tree Parts	268,797	4,757,705	268,797	273,977	281,093	287,250	488,041	497,446	510,367	521,546
Grass Clippings	41,284	644,026	41,284	41,857	42,649	43,398	66,064	66,982	68,249	69,447
Leaves	253,055	3,947,657	253,055	256,946	262,324	267,121	404,947	411,174	419,780	427,456
Stumps	25,855	457,641	25,855	26,485	27,427	28,209	46,944	48,088	49,798	51,218
Subtotal	2,124,461	22,710,079	1,408,761	1,419,036	1,433,265	1,445,749	2,329,580	2,347,273	2,371,779	2,393,251
Solid wastes - Landfilled										
Food waste, Landfilled	214,287	2,057,151	128,572	130,810	133,925	136,549	-	-	-	-
Waste paper, Landfilled	779,661	9,057,784	623,728	634,504	649,527	662,233	929,140	945,192	967,571	986,498
Other Biomass, Landfilled	599,722	6,270,595	431,800	439,260	449,660	458,456	643,232	654,345	669,838	682,940
C&D (Non-recycled wood)	582,996	6,604,177	373,117	398,544	429,127	460,234	677,451	723,616	779,145	835,624
Recycled Materials										
Food Waste	66,877	1,070,039	66,877	74,005	82,121	91,026	-	-	-	-
Wood Scraps	129,507	1,146,134	64,753	71,978	80,428	89,646	117,569	130,686	146,029	162,767
Corrugated	736,576	0	0	0	0	0	-	-	-	-
Mixed Office Paper	174,899	0	0	0	0	0	-	-	-	-
Newspaper	269,912	0	0	0	0	0	-	-	-	-
Other Paper/Mag/JunkMail	147,229	2,138,055	147,229	163,601	182,715	203,446	219,320	243,709	272,182	303,064
Subtotal	3,701,664	28,343,935	1,836,077	1,912,702	2,007,504	2,101,590	2,586,712	2,697,548	2,834,766	2,970,892

Bioenergy Calculator Demonstration Net Usability Assumptions

RUTGERS New Jersey Agricultural Experiment Station

Feedstock Net Usability Assumptions				
	Practically Recoverable		Sortable or	Alt Use?
Feedstocks	Percentage	Collectibility	Sort N/A	(0=Yes)
Agricultural Crops - starch/sugar based		1000/	1000	224
Sorgnum	0%	100%	100%	0%
Rye	0%	100%	100%	0%
Corn for Grain	0%	100%	100%	0%
Wheat	0%	100%	100%	0%
Food Processing Residues (waste sugars)	50%	100%	100%	50%
Energy crops - lignocellulosic	100%	100%	100%	100%
A surface in such as a surface of a				
Agricultural crop residuals	000/	000/	1000/	40000
Sweet Corn	80%	80%	100%	100%
Rye	0%	90%	100%	0%
Corn for Grain	85%	85%	100%	100%
Sorghum	/5%	/5%	100%	100%
Alfalfa Hay	0%	100%	100%	0%
Other Hay	50%	100%	100%	50%
Wheat	0%	90%	100%	0%
Forestry Residues	50%	50%	100%	100%
Processing Residues (lignocellulosic)	100%	100%	100%	100%
Yard waste (collected)				
Brush/Tree Parts	100%	100%	100%	100%
	10001	40004	40004	1000/
Grass Clippings	100%	100%	100%	100%
	10001	40004	40004	1000
Leaves	100%	100%	100%	100%
01	1000/	1000/	1000/	10000
Stumps	100%	100%	100%	100%
Solid Wastes - Landfilled	000/	4000/	750/	0004
Food waste, Landfilled	60%	100%	75%	80%
Waste paper, Landfilled	80%	100%	100%	80%
Other Biomass, Landfilled	/2%	100%	90%	80%
C&D, Non-recycled wood	64%	100%	80%	80%
Recycled Products				
Food Waste	100%	100%	100%	100%
Wood Scraps	50%	100%	100%	50%
Corrugated	0%	100%	100%	0%
Mixed Office Paper	0%	100%	100%	0%
Newspaper	0%	100%	100%	0%
Other Paper/Mag/JunkMail	100%	100%	100%	100%
Oils - field crop or virgin				
Soybeans	100%	100%	100%	100%
Oils - Used cooking oil "yellow"	50%	100%	100%	50%
Oils - Grease trap waste "brown"	100%	100%	100%	100%
Agricultural livestock waste				
Beef Cattle	20%	20%	100%	100%
Dairy Cows	60%	60%	100%	100%
Equine	60%	60%	100%	100%
Sheep	20%	20%	100%	100%
Goats	20%	20%	100%	100%
Pigs	50%	50%	100%	100%
Poultry (layers)	100%	100%	100%	100%
Turkeys	100%	100%	100%	100%
Wastewater treatment plant biosolids	100%	100%	100%	100%
Wastewater treatment plant biogas	100%	100%	100%	100%
Landfill Gas	100%	100%	100%	100%

III. Technology Assessment

An early part of the project design was to identify the leading biomass-toenergy conversion technologies that should be evaluated.

Section III assesses existing and emerging biomass conversion technologies. Considerations for this analysis included:

- There are numerous *technically feasible* bioenergy conversion technologies. However, certain technologies that are not well developed yet and/or are likely to be applicable mainly to niche applications were generally excluded from detailed analysis.
- Although there are many biomass feedstocks that *could* be used with a particular conversion technology, in practice, certain feedstocks are better suited to certain conversion processes.
- Given the wide range of technologies within a particular "platform" (e.g., types of biomass gasification reactors), the analysis focuses on broad technology platforms with similar characteristics. Representative feedstock-conversion-end use pathways were selected for the economic analysis.
- The decision to screen out specific technologies *for the current analysis* does not mean that it will not find some application in New Jersey in the future.

Technology Development and Commercialization Pathway

R&D		Demonstratio	on	Market	Market	Market
	Initial System Prototypes	Refined Prototypes	Commercial Prototypes	Entry	Penetration	Maturity
 Research on component technologies General assessment of market needs Assess general magnitude of economics 	 Integrating component technologies Initial system prototype for debugging Monitoring Policy & Market developments 	 Ongoing development to reduce costs or for other needed improvements Technology (systems) demonstrations Some small- scale "commercial" demonstrations 	 Commercial demonstration Full size system in commercial operating environment Communicate program results to early adopters/ selected niches 	 Commercial orders Early movers or niche segments Product reputation is initially established Business concept implemented Market support usually needed to address high cost production 	 Follow-up orders based on need and product reputation Broad(er) market penetration Infrastructure developed Full-scale manufacturing 	 Roll-out of new models, upgrades Increased scale drives down costs and results in learning
10+ years		4 - 8 years		1 - 3 years	5-10 years	Ongoing

The time required to pass through any given stage can vary considerably. The values shown are representative of a technology that passes successfully from one stage to the next without setbacks.

Technology Assessment

Application	Thermoo	chemical Co	nversion	Bio-Chemical/Chemical Conversion				
	Combustion	Gasification	Pyrolysis	Hydrolysis	Trans- Esterification	Fermentation	Anaerobic Digestion	
Power	 Direct combustion Small Scale CHP for Solid Biomass Biomass co- firing with coal 	 BIGCC Power generation from gasification small scale CHP 			 Biodiesel for power generation 		 Landfill Gas Food waste AD WWTP 	
CHP/ Heat	• СНР	• СНР			Biodiesel for heat		 Biogas for heat 	
Transportation Fuels	 Clean Electricity for Electric Vehicles 	• Biomass to drop in fuels	• Pyrolysis oils to drop in fuels.	 Enzyme Hydrolysis Acid Hydrolysis to produce fuels 	 Vegetable and waste oils to biodiesel 	Corn and sugars to ethanol	 RNG in the form of CNG & LNG 	
Bio-based Products		Chemicals, bio-based products	 Chemicals, bio-based products Biochar 	Chemicals, bio- based products	• Glycerin	• DDG as feed	• Bio-based fertilizer	

RUTGERS New Jersey Agricultural Experiment Station

BIOPOWER & BIOHEAT PATHWAYS

State Bioenergy Primer

http://www.epa.gov/statelocalclimate/documents/pdf/bioenergy.pdf

* State Bioenergy Primer

BIOFUELS PATHWAYS

State Bioenergy Primer

http://www.epa.gov/statelocalclimate/documents/pdf/bioenergy.pdf

BIOPRODUCT FEEDSTOCKS

State Bioenergy Primer

http://www.epa.gov/statelocalclimate/documents/pdf/bioenergy.pdf

IV. GHG Reduction Scenarios

NJ Energy Related CO₂ Emissions by Fuel (million mtons/y, %)

*http://www.eia.gov/environment/emissions/state/state_emissions.cfm ** 2012 Emissions

NJ Energy Related CO₂ Emissions by Sector (million mtons/y, %)

*http://www.eia.gov/environment/emissions/state/state_emissions.cfm ** 2012 Emissions

SCENARIO: Landfill Gas to Energy

Greenhouse Gas Reduction Potential: Landfill Gas to Power Generation

Landfill Gas to Power Generation

Greenhouse Gas Reduction Potential: Landfill Gas to Power Generation

If the total LFG to electricity generation is achieved and assumed to displace coal generated power, New Jersey's net CO₂ reduction potential would be 515,058 tons per year.*

*The values in this chart are calculated based on a scenario that takes flaring as baseline.

Greenhouse Gas Reduction Potential: Landfill Gas to CNG/LNG as Transportation Fuel

New Jersey Agricultural Experiment Station

GERS

LFG to CNG for Fossil Diesel Displacement

*The values in this chart are calculated based on a scenario that takes flaring as the baseline and does not include process emissions and byproduct credits.

Greenhouse Gas Reduction Potential: Landfill Gas to CNG as Transportation Fuel

UTGERS New Jersey Agricultural Experiment Station

LFG to CNG GREET Comparison

Greenhouse Gas Reduction Potential: Food Waste AD to Power Generation

Food Waste AD Biogas for Power Generation Potential CO₂ Reductions Comparison

Greenhouse Gas Reduction Potential: Yellow Grease Biodiesel as Transportation Fuel

Yellow Grease Biodiesel to Displace Fossil Diesel

*Carbon Intensity Lookup Table, <u>www.arb.ca.gov/fuels/lcfs/lu_tables_11282012.pdf</u> (accessed 10/10/13) Well-to-Wheels Analysis of LFG Gas-Based Pathways. ANL/ESD/10-3

Greenhouse Gas Reduction Potential: Forestry Waste to 2nd Generation Ethanol

2nd Generation Ethanol to Displace Fossil Gasoline

*Carbon Intensity Lookup Table, <u>www.arb.ca.gov/fuels/lcfs/lu_tables_11282012.pdf</u> (accessed 10/10/13) *Well-to-Wheels Analysis of LFG Gas-Based Pathways. ANL/ESD/10-3

ELECTRICITY

- New Jersey averaged the sixth highest electricity prices in the Nation in 2011.*
- New Jersey's Renewable Portfolio Standard requires that 22.5 percent of electricity sold in the state come from renewable energy sources by 2021, with 17.88 percent coming from Class I and 2.5 percent coming from Class II renewable energy**.
- Class I Renewable Energy definitions include sustainable biomass, biogas, landfill gas, biogas from food waste anaerobic digestion and waste water treatment facilities.
- Average site energy consumption (127 million Btu per year) in New Jersey homes and average household energy expenditures (\$3,065 per year) are among the highest in the country, according to EIA's Residential Energy Consumption Survey.
- New Jersey's 2011 State Energy Master Plan*** identified "Biomass and Waste-to-Energy" as one of the energy generation resources.
- This section highlights possible capital costs if an emerging technology is going to be developed.

^{*} http://www.eia.gov/state/?sid=NJ

^{**} N.J.A.C. 14:8-2.5 and 2.6

^{***}New Jersey State Energy Master Plan, 2011

^{©2015} New Jersey Agricultural Experiment Station

Economic Assessment: Price of Energy

TRANSPORTATION

- Biofuels industry has two critical milestones in its development:
 - Consumers and vehicle manufacturers must adopt new environmentally friendly fuels. Biofuels consumption has to displace the fossil fuels.
 - Advanced biofuel manufacturers must demonstrate technical and commercial capability to meet Renewable Fuel Standard II requirements.
- Approximately 99% of all biofuel consumption in the US is in the form of 1st generation ethanol and biodiesel.
- For the past few years the conventional ethanol demand leveled due to saturation of the gasoline market with fuel containing 10% ethanol.
- In 2011 the USEPA approved the use of E15 (15 % ethanol blend) gasoline in all cars and light trucks made since 2011. However, concerns from consumers and vehicle manufacturers limit uptake. The use of E85 gasoline faces similar challenges since very few vehicles can handle the blend.
- There is a potential of advanced ethanol from energy crops, agricultural waste, MSW and algae. Progress has been slow but 15bn gallons cap for 2015 is encouraging.
- The market price of advanced ethanol is difficult to predict. Coupling fuel production with bioproducts will provide wider opportunities to advanced biofuels.
- MSW, food waste, used oil and fats prove that they are becoming attractive feedstocks.
- Animal fats are attractive feedstocks for biodiesel because their cost is lower than vegetable oil.

* Waste to Biofuels Market Analysis 2013, Renewable Waste Intelligence, December 2012.

BIO-BASED PRODUCTS & BIO-CHEMICALS

- Global demand is growing rapidly.
- Interest levels for low-carbon products are promising.
- Flexibility to produce bio-chemicals and bio-products secures operational continuity if market conditions become unattractive for advanced biofuels production.
- USDA Bio Preferred program and new voluntary labels of "USDA Certified BioBased Product" encourage demand for eco-friendly products.
- The availability and cost of feedstocks play an important role in development.

* Waste to Biofuels Market Analysis 2013, Renewable Waste Intelligence, December 2012.

VI. Policy Recommendations/Next Steps

HOW CAN ADVANCED BIOFUELS GOALS (RFS) BE ACHIEVED?

- Improve Immature Technology Most applications are not ready for commercialization, inadequate scale-up, w/o piloting
- Secure Feedstock Energy crops, waste biomass
- <u>Avoid Overpromising!</u>
- <u>Set Realistic Targets!</u>
- Encourage Investment
- Assure Impatient Venture Capital Firms (Bioenergy vs. IT)
- Provide RDD&D Funding (\$\$\$\$)
- Help Biofuels to coexist with Low Natural Gas Prices
- Provide Long Term Policy (at several levels)

Capturing New Jersey's Biomass Energy Potential – Possible Policy Considerations:									
Develop Policies to Provide Better Access to Biomass Resources	Make NJ a Leader in Support of New Technologies	Integrate with Existing NJ Petrochemical/ Refining Infrastructure	Capitalize on Existing Policies and Practices	Address Regulatory Roadblocks and Inconsistencies					
 Create incentives to develop biomass "nodes" as possible plant sites, and to increase waste diversion practices Establish Bioenergy Enterprise Zones Create incentives to support development of feedstock infrastructure Create educational programming to encourage more rigorous recycling efforts 	 Establish/appoint a state agency with primary responsibility for developing bioenergy industry Create Bioenergy Innovation Fund to support ongoing R&D Promote NJ as premier location for biomass technology companies Leverage expertise in academia & pharma/ biotech industries 	 Further evaluate technologies (e.g., FT, biodiesel) that may benefit from proximity to petrochemical infrastructure Engage industry experts in efforts to develop workable solutions 	 Integrate new efforts (i.e. biofuels) with existing policies (e.g. RPS, Clean Energy Program, & MSW recycling reqs.) Should not undermine the viability of RPS projects such as waste incineration Analyze highest and best use of feedstocks by measuring the value of tradeoffs of alternative uses 	 Biomass feedstocks and end products may be subject to different regulatory oversight; need to identify and address incongruous policies and regulations Streamline regulatory process 					

Recommendations for Accelerating Bioenergy Production <u>Securing Feedstocks</u>:

- Supportive, consistent policies which will create positive market signals and certainty to grow energy crops.
- Promote biomass that does not follow food-to-fuels pathways.
- Improve yield through research by scientists, engineers, agronomists and other experts (e.g. algae development, energy crops, double cropping energy crops with food crops).
- > Inclusion of organic waste as feedstock.
- > Efficient handling and preparation of feedstocks.
- > Life Cycle Analysis to determine true environmental benefits.
- Reduce cost of feedstocks (low cost waste can help!).

Recommendations for Accelerating Bioenergy Production

Technology Development:

- > Supportive, consistent policies to create positive market signals and certainty
- Secure feedstock supply long term contracts eliminate/reduce risk
- Scientists, engineers and other experts integrate science & engineering teams with demonstration plant and industrial partners at an early stage
- > Test-beds for scale-up, pilot testing and verification
- > Life Cycle Analysis to determine true environmental benefits
- Funding for RD&D and investment for commercialization
- Process flexibility to accommodate varying inbound biomass composition and maximize revenue potential
- > Provide process, economic and dynamic modeling from plant operating data
- Transparency (at some level)

For more information, a detailed report and the bioenergy calculator can be found at:

http://ecocomplex.rutgers.edu/BiomassEnergyPotential.html

Contact Information

Project Co-Directors

Margaret Brennan-Tonetta, Ph.D., Associate Director New Jersey Agricultural Experiment Station Rutgers, the State University of New Jersey 88 Lipman Drive, Rm. 113 New Brunswick, NJ 08901 848-932-3776 <u>brennan@aesop.rutgers.edu</u>

> Serpil Guran, Ph.D., Director The Rutgers EcoComplex 1200 Florence-Columbus Road Bordentown, NJ 08505 609-499-3600 x 4225 guran@aesop.rutgers.edu