

New Jersey Board of Public Utilities

New Jersey Clean Energy ProgramTM

Protocols to Measure Resource Savings

Revisions to FY2016 Protocols

Release Date: May 10, 2018 [Board Agenda Date: June 22, 2018]

New Jersey's Clean Energy Program Protocols

Style Definition: TOC 1
Style Definition: TOC 2
Style Definition: TOC 3
Style Definition: TOC 4
Style Definition: TOC 5
Style Definition: TOC 6
Style Definition: TOC 7
Style Definition: TOC 8
Style Definition: TOC 9
Style Definition: Table Text: Font: Times New Roman, 12 pt, Bold, Space Before: 6 pt, After: 3 pt
Formatted: Different first page header

Table of Contents

Formatted

Introduction	
Purpose	
Types of Protocols	
Algorithms	
Data and Input Values	
Baseline Estimates	
Resource Savings in Current and Future Program Years	
Prospective Application of the Protocols	
Resource Savings	
Electric	
Natural Gas	1
Other Resources	1
Post-Implementation Review	
Adjustments to Energy and Resource Savings	
Coincidence with Electric System Peak	
Measure Retention and Persistence of Savings	
Interaction of Energy Savings	
Calculation of the Value of Resource Savings	
Transmission and Distribution System Losses	1
Fleetrie Loss Factor	1
Cas Loss Factor	1
Calculation of Clean Air Impacts	1
Measure Lives	1
Protocols for Program Massuras	1
Desidential Floatria HVAC	1.
Destacala	1
Contral Air Conditioner (A/C) & Air Source Heat Dump (ASHD)	1
Constant Conditioner (A/C) & Air Source field Fump (ASFIF)	
CCUD Degun on header	
Compared U. J. Efficience English	
Furnace High Efficiency Fan	
Solar Domestic Hot Water (augmenting electric resistance DHW)	
Heat Fump Hot Water (HFHW)	
Drain water Heat Recovery (DWHR)	
Combinea space and water nearing (Combo)	
Residential Gas HVAC	
Protocols	
Space Heaters	
Water Heaters	2
Residential Low Income Program	<u>2</u>
Protocols	2
Efficient Lighting	
Hot Water Conservation Measures	
Efficient Refrigerators	
Air Sealing	
Duct Sealing and Repair	
Insulation Up-Grades	
Thermostat Replacement	
Heating and Cooling Equipment Maintenance Papair/Paplacement	3

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

Page i

Other "Custom" Measures	37
Residential New Construction Program	41
Protocols	
Single Family, Multi-Single and Low-Rise Multifamily Building Shell	41
Multifamily High Rise (MFHR) Protocols	45
Multifamily High Rise (MFHR)	45
ENERCY STAP Products Program	47
ENERGY STAP Appliances ENERGY STAP Lighting ENERGY STAP Windows and	••••• - /
ENERGY STAR Andit	17
ENERGY STAP Appliances	47
Protocols	47
ENERCY STAP Patriagrators CEE Tigr 1	47
ENERGY STAP Patrigerators CEE Tier 2	47
ENERGY STAP Clothes Washers CEE Tier 1	47
ENERGY STAP Clothes Washers CEE Tier 7	
ENERGY STAP Sat Top Boxes	77
Advanced Power Strip Tier 1	7 0 18
Advanced Power Strip Tier 2	7 0 18
ENERGY STAP Electric Clothes Drivers Tier 1	7 0 18
ENERGY STAP Cas Clothes Dryers Tier 1	4 0 48
ENERGY STAP 2014 Emerging Technology Award Electric Clothes Dryers	4 0 48
ENERGY STAP 2014 Emerging Technology Award Cas Clothes Dryers — Tier 2	4 0 40
ENERGY STAP Poor AC Tige 1	4 9 40
ENERGY STAP Poor AC Tior 2	4 9 40
ENERGY STAP Poor Air Durifier	4 9 40
ENERGY STAD Erosser	-
ENERGY STAR Soundbar	50
Recidential ENERGY STAR Lighting	55
Home Energy Reporting System	63
Protocols	63
Home Energy Reporting System	63
Refrigerator/Freezer Retirement Program	63
Protocols	63
Home Performance with ENERCY STAR Program	65
Commencial and Inductrial Energy Efficient Construction	
COMMERCIAL AND INDUSTRIAL ENERgy Efficient Construction	00
	. 00
Baselines and Code Changes	 00
Building Snell	 00
Performance Lighting	 00
Prescriptive Lighting	 09 71
Ligning Controls	 /1 70
MOTOFS	/2
Electric HVAC Systems.	
Fuer Use Economizers	ŏ1 01
Dual Entratpy Economizers	81
Electric Chillers	82
Variable Frequency Drives	 83
Air Compressors with Variable Frequency Drives	 ð0 ەح
rvew una Ketrojii Kiichen Hooas wiin Variable Frequency Drives	ð/
Commercial Reprigeration measures	 91

Page ii

C&I Construction Gas Protocols	
Gas Chillers	
Gas Fired Desiccants	
Gas Booster Water Heaters	
Water Heaters	
This prescriptive measure targets solely the use of smaller-scale domes	tic water heaters (50
gallons or less per unit) in all commercial facilities. Larger gas water	heaters are treated
under the custom measure path. The measurement of energy savings for	r C&I gas water
heaters is based on algorithms with key variables (i.e., energy factor) p	rovided by
manufacturer data.	99
Prescriptive Boilers	
Fuel Use Economizers	
Distributed Energy Resource (DER) Program	107
Protocols	107
Distributed Congration	
Energy Savings	
Emission Reductions	107
Sustainable Riomass	100
Day for Dayforman on Duo succes	110
Pay for Performance Program	
Protocols	
Direct Install Program	
Protocols	
Electric HVAC Systems	
Motors	 115
Variable Frequency Drives	 115
Refrigeration Measures	
Gas Space and Water Heating Measures	
Gas Furnaces and Boilers	 122
Small Commercial Boilers	<u></u>
Gas and Propane Infrared Heating	 122
Gas Water Heating	 123
Food Service Measures	
Occupancy Controlled Thermostats	
Dual Enthalpy Economizers	
Electronic Fuel-Use Economizers	
Low Flow Devices	
Demand Control Ventilation Using CO2 Sensors	
Pipe Insulation	
Lighting and Lighting Controls	
C&I Large Energy Users Incentive Program	
Protocols	
C&I Customer Toilared Energy Efficiency Pilot Program	1/1
Drotocols	1/1
Den erreble Er even Dre gren Drete cele	143
Kenewable Energy Program Protocols	142
SKEC Registration Program (SKP)	
Kenewable Non-SKP	
Kenewable Electric Storage	
Appendix A Measure Lives	<u>143</u>
Introduction	<u></u> 7

Page iii

Purpose	7
Types of Protocols	
Algorithms	11
Data and Input Values	
Baseline Estimates	
Resource Savings in Current and Future Program Years	
Prospective Application of the Protocols	
Resource Savings	15
Electric	
Natural Gas	
Other Resources	
Adjustments to Energy and Resource Savings	
Coincidence with Electric System Peak	
Interaction of Energy Savings	17
Calculation of the Value of Resource Savings	17
Transmission and Distribution System Losses	
Electric Loss Factor	
Gas Loss Factor	18
Calculation of Clean Air Impacts	18
Measure Lives	19
Protocols Revision History	
Protocols for Program Measures	20
Residential Electric HVAC	21
Protocols	21
Central Air Conditioner (A/C) & Air Source Heat Pump (ASHP) & Mini-split (AC or	(HP)21
Ground Source Heat Pumps (GSHP)	24
GSHP Desuperheater [Inactive 2017. Not Reviewed]	24
Furnace High Efficiency Fan	24
Solar Domestic Hot Water (augmenting electric resistance DHW) [Inactive 2017. No	ot
Reviewed1	25
Heat Pump Hot Water (HPHW)	
Drain Water Heat Recovery (DWHR) [Inactive 2017, Not Reviewed]	
Residential Gas HVAC	33
Protocols	33
Furnaces	33
Boilers	37
Combination Boilers	39
Boiler Reset Controls	41
Stand Alone Storage Water Heaters	42
Instantaneous Water Heaters	44
Residential Low Income Program	46
Protocols	46
Ffficient Lighting	<u></u> 46
Hot Water Conservation Measures	
Water heater nine wran	
Fificient Refrigerators	<u></u> 55 54
Air Sealing	<u>54</u>
Furnace/Boiler Renlacement	57
Duct Sealing and Repair.	55
Insulation Uperades	55

Page iv

Thermostat Replacement	<u></u> 56
Heating and Cooling Equipment Maintenance Repair/Replacement	<u></u> 56
Gas HVAC Repairs	<u></u> 56
Other "Custom" Measures	<u></u> 58
Residential New Construction Program	
Protocols	63
Single-Family, Multi-Single (townhomes), Low-Rise Multifamily,	63
Multifamily High Rise (MFHR)	
ENERGY STAR Energy Efficient Products	
Protocols	71
FNFRGY STAR Appliances	71
Residential FNFRGY STAR Lighting	, 1 80
Appliance Deeveling Program	00
Appliance Recycling I Togram	
	00
Home Performance with ENERGY STAR Program	<u></u> 96
Commercial and Industrial Energy Efficient Construction	<u></u> 98
Protocols	<u></u> 98
C&I Electric Protocols	<u></u> 98
Performance Lighting	<u></u> 98
Prescriptive Lighting	<u></u> 103
<u>Refrigerated Case LED Lights</u>	107
Specialty LED Fixtures	<u></u> 109
Lighting Controls	<u></u> 112
Motors [Inactive 2017, Not Reviewed]	<u></u> 114
Electronically Commutated Motors for Refrigeration	<u></u> 118
Electric HVAC Systems	
Fuel Use Economizers	<u></u> 129
Dual Enthalpy Economizers	<u></u> 130
Occupancy Controlled Thermostats	<u></u> 132
Electric Chillers	<u></u> 136
Variable Frequency Drives	<u></u> 141
Variable Speed Air Compressors	<u></u> 144
New and Retrofit Kitchen Hoods with Variable Frequency Drives	<u></u> 146
Energy Efficient Glass Doors on Vertical Open Refrigerated Cases	<u></u> 151
Aluminum Night Covers	<u></u> 155
Walk-in Cooler/Freezer Evaporator Fan Control	<u></u> 156
Cooler and Freezer Door Heater Control	<u></u> 159
Medium Temperature (Cooler) Door Heater Control	<u></u> 160
Electric Defrost Control	<u></u> 161
Novelty Cooler Shutoff	<u></u> 162
Food Service Measures Protocols	<u></u> 164
Electric and Gas Combination Oven/Steamer	<u></u> 164
Electric and Gas Convection Ovens, Gas Conveyor and Rack Ovens, Steamer	<u>s, Fryers, and</u>
<u>Griddles</u>	<u></u> 168
Insulated Food Holding Cabinets	<u></u> 173
Commercial Dishwashers	<u></u> 175
Commercial Refrigerators and Freezers	<u></u> 177
Commercial Ice Machines	<u></u> 178
C&I Gas Protocols	<u></u> 181
Gas Chillers	<u></u> 181

Page v

Gas Fired Dessicants	
Gas Booster Water Heaters	<u></u> 187
Stand Alone Storage Water Heaters	
Instantaneous Gas Water Heaters	
Prescriptive Boilers	<u></u> 198
Prescriptive Furnaces	<u></u> 202
Infrared Heaters	205
Electronic Fuel Use Economizers	<u></u> 207
Combined Heat & Power Program	
Protocols	
Distributed Generation	
Energy Savings Impact	
Emission Reductions	210
CHP Emissions Reduction Associated with PJM Grid	
Sustainable Biomass Biopower	212
Pay for Performance Program	
Protocols	
Direct Install Program	218
Protocols	218
Electric HVAC Systems	218
Motors [Inactive 2017, Not Reviewed]	219
Variable Frequency Drives	
Refrigeration Measures	
Vending Machine Controls	
Gas Water Heating Measures	229
Gas Space Heating Measures	<u></u> 230
Small Commercial Boilers [Inactive 2017, Not Reviewed]	231
Gas, Oil, and Propane Furnaces	231
Infrared Heating	<u></u> 232
Programmable Thermostats	<u>233</u>
Boiler Reset Controls	<u></u> 246
Dual Enthalpy Economizers	<u></u> 248
Electronic Fuel-Use Economizers (Boilers, Furnaces, AC)	<u></u> 248
Demand-Controlled Ventilation Using CO ₂ Sensors	<u></u> 249
Low Flow Faucet Aerators, Showerheads, and Pre-rinse Spray Valves	<u></u> 252
Pipe Insulation	<u></u> 258
Lighting and Lighting Controls	<u></u> 261
C&I Large Energy Users Incentive Program	<u></u> 262
Protocols	<u></u> 262
C&I Customer-Tailored Energy Efficiency Pilot Program	
Protocols	
Renewable Energy Program Protocols	
SREC Registration Program (SRP)	
Appendix A Measure Lives	

Page vi

Introduction

These protocols have been developed to measure resource savings, including electric energy capacity, natural gas, and other resource savings, and to measure electric energy and capacity from renewable energy and distributed generation systems. -Specific protocols for determination of the resource savings or generation from each program are presented for each eligible measure and technology.

These protocols use measured and customer data as input values in industry-accepted algorithms.- The data and input values for the algorithms come from the program application forms or from standard values. -The standard input values are based on the recent impact evaluations and best available measured or industry data applicable for the New Jersey programs when impact evaluations are not available.

Purpose

These protocols were developed for the purpose of determining energy and resource savings for technologies and measures supported by New Jersey's Clean Energy Program. -The protocols will be updated from time to time to reflect the addition of new programs, modifications to existing programs, and the results of future program evaluations. -The protocols will be used consistently statewide to assess program impacts and calculate energy and resource savings to:

- 1. Report to the Board on program performance
- 2. Provide inputs for planning and cost-effectiveness calculations
- 3. Provide information to regulators and program administrators for determining eligibility for administrative performance incentives (to the extent that such incentives are approved by the BPU)
- 4. Assess the environmental benefits of program implementation

Resource savings to be measured include electric energy (kWh) and capacity (kW) savings, natural gas savings (therms), and savings of other resources (oil, propane, water, and maintenance), where applicable. In turn, these resource savings will be used to determine avoided environmental emissions.- The Protocols are also utilized to support preliminary estimates of the electric energy and capacity from renewable energy and distributed generation systems and the associated environmental benefits. -Note,

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: Space Before: 6 pt, After: 6 pt

Formatted: Space Before: 6 pt, After: 6 pt

Formatted: Space Before: 6 pt, After: 6 pt

Formatted: Space Before: 6 pt, After: 6 pt

Formatted: Space Before: 6 pt, After: 6 pt

however, that renewable energy protocols are different from those required for REC certification in the state of New Jersey.

The protocols in this document focus on the determination of the per unit savings for the energy efficiency measures, and the per unit generation for the renewable energy or distributed generation measures, included in the current programs approved by the Board. The number of adopted units to which these per unit savings or avoided generation apply are captured in the program tracking and reporting process, supported by market assessments for some programs. -The unit count will reflect the direct participation and, through market assessments, the number of units due to market effects in comparison to a baseline level of adoptions. -The protocols report gross savings and generation only. -Free riders and free drivers are not addressed in these Protocols.- Further research in this area is planned.

The outputs of the Protocols are used to support:

- Regulatory Reportingreporting
- Cost-Effectiveness Analysis-effectiveness analysis
- Program <u>Evaluation</u>evaluation
- Performance <u>Incentivesincentives</u> for the <u>Market Managersmarket managers</u>

These Protocols provide the methods to measure per unit savings for program tracking and reporting. -An annual evaluation plan prepared by the <u>Center for Energy, Economic</u> and Environmental Policy (<u>CEEEP)NJCEP Evaluation Contractor</u> outlines the plans for assessing markets including program progress in transforming markets, and to update key assumptions used in the Protocols to assess program energy impacts. -Reporting provides formats and definitions to be used to document program expenditures, participation rates, and program impacts, including energy and resource savings. -The program tracking systems, that support program evaluation and reporting, will track and record the number of units adopted due to the program, and assist in documenting the resource savings using the per unit savings values in the Protocols. -Cost benefit analyses prepared by <u>CEEEP</u> and other evaluation contractors<u>NJCEP EvaluationContractors</u> assesses the impact of programs, including market effects, and their relationship to costs in a multi-year analysis.

Types of Protocols

In general, energy and demand savings will be measured using measured and customer data as input values in algorithms in the protocols, tracking systems, and information from the program application forms, worksheets, and field tools.

The following table summarizes the spectrum of protocols and approaches to be used for measuring energy and resource savings. -No one protocol approach will serve all programs and measures.

Formatted: Space Before: 6 pt, After: 6 pt

Formatted: Space Before: 6 pt, After: 6 pt

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: Space Before: 6 pt, After: 6 pt

Formatted: Space Before: 6 pt, After: 6 pt

Formatted: Space Before: 6 pt, After: 6 pt

	Summary of	Protocols and Approach	ies	<u> </u>	Formatted: Font: Not Bold
Type of	Type of			1	Formatted: Space After: 1 pt
Measure 1 Standard prescriptive measures	Protocol Standard formula and standard input values	General Approach Number of installed units times standard savings/unit	Examples Residential lighting (number of units installed times standard savings/unit)	-	Formatted Table
2 Measures with important variations in one or more input values (e.g., delta watts, efficiency	Standard formula with one or more site-specific input values	Standard formula in the protocols with one or more input values coming from the application form, worksheet, or field	Some prescriptive lighting measures (delta watts on the application form times standard operating hours in the protocols)	-	Formatted: Space After: 2 pt Formatted: Space Before: 3 pt, After: 3 pt
level, capacity, load, etc.)		tool (e.g., delta watts, efficiency levels, unit capacity, site-specific load)	Residential Electric HVAC (change in efficiency level times site-specific capacity times standard operating hours)		Formatted: Space Before: 3 pt, After: 3 pt
			Field screening tools that use site-specific input values	•	Formatted: Space Before: 3 pt, After: 3 pt
			Customer On-Site Renewable Energy	4	Formatted: Space Before: 3 pt, After: 3 pt
3Custom or site-specific measures, or measures	Site-specific analysis	Greater degree of site- specific analysis, either in the number of site-specific input	Custom Industrial process	•	Formatted: Space Before: 3 pt, After: 3 pt Formatted: Space Before: 3 pt, After: 3 pt
in complex comprehensive jobs		special engineering algorithms, including building simulation programs	Complex comprehensive jobs (P4P)		Formatted: Space Before: 3 pt, After: 3 pt
			CHP Customer-Tailored Pilot	•	Formatted: Space Before: 3 pt, After: 3 pt

	Three or four systems will work together to ensure accurate data on a given measure:	•	Formatted: Space Before: 6 pt, After: 6 pt
	 The application form that the customer or customer's agent submits with basic information. 		Formatted: Space Before: 3 pt, After: 3 pt
	 Application worksheets and field tools with more detailed site-specific data, input values, and calculations (for some programs). 	t	
	3. Program tracking systems that compile data and may do some calculations.		
	4. Protocols that contain algorithms and rely on standard or site-specific input value based on measured dataParts or all of the protocols may ultimately be implemented within the tracking system, the application forms and worksheets, and the field tools.	s	
	Algorithms		
	The algorithms that have been developed to calculate the energy and or demand savings are driven by a change in efficiency level for the installed measure compared to a baseline level of efficiencyThis change in efficiency is reflected in both demand and energy savings for electric measures and energy savings for gas. Following are the basic algorithms.		Formatted: Space Before: 6 pt, After: 6 pt
	Electric Demand Savings = $\Delta kW = kW_{\text{baseline}} - kW_{\text{energy efficient measure}}$		
	Electric Energy Savings = AkW X EFLH		
	Electric Peak Coincident Demand Savings = AkW X Coincidence Factor		
	Gas Energy Savings = ABtuh X EFLH		
	Where:	ł	
	ABtuh = Btuhbaseline input Btuhenergy efficient measure input		
	Other resource savings will be calculated as appropriate.		
	Specific algorithms for each of the program measures may incorporate additional factors to reflect specific conditions associated with a program or measureThis may include factors to account for coincidence of multiple installations, or interaction between different measures.		Formatted: Space Before: 6 pt, After: 6 pt
I			
	New Jersey's Clean Energy Program Page 1 Protocols to Measure Resource Savings	1	

When building simulation software programs are used to develop savings estimates for several measures in a comprehensive project, as in the Pay for Performance Program, the specific algorithms used are inherent in the software and account for interaction among measures by design. -Detailed Simulation Guidelines have been developed for the Pay for Performance Program and are included in the Pay for Performance Program Guidelines. These Guidelines should be followed when building simulation is used to develop savings estimates. As stated in the Guidelines, simulation software must be compliant with ASHRAE 90.1 2004 Section 11 or Appendix G.

Formatted: Space Before: 6 pt, After: 6 pt

Data and Input Values

	protocols are documented in the baseline studies or other market informationBaselines will be updated to reflect changing codes, practices and market transformation effects.	
	For the Direct Install and Low Income programs, some Δ kW, Δ kWh, and gas energy savings values are based on high efficiency equipment versus existing equipment, where the programs specifically target early retirement or upgrades that would not otherwise occurProtocols for the Direct Install Program include degradation tables to calculate the efficiency of the replaced unit.	Formatted: Space Before: 6 pt, After: 6 pt
	The Pay for Performance Program is a comprehensive program that requires participants to implement energy efficiency improvements that will achieve a minimum of 15% reduction in total source energy consumptionDue to the building simulation and measurement and verification (M&V) requirements associated with this Program, the baseline is the existing energy consumption of the facility, as reported through the U.S. EPA's Portfolio Manager benchmarking software.	Formatted: Space Before: 6 pt, After: 6 pt
	Renewable energy and distributed generation program protocols assume that any electric energy or capacity produced by a renewable energy or distributed generation system displaces electric energy and capacity from the PJM grid.	Formatted: Space Before: 6 pt, After: 6 pt
I	Resource Savings in Current and Future Program Years	
	The Protocols support tracking and reporting the following categories of energy and resource savings:	Formatted: Space Berore: 6 pt, Arter: 6 pt
	 Savings or generation from installations that were completed in the program year and prior program years due to the program's direct participation and documented market effects. 	Formatted: Space Before: 3 pt, After: 3 pt
	2. Savings or generation from program participant future adoptions due to program commitments.	
	3. Savings or generation from future adoptions due to market effects.	
	Prospective Application of the Protocols	
1	The protocols will be applied prospectivelyThe input values are from the program	
•	application forms and standard input values (based on measured data including metered data and evaluation results)The protocols will be updated periodically based on evaluation results and available data, and then applied prospectively for future program	
	years.	

Resource Savings

Electric

Protocols have been developed to determine the electric energy and coincident peak demand savings.

Annual Electric energy savings are calculated and then allocated separately by season (summer and winter) and time of day (on-peak and off-peak). -Summer coincident peak demand savings are calculated using a demand savings protocol for each measure that includes a coincidence factor. -Application of this coincidence factor converts the demand savings of the measure, which may not occur at time of system peak, to demand savings that is expected to occur during the Summer On-Peak period. -These periods for energy savings and coincident peak demand savings are defined as:

	Energy Savings	Coincident Peak	
		Demand Savings	
Summer May through September June through August		June through August	
Winter	October through April	il NA	
On Peak (Monday - 8:007 a.m. to 8:0011 12:00 p.m. to 8:00 p.m.		12 :00 p.m. to 8 :00 p.m.	
Friday) p.m.			
Off Peak	M-F <u>8:0011</u> p.m. to	NA	
	8:00<u>7</u> a.m.		
	All day weekends and holidays		

The time periods for energy savings and coincident peak demand savings were chosen to best fit the seasonal avoided cost patterns for electric energy and capacity that were used for the energy efficiency program cost effectiveness purposes. -For energy, the summer period May through September was selected based on the pattern of avoided costs for energy at the PJM level. -In order to keep the complexity of the process for calculating energy savings benefits to a reasonable level by using two time periods, the knee periods for spring and fall were split approximately evenly between the summer and winter periods.

For capacity, the summer period June through August was selected to match the highest avoided costs time period for capacity. -The experience in PJM and New Jersey has been that nearly all system peak events occur during these three months. -Coincidence factors are used to calculate energy efficiency factors on peak demand.- Renewable energy and distributed generation systems are assumed to be operating coincident with the PJM system peak. -This assumption will be assessed in the impact evaluation. Formatted: Space Before: 6 pt, After: 6 pt

Formatted: Keep with next, Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto		
Formatted: Font: Bold		
Formatted: Space After: 1 pt		
Formatted Table		
Formatted: Font: Bold		
Formatted: Space After: 2 pt		
Formatted: Font: Bold		
Formatted: Space After: 2 pt		
Formatted: Font: Bold		
Formatted: Space After: 2 pt		
Formatted: Font: Bold		
Formatted: Space After: 2 pt		
Formatted: Space Before: 6 pt, After: 6 pt		

Formatted: Space Before: 6 pt, After: 6 pt

Natural Gas

Protocols have been developed to determine the natural gas energy savings on a seasonal **•** basis. -The seasonal periods are defined as:

Summer — April through September

Winter - October through March

The time periods for gas savings were chosen to best fit the seasonal avoided gas cost pattern that was used for calculating energy efficiency program benefits for cost effectiveness purposes. -However, given the changing seasonal cost patterns for gas supply, different time periods may be more appropriate to reflect a current outlook for the seasonal pattern, if any, at the time that the avoided cost benefits are calculated. -The seasonal factors used in the following protocols that correspond to the above time periods reflect either base load or heating load usage. -In the case of base load, one twelfth of the annual use is allocated to each month.- In the case of heating load, the usage is prorated to each month based on the number of normal degree-days in each month. -This approach makes it relatively easy to calculate new seasonal factors to best match different avoided cost patterns.

Other Resources

Some of the energy savings measures also result in environmental benefits and the saving of other resources. -Environmental impacts are quantified based on statewide-conversion factors supplied by the NJDEP for electric, gas, and oil energy savings. Where identifiable and quantifiable these other key resource savings, such as oil, will be estimated. -Oil and propane savings are the major resources that have been identified.- If other resources are significantly impacted, they will be included in the resource savings estimates.

Post-Implementation Review

Program administrators will review application forms and tracking systems for all measures and conduct field inspections on a sample of installations. For some programs and jobs (e.g., custom, large process, large and complex comprehensive design), post-installation review and on site verification of a sample of application forms and installations will be used to ensure the reliability of site specific savings estimates.

Adjustments to Energy and Resource Savings

Coincidence with Electric System Peak

Coincidence factors are used to reflect the portion of the connected load savings or generation that is coincident with the electric system peak.

Formatted: Space Before: 6 pt, After: 6 pt

Formatted: Space Before: 6 pt, After: 6 pt

Formatted: Space Before: 6 pt, After: 6 pt

Formatted: Space After: 0 pt

Formatted: Space Before: 6 pt

Measure Retention and Persistence of Savings

The combined effect of measure retention and persistence is the ability of installed measures to maintain the initial level of energy savings or generation over the measure life. Measure retention and persistence effects were accounted for in the metered data that were based on C&I installations over an eight year period. As a result, some protocols incorporate retention and persistence effects in the other input values. For other measures, if the measure is subject to a reduction in savings or generation over time, the reduction in retention or persistence is accounted for using factors in the calculation of resource savings (e.g., in-service rates for residential lighting measures, degradation of photovoltaic systems).

Interaction of Energy Savings

Interaction of energy savings is accounted for in certain programs as appropriate. -For all • other programs and measures, interaction of energy savings is zero.

For the Residential New Construction program, the interaction of energy savings is accounted for in the home energy rating tool that compares the efficient building to the baseline or reference building and calculates savings.

For the <u>Residential and</u> Commercial and Industrial Efficient Construction program, the energy savings for lighting is increased by an amount specified in the protocol to account for HVAC interaction.

For commercial and industrial custom measures, interaction where relevant is accounted for in the site-specific analysis. -In the Pay for Performance Program, interaction is addressed by the building simulation software program.

Calculation of the Value of Resource Savings

The calculation of the value of the resources saved is not part of the protocols. -The protocols are limited to the determination of the per unit resource savings in physical terms.

In order to calculate the value of the energy savings for reporting and other purposes, the energy savings are determined at the customer level and then increased by the amount of the transmission and distribution losses to reflect the energy savings at the system level. The energy savings at the system level are then multiplied by the appropriate avoided costs to calculate the value of the benefits.

System Savings = (Savings at Customer) $\frac{1}{2}$ (T&D Loss Factor)

Value of Resource Savings = (System Savings) $\frac{x}{2}$ (System Avoided Costs + Environmental Adder) + (Value of Other Resource Savings)

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: Space Before: 6 pt, After: 6 pt

The value of the benefits for a particular measure will also include the value of the water, oil, maintenance and other resource savings where appropriate. -Maintenance savings will be estimated in annual dollars levelized over the life of the measure.

Transmission and Distribution System Losses

The protocols calculate the energy savings at the customer level. -These savings need to be increased by the amount of transmission and distribution system losses in order to determine the energy savings at the system level. -The following loss factors multiplied by the savings calculated from the protocols will result in savings at the supply level.

Electric Loss Factor

The electric loss factor applied to savings at the customer meter is 1.076081^{1,2} for both energy and demand. -The electric system loss factor was developed to be applicable to statewide programs. Therefore, average system losses at the margin based on a 10 year (2001 to 2010) average of the New Jersey state electricity supply and disposition dataset from the U.S. Energy Information Administration (EIA).

Gas Loss Factor

The gas loss factor is 1.0. -The gas system does not have losses in the same sense that the electric system does.- All of the gas gets from the "city gate" (delivery point to the distribution system) to the point of use except for unaccounted for gas (such as theft), gas lost due to system leakage or loss of gas that is purged when necessary to make system repairs. -Since none of these types of "losses" is affected by a decrease in gas use due to energy efficiency at the customer, there are no losses for which to make any adjustment. Therefore, a system loss factor of 1.0 is appropriate for gas energy efficiency savings.

These electric and gas loss factors reflect losses at the margin and are a consensus of the electric and gas utilities.

Calculation of Clean Air Impacts

The amount of air emission reductions resulting from the energy savings are calculated using the energy savings at the system level and multiplying them by factors developed by the New Jersey Department of Environmental Protection (NJDEP).Pennsylvania-New Jersey-Maryland Interconnection (PJM) for electric emissions and US EPA for natural gas emissions.

¹ JPC&L, Summary of reconciliation factors January 1, 2017 – December 31, 2017.
 ² PSE&G Rate Class & Loss Factor Information

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: Space Before: 6 pt

Formatted: Space Before: 6 pt, After: 6 pt

Formatted: Space Before: 6 pt, After: 6 pt

Formatted: Space Before: 6 pt, After: 6 pt

System averagemarginal on-peak air <u>electric</u> emissions reduction factors provided by the NJDEPPJM are³: Formatted: Space Before: 6 pt, After: 6 pt

Formatt		missions Factors	Electric Er	
	March 2014 -	July 2003-February	Jan 2001-June 2002	Emissions
	Present	2014		Product
Formatt	<u>2016</u> 1,111.79 lbs <		1.1 lbs 2014	CO2Emission
Formatt	Lbs per MWh ◀	1,520 lbs 2015	Lbs per kWh	<u>s</u>
Formatt	saved 🔸	<u>Lbs</u> per MWh -saved	saved <u>MWh</u>	Product
Formatt	0.95 lbs per MWh ◄	2.8 lbs per MWh	6.42 lbs per metric ton	NOxCO2
Formatt	saved<u>1,617</u>	saved <u>1,647</u>	of CO2-saved 1,646	
Formatt	<u>1.48</u>	<u>1.80</u>	<u>1.74</u>	<u>NOx</u>
Formatt	2.21 lbs per MWh ◆	6.5 lbs per MWh	10.26 lbs per metric	SO ₂
Formatt	saved <u>1.73</u>	saved <u>3.34</u>	ton of CO2-saved 5.2	
Formatt	2.11 mg per MWh	0.0000356 lbs per	0.00005 lbs per metric	Hg
	saved	MWh saved	ton of CO2 saved	

Formatted: Table Caption, Left

Formatted: Font: 12 pt Formatted: Table Header Formatted: Table Header Formatted: Table Header Formatted: Table Header Formatted: Centered, Space After: 2 pt Formatted: Centered Space After: 2 pt	Formatted Table	
Formatted: Table Header Formatted: Table Header Formatted: Table Header Formatted: Table Header Formatted: Centered, Space After: 2 pt Formatted Table Formatted: Centered Space After: 2 pt	Formatted: Font: 12 pt	
Formatted: Table Header Formatted: Table Header Formatted: Table Header Formatted: Centered, Space After: 2 pt Formatted Table Formatted: Centered Space After: 2 pt	Formatted: Table Header	
Formatted: Table Header Formatted: Table Header Formatted: Centered, Space After: 2 pt Formatted Table	Formatted: Table Header	
Formatted: Table Header Formatted: Centered, Space After: 2 pt Formatted Table Formatted: Centered Space After: 2 pt	Formatted: Table Header	
Formatted: Centered, Space After: 2 pt Formatted Table Formatted: Centered Space After: 2 pt	Formatted: Table Header	
Formatted Table	Formatted: Centered, Space After: 2	2 pt
Formatted: Centered Space After: 2 nt	Formatted Table	
Tormatted. Centered, Space Arter. 2 pt	Formatted: Centered, Space After: 2	2 pt

System natural gas emissions reduction factors provided by US EPA are⁴:

	Natural Gas Emission	ns Factors	Formatted: Table Caption, Left, Space Before: 6 pt
	Emissions		Deleted Cells
	Product	Jan 2001-June 2002<u>Current</u>	Formatted: Table Header, Left
CO ₂		NA <u>118 Lbs/MMBtu</u>	Formatted Table
			Formatted: Space After: 2 pt
NOx	NA	0.0092 lbs per therm saved 0.12 Lbs/MMBt	Deleted Cells
<u>SO</u> 2		0.0006 Lbs/MMBtu	Formatted: Space After: 2 pt

All factors are provided by the NJ Department of Environmental Protection and are on an average system basis. They will be updated as new factors become available.

Measure Lives

Measure lives are provided in Appendix A for informational purposes and for use in other applications such as reporting lifetime savings or in benefit cost studies that span more than one year. -The Pay for Performance Program uses the measure lives as included in Appendix A to determine measure-level and project-level cost effectiveness.

 ³ PJM report; "2012–2016 CO2, SO2 and NOX Emission Rates," March 2017. http://www.pjm.com/-/media/library/reports-notices/special-reports/20170317-2016-emissions-report.ashx?la=en
 ⁴ US EPA AP-42; AP-42, Compilation of Air Pollutant Emission Factors, 5th Edition, Chapter 1.4 Natural Gas Combustion https://www3.epa.gov/ttnchie1/ap42/ch01/final/c01s04.pdf.

Protocols Revision History						
<u>Revision History of Protocols</u>						
Date Issued	<u>Reviewer</u>	<u>Comments</u>				
October 2017	ERS	See ERS Memo, NJCEP Protocols - Comparative Measure Life Study and Summary of Measure Changes to NJCEP Protocols, September 5, 2017. Updated October 16, 2017, January 12, 2018.				
<u>May 2018</u>	<u>Program</u> <u>Administrator in</u> <u>consultation with</u> <u>Board Staff</u>	Revisions to the January 12, 2018 version issued by ERS to reflect discussions at Utility Working Group Meetings, additional comments from Rate Counsel and further review of public comments.				

Protocols for Program Measures

I

The following pages present measure or project-specific protocols.- In those instances where measures are applicable to more than one program, the measures apply to all such programs unless otherwise specified.

Formatted: Space Before: 6 pt, After: 6 pt

Formatted: Keep with next **Residential Electric HVAC** Formatted **Protocols** Formatted: Space Before: 6 pt, After: 6 pt The measurement plan for residential high efficiency cooling and heating equipment is based on algorithms that determine a central air conditioners or heat pump's cooling/heating energy use and peak demand. -Input data is based both on fixed assumptions and data supplied from the high efficiency equipment rebate application form. -The algorithms also include the calculation of additional energy and demand savings due to the required proper sizing of high efficiency units. Formatted: Space Before: 6 pt, After: 6 pt The savings will be allocated to summer/winter and on-peak/off-peak time periods based on load shapes from measured data and industry sources. -The allocation factors are documented below in the input value table. Formatted: Space Before: 6 pt, After: 6 pt The protocols applicable for this program measure the energy savings directly related to the more efficient hardware installation. -Estimates of energy savings due to the proper sizing of the equipment are also included. Formatted: Space Before: 6 pt, After: 6 pt The following is an explanation of the algorithms used and the nature and source of all required input data. Central Air Conditioner (A/C) & Air Source Heat Pump (ASHP) & Mini-split (AC or HP) Algorithms Formatted: English (U.S.) Central Air Conditioner (A/C) & Air Source Heat Pump (ASHP) Cooling Energy Consumption and Peak Demand Savings - Central A/C & ASHP (High Formatted: Font: Not Italic Efficiency Equipment Only): Formatted: Indent: Left: 0" Formatted: Font: Not Italic Energy ImpactSavings (kWh) = CAPY/1000 X/yr) = Tons * 12 kBtuh/Ton * Formatted: None, Indent: Left: 0" $(1/\text{SEER}_b - 1/\text{SEER}_q) \times \text{EFLH}_c$ Formatted: None, Indent: Left: 0", First line: 0" Peak Demand ImpactSavings (kW) = CAPY/1000 X Tons * 12 kBtuh/Ton * (1/EERb Formatted: None, Indent: Left: 0" $-1/\text{EER}_q$) $\times \text{CF}$ Formatted: Indent: Left: 0" Heating Energy Savings –(ASHP and Mini-Split): Formatted: Font: Not Italic Formatted: Normal, Indent: First line: 0" Energy ImpactSavings (kWh) = CAPY/1000 X/yr) = Tons * 12 kBtuh/Ton * Formatted: Font: Not Italic $(1/\text{HSPF}_b - 1/\text{HSPF}_q) \times \text{EFLH}_h$ Formatted: Indent: Left: 0" **Cooling** Proper Sizing and Quality Installation Verification (QIV):

Energy Savings for Proper Sizing and QIV	Formatted: Font: Not Italic
$(kWh{p}- kWh_{q}/yr) = kWh_{q} * ESF$	Formatted: Indent: Left: 0"
	Formatted: Indent: Left: 0", First line: 0"
Cooling Demand Energy Savings for Proper Sizing and QIV	Formatted: Font: Not Italic
	Formatted: Font: Not Italic

Cooling Energy Consumption and Demand Savings Central A/C & ASHP (

During Existing System Maintenance

Energy Impact (kWh) = ((CAPY/(1000 XSavings (kWh/yr) = (Tons * 12 kBtuh/Ton * SEER_m)) X) * EFLH_c) X * MF

Peak Demand <u>ImpactSavings</u> (kW) =((<u>CAPY/(1000 X=(Tons * 12 kBtuh/Ton *</u> EER_m)) X) * CF) X * MF

Cooling Energy Consumption and Demand Savings Central A/C & ASHP (Duct Sealing):

Energy <u>ImpactSavings</u> (kWh) = (<u>CAPY/(1000 X/yr)</u> = (<u>Tons * 12 kBtuh/Ton *</u> SEER_g)) <u>X</u> * EFLH_c <u>X*</u> DuctSF

Peak Demand <u>ImpactSavings</u> (kW) = $\frac{(CAPY/(1000 \times 12 \text{ kBtuh/Ton} * 12 \text{ kBtuh/Ton} * EER_{g}) \times 12 \text{ kBtuh/Ton} \times CF}{X \times 12 \text{ kBtuh/Ton} \times 12 \text{ kBtuh/Ton}$

Ground Source Heat Pumps (GSHP)

Algorithms		Formatted: English (U.S.)
A		Formatted: Font: Not Bold, English (U.S.)
Cooling Energy (kWh) Savings = CAPY/1000 X(kWh/yr) = Tons * 12 kBtuh/Ton *		Formatted: Font: Not Bold
$(1/(\text{EER}_{g,b} \overset{\mathbf{X}}{\underline{\mathbf{X}}} \text{GSER}) - (1/(\text{EER}_{g} \overset{\mathbf{X}}{\underline{\mathbf{X}}} \text{GSER}))) \overset{\mathbf{X}}{\underline{\mathbf{X}}} \text{EFLH}_{c}$		Formatted: None, Indent: Left: 0.25"
Peak Demand Savings (kW) = Tons * 12 kBtuh/Ton * $(1/EER_{g,b} - (1/(EER_{g} * GSPK))) * CF$	•	Formatted: Font: 8 pt, Raised by 3 pt, Kern
Heating Energy <u>Savings</u> (kWh) Savings = CAPY/1000 X/yr) = Tons * 12 kBtuh/10n * (1/(COP - X* CSOP) - (1/(COP - X* CSOP))) X* FELU		at 18 pt
$^{\bullet}(1/(COP_{g,b} \times ^{\bullet} GSOP) - (1/(COP_{g} \times ^{\bullet} GSOP))) \times ^{\bullet} EFLH_{h}$		Formatted: None, Indent: Left: 0"
	•	Formatted: Indent: Left: 0.25"
Peak Demand Impact (kW) = CAPY/1000 X (1/EER _g ,b(1/ (EER _g X GSPK))) X CF		Formatted: Heading 3, Indent: Left: 0"
GSHP Desuperheater [Inactive 2017, Not Reviewed]		
Energy (kWh) Savings = EDSH	•	Formatted: Indent: Left: 0"
Peak Demand Impact (kW) = PDSH	•	Formatted: Indent: Left: 0"
	•	Formatted: Heading 3
Furnace High Efficiency Fan		
Algorithms		Formatted: English (U.S.)
		Formatted: Font: Not Bold

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Page 24

Formatted: Font: Not Bold, Not Italic Formatted: Font: Not Bold, Not Italic

Formatted: Font: Not Bold, Not Italic

Formatted: Font: Not Bold, Not Italic
Formatted: Indent: Left: 0"

Formatted: Indent: Left: 0"

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Heating Energy (kWh) Savings = ((CAPY _q X EFLH _{HT})/100,000 BTU/therm)	4	Formatted: Indent: Left: 0.25", First line: 0"
$\frac{X(kWh/yr) = (Cap_q/3.412 kWh/Btu) * EFLH_h * FFS_{HT}}{EFLH_h * FFS_{HT}}$		
Cooling Energy (kWh) Savings (kWh/yr) = FES_{cr}	• -	Formatted: Subscript
		Formatted: Indent: Left: 0"
Solar Domestic Hot Water (augmenting electric resistance DHW) [Inactive 2017, Not <u>Reviewed]</u>		· · · · · · · · · · · · · · · · · · ·
	•	Formatted: Keep with next
Heating Energy (kwh) Savings = $ESav_{SDHW}$	4	Formatted: Indent: Left: 0"
Peak Demand Impact (kW) = $DSav_{SDHW} \times CF_{SDHW}$	4	Formatted: Indent: Left: 0", First line: 0.25"
Heat Pump Hot Water (HPHW)		
	4	Formatted: Don't keep with next
Heating Energy (kWh) -Savings <u>(kWh/yr)</u> = ESav _{HPHW}	•	Formatted: Indent: Left: 0", Don't keep with next
Peak Demand ImpactSavings (kW) = DSav _{HPHW} * CF _{HPHW}	-	Formatted: Indent: Left: 0", First line: 0", Don't keep with next
		Formatted: Indent: Left: 0", First line: 0.25"
Drain Water Heat Recovery (DWHR) [Inactive 2017, Not Reviewed]		Formatted: Subscript
Heating Energy (kWh) Savings = $ESav_{DWHR}$	4	Formatted: Indent: Left: 0"
Peak Demand Impact (kW) = $DSav_{DVarm} \times CE_{DVarm}$	4	Formatted: Indent: Left: 0" First line: 0.25"
Four Domain Impact (R (F) Dour Dwitk A_ CF Dwitk		
Definition of Terms		
$\frac{CAPY}{CAPY}$ Tons = The rated cooling capacity (output) of the central air conditioner or heat	4	Formatted: Space Before: 3 pt, After: 3 pt
pumpunit being installedThis data is obtained from the Application Form based on the model number.		
SEER b = The Seasonal Energy Efficiency Ratio of the Baseline Unit.		Formatted: Space Before: 3 pt, After: 3 pt
SEER _q = The Seasonal Energy Efficiency Ratio of the qualifying unit being installed. This data is obtained from the Application Form based on the model number.		Formatted: Space Before: 3 pt, After: 3 pt
SEER. = The Seasonal Energy Efficiency Ratio of the Unit receiving maintenance		Formatted: Space Before: 3 pt, After: 3 pt
		· · · · ·
EER_{m} = The Energy Efficiency Ratio of the Unit receiving maintenance		
$EER_b = The Energy Efficiency Ratio of the Baseline Unit.$	4	Formatted: Space Before: 3 pt, After: 3 pt

	EER_q = The Energy Efficiency Ratio of the unit being installed. This data is obtained from the Application Form based on the model number.		Formatted: Space Before: 3 pt, After: 3 pt
	$EER_{g,q}$ = The EER of the ground source heat pump being installed Note that EERs of GSHPs are measured differently than EERs of air source heat pumps (focusing on entering water temperatures rather than ambient air temperatures)The equivalent SEER of a GSHP can be estimated by multiplying EER _g by 1.02.		Formatted: Space Before: 3 pt, After: 3 pt
	$EER_{g,b}$ = The EER of a baseline ground source heat pump		Formatted: Space Before: 3 pt, After: 3 pt
	GSER = The factor to determine the SEER of a GSHP based on its EER.		Formatted: Space Before: 3 pt, After: 3 pt
	EFLH = The Equivalent Full Load Hours of operation for the average unit- <u>(cooling or heating)</u>	•	Formatted: Space Before: 3 pt, After: 3 pt
	ESF = The Energy Savings Factor or the assumed saving due to proper sizing and proper installation.	•	Formatted: Space Before: 3 pt, After: 3 pt
	MF = The Maintenance Factor or assumed savings due to completing recommended maintenance on installed cooling equipment.	•	Formatted: Space Before: 3 pt, After: 3 pt
	DuctSF = The Duct Sealing Factor or the assumed savings due to proper sealing of all cooling ducts		Formatted: Space Before: 3 pt, After: 3 pt
	CF = The coincidence factor which equates the installed unit's connected load to its demand at time of system peak.		Formatted: Space Before: 3 pt, After: 3 pt
	DSF = The Demand Savings Factor or the assumed peak demand capacity saved due to proper sizing and proper installation.		Formatted: Space Before: 3 pt, After: 3 pt
	$HSPF_b = The Heating Seasonal Performance Factor of the Baseline Unit.$	•	Formatted: Space Before: 3 pt, After: 3 pt
	$HSPF_q$ = The Heating Seasonal Performance Factor of the unit being installed. This data is obtained from the Application Form.	-	Formatted: Space Before: 3 pt, After: 3 pt
	$COP_{g,q} = Coefficient of Performance of a GSHP$		Formatted: Space Before: 3 pt, After: 3 pt
	$COP_{g,b}$ = Baseline Coefficient of Performance of a GSHP	-	Formatted: Space Before: 3 pt, After: 3 pt
	GSOP = The factor to determine the HSPF of a GSHP based on its COP.		Formatted: Space Before: 3 pt, After: 3 pt
		-	

$GSPK =$ The factor to convert EER_g to the equivalent EER of an air conditioner to enable comparisons to the baseline unit.	e	Formatted: Space Before: 3 pt, After: 3 pt
EDSH = Assumed savings per desuperheater.		
PDSH = Assumed peak demand savings per desuperheater.		
ESav _{SDHW} = Assumed energy savings per installed solar domestic hot water system with electric resistance heater backup.		
DSav _{SDHW} = Assumed demand savings per installed solar domestic hot water system with electric resistance heater backup.	h⁴	Formatted: Space Before: 3 pt, After: 3 pt
$\frac{\text{CAPYY}_{q} \text{Cap}_{q}}{\text{Cap}_{q}} = \text{Output capacity of the qualifying heating unit in BTUs/hour}$	•	Formatted: Space Before: 3 pt, After: 3 pt
$\frac{\text{EFLH}_{\text{HT}}\text{EFLH}}{\text{EFLH}} = \text{The Equivalent Full Load Hours of operation for the average heating unit}$		Formatted: Space Before: 3 pt, After: 3 pt
$FFS_{HT} = Furnace fan savings (heating mode)$	•	Formatted: Space Before: 3 pt, After: 3 pt
$FFS_{CL} = Furnace fan savings (cooling mode)$		Formatted: Space Before: 3 pt, After: 3 pt
kWh _p = Annual kWh due to proper sizing		
kWh _g = Annual kWh usage post-program	•	Formatted: Space Before: 3 pt, After: 3 pt
$kW_p = Annual kW$ due to proper sizing		
kW _q = Annual kW usage post-program	•	Formatted: Space Before: 3 pt, After: 3 pt
ESav _{HPHW} = Assumed energy savings per installed heat pump water heater.	•	Formatted: Space Before: 3 pt, After: 3 pt
$DSav_{HPHW} = Assumed demand savings per installed heat pump water heater.$	•	Formatted: Space Before: 3 pt, After: 3 pt
ESav _{DWHR} = Assumed energy savings per installed drain water heat recovery unit in a	4	Formatted: Space Before: 3 pt, After: 3 pt
$DSav_{DWHR} = Assumed demand savings per installed drain water heat recovery unit in a household with an electric water heater.$		Formatted: Space Before: 3 pt, After: 3 pt
1		

The 1000 used in the denominator is used to convert watts to kilowatts.

A summary of the input values and their data sources follows:

Summary of Inputs

Residential Electric HVAC

Component	Туре	Value	Source Sour		Formatted: Table Header, Don't keep winext
CAPY Tons	Variable	Rated Capacity, Tons	Rebate		Formatted Table
	, united to	<u> </u>	Application	\sim / /	Formatted: Table Header
SEER _b	Fixed	Split Systems (A/C-Baseline)	1a		Formatted: Table Header, Indent: Left:
		= 13	<u>1b1b1</u>	•	Formatted: Subscript
		ASHP BaselineSplit Systems	_		Formatted: Centered, Space After: 2 pt
		<u>(HP)</u> = 14			Formatted: Centered, Space After: 2 pt
		Single Package $(A/C) = 14$			Formatted: Centered, Space After: 2 pt
		Single Package (HP) = 14			Formatted: Centered, Space After: 2 pt
$SEER_q$	Variable		Rebate		Formatted: Centered, Space After: 2 pt
1			Application		
SEERm	Fixed	<u>+013</u>	<u> 451</u>		Formatted: Centered, Space After: 2 pt
EERb	Fixed	Baseline = 11.3	2		Formatted: Centered, Space After: 2 pt
EER_q	Fixed	$= (11.3/13) \frac{X^*}{X^*} SEER_q$	2		Formatted: Centered, Space After: 2 pt
EER_g	Variable		Rebate	-	Formatted: Centered, Space After: 2 pt
			Application		
EER _{g,b}	Fixed	11.2	<u>2812</u>	-	Formatted: Centered, Space After: 2 pt
EER _m	Fixed	8.69	<u> 192</u>		Formatted: Font: Italic, Subscript
GSER	Fixed	1.02	3	•	Formatted: Centered, Space After: 2 pt
EFLHEFLH _{c or h}	Fixed	Cooling = 600 Hours	4 <u>11</u>		Formatted: Font: Italic
		Heating = 965Hours 965			Formatted: Centered, Space After: 2 pt
		Hours			Formatted: Centered, Space After: 2 pt
ESF	Fixed	9.2%	<u>2210</u>		Formatted: Subscript
DSF	Fixed	9.2%	<u>2210</u>		Formatted: Highlight
kWha	Variable		Rebate		Formatted: Centered, Space After: 2 pt
1			Application		Formatted: Centered, Space After: 2 pt
kWa	Variable		Rebate		Formatted: Centered, Space After: 2 pt
1			Application		Formatted: Centered, Space After: 2 pt
MF	Fixed	10%	20 <u>3</u>		Formatted: Centered, Space After: 2 pt
DuctSF	Fixed	18%	<u>4413</u>		Formatted: Centered, Space After: 2 pt
CF	Fixed	70<u>69</u>%	<u>64</u>		Formatted: Centered, Space After: 2 pt
DSF	Fixed	2.9%	7 <u>5</u>		Formatted: Centered, Space After: 2 pt

Formatted: Keep with next Formatted: Table Text, Left

	Formatted: Table Header, Don't keep with next				
Ň	Formatted Table				
V	Formatted: Table Header				
	Formatted: Table Header, Indent	: Left: 0"			
\backslash	Formatted: Subscript)			
$\langle \rangle$	Formatted: Centered, Space After	r: 2 pt			
$\langle \rangle$	Formatted: Centered, Space After	r: 2 pt			
X	Formatted: Centered, Space After	r: 2 pt			
(Formatted: Centered, Space After	r: 2 pt			
(Formatted: Centered, Space After	r: 2 pt			
(Formatted: Centered, Space After	r: 2 pt			
(Formatted: Centered, Space After	r: 2 pt			
(Formatted: Centered, Space After	r: 2 pt			
(Formatted: Centered, Space After	r: 2 pt			
(Formatted: Centered, Space After	r: 2 pt			
\neg	Formatted: Font: Italic, Subscript	:)			
	Formatted: Centered, Space After	r: 2 pt			
	Formatted: Font: Italic)			
	Formatted: Centered, Space After	r: 2 pt			
	Formatted: Centered, Space After	r: 2 pt			
	Formatted: Subscript]			
	Formatted: Highlight				
	Formatted: Centered, Space After	r: 2 pt			
	Formatted: Centered, Space After	r: 2 pt			
	Formatted: Centered, Space After	r: 2 pt			
1	Formatted: Centered, Space After	r: 2 pt			
(Formatted: Centered, Space After	r: 2 pt			
-(Formatted: Centered, Space After	r: 2 pt			
(Formatted: Centered, Space After	r: 2 pt			

Component	Туре	Value	Source Sour
LISDE	Fixed	Basalina - 88 28 plit Systems	ees 81
113110	Fixed	$\frac{\text{Baseline} = 88.2}{(\text{HP}) = 8.2}$	<u>+</u>
		Single Package (HP) = 8.0	
HSPFa	Variable		Rebate
i ioi i q	v uriuoio		Application
COPg	Variable		Rebate
0			Application
COPg,b	Fixed	2.9	<u>2812</u>
GSOP	Fixed	3.413	<u>96</u>
GSPK	Fixed	0.8416	<u>++03</u>
EDSH	Fixed	1842 kWh	<u>++13</u>
PDSH	Fixed	0.34 kW	<u>++</u> 23
ESav _{SDHW}	Fixed	3100 kWh	21 14
DSav _{SDHW}	Fixed	0.426 kW	21 14
CFSDHW	Fixed	20%	21 14
ESavupuwESAVup	Fixed	1687 kWh	2315
HW			
DSav _{HPHW}	Fixed	0.37 kW	<u>2416</u>
CF _{HPHW}	Fixed	70%	<u>2416</u>
ESav _{DWHR} ESAV _D	Fixed	1457 kWh	26, 23 15, 18
WHR			
DSav _{DWHR}	Fixed	0.142 kW	27<u>19</u>
CF _{DWHR}	Fixed	20%	27<u>19</u>
Cooling - CAC Fixed Summer/On-Peak 64.9		Summer/On-Peak 64.9%	13<u>7</u>
Time Period		Summer/Off-Peak 35.1%	
Allocation Factors		Winter/On-Peak 0%	
		Winter/Off-Peak 0%	
Cooling – ASHP	Fixed	Summer/On-Peak 59.8%	13<u>7</u>
Time Period		Summer/Off-Peak 40.2%	
Allocation Factors		Winter/On-Peak 0%	
		Winter/Off-Peak 0%	
Cooling – GSHP	Fixed	Summer/On-Peak 51.7%	13 7
Time Period		Summer/Off-Peak 48.3%	
Allocation Factors		Winter/On-Peak 0%	
		Winter/Off-Peak 0%	
Heating – ASHP &	Fixed	Summer/On-Peak 0.0%	<u>+137</u>
GSHP		Summer/Off-Peak 0.0%	
Time Period		Winter/On-Peak 47.9%	
Allocation Factors		Winter/Off-Peak 52.1%	

Formatted: Table Header, Don't ke next	ep with
Formatted: Table Header	
Formatted: Table Header, Indent:	Left: 0"
Formatted Table	
Formatted: Centered, Space After:	2 pt
Formatted: Centered, Space After:	2 pt
Formatted: Centered, Space After:	2 pt
Formatted: Centered, Space After:	2 pt
Formatted: Centered, Space After:	2 pt
Formatted: Subscript	
Formatted: Centered, Space After:	2 pt
Formatted: Centered, Space After:	2 pt
Formatted: Centered, Space After:	2 pt
Formatted: Centered, Space After:	2 pt
Formatted: Centered, Space After:	2 pt
Formatted: Centered, Space After:	2 pt
Formatted: Centered, Space After: Don't keep with next	2 pt,
Formatted: Subscript	
Formatted: Centered, Space After:	2 pt
Formatted: Centered, Space After: Don't keep with next	2 pt,
Formatted: Centered, Space After:	2 pt
Formatted: Subscript	
Formatted: Centered, Space After: Don't keep with next	2 pt,
Formatted: Subscript	
Formatted: Centered, Space After:	2 pt
Formatted: Centered, Space After: Don't keep with next	2 pt,
Formatted: Subscript	
Formatted: Centered, Space After:	2 pt
Formatted: Centered, Space After: Don't keep with next	2 pt,
Formatted: Centered, Space After:	2 pt
Formatted: Centered, Space After: Don't keep with next	2 pt,
Formatted: Centered, Space After:	2 pt
Formatted	
Formatted: Centered, Space After:	2 pt
Formatted: Centered, Space After:	2 pt
Formatted: Centered, Space After:	2 pt
Formatted: Centered, Space After:	2 pt
Formatted: Centered, Space After:	2 pt

Component	Туре	Value	Source Sour		Formatted: Table Header, Don't keep with next
GSHP	Fixed	Summer/On-Peak 4 5%	127		Formatted: Table Header
Desuperheater	T IACU	Summer/Off-Peak 4.2%	15 <u>7</u>		Formatted: Table Header, Indent: Left: 0"
Time Period		Winter/On-Peak 43.7%			Formatted Table
Allocation Factors		Winter/Off-Peak 47.6%			Formatted: Centered, Space After: 2 pt
SDHW Time	Fixed	Summer/On-Peak 27.0%	21 14		Formatted: Centered
Period Allocation		Summer/Off-Peak 15.0%			Formatted: Centered, Space After: 2 pt
Factors		Winter/On-Peak 42.0%			Formatted: Centered, Space After: 2 pt
		Winter/Off-Peak 17.0%		4	Formatted: Centered, Space After: 2 pt
HPWH Time	Fixed	Summer/On-Peak 21%	25<u>17</u>		Formatted: Centered, Space After: 2 pt
Period Allocation		Summer/Off-Peak 22%			
Factors		Winter/On-Peak 28%			
		Winter/Off-Peak 29%		•	Formatted: Centered, Space After: 2 pt
DWHR Time	Fixed	Summer/On-Peak 27.0%	<u>2114</u>	•	Formatted: Centered, Space After: 2 pt
Period Allocation		Summer/Off-Peak 15.0%			
Factors		Winter/On-Peak 42.0%			
		Winter/Off-Peak 17.0%		-	Formatted: Centered, Space After: 2 pt
Capy _q	Variable		Rebate	•	Formatted: Centered, Space After: 2 pt
			Application		Formatted: Centered, Space After: 2 pt
EFLH _{HT}	Fixed	965 hours	16		
FFS _{HT}	Fixed	0.5 kWh	<u>178</u>		Formatted: Centered, Space After: 2 pt
FFS _{CL}	Fixed	105 kWh	18 9		Formatted Table
					Formatted: Centered, Space After: 2 pt
Sources:				•	Formatted: Space After: 3 pt
1. a Survey of Ne b Federal Regi	w Jersey HVAC equipr ster, 76 FR 37408, June	nent distributors, CLEAResult, March 2 27, 2011	2 016		

- US Government Publishing Office, June 2017, *Electronic Code of Federal* <u>Regulations – Title 10, Chapter II, Subchapter D, Part 430, Subpart C, §430.32.</u> <u>Available at: https://www.ecfr.gov/cgi-bin/text-</u> idx?SID=2942a69a6328c23266612378a0725e60&mc=true&node=se10.3.430_132&r gn=div8.
 Assume EED for SEED 12 write The same EED to SEED 12.
- 2. Average EER for SEER 13 units. <u>The same EER to SEER ratio used for SEER 13</u> <u>units applied to SEER 10 units. <u>EER_m = (11.3/13) * 10</u>.</u>
- 3. VEIC estimate. -Extrapolation of manufacturer data.
- 4. VEIC estimate. NEEP, Mid-Atlantic Technical Reference Manual, V7. May 2017.
- 4.<u>1.</u> Consistent with analysis of PEPCo and LIPA, and conservative relative to ARI.
 <u>5.</u> Xenergy, "New Jersey Residential HVAC Baseline Study", (Xenergy, Washington, D.C., November 16, 2001).
- 6. NEEP, Mid-Atlantic Technical Reference Manual, May 2010.
- 7.5. Xenergy, "New Jersey Residential HVAC Baseline Study"," (Xenergy, Washington, * D.C., November 16, 2001) Table E-8.

Formatted: Indent: Left: 0", Space Before: 3 pt, After: 3 pt

Formatted: Indent: Left: 0", Space Before: 3 pt, After: 3 pt, Tab stops: 2.19", Left

Formatted: Indent: Left: 0", Space Before: 3 pt, After: 3 pt

8. Federal Register, Vol. 66, No. 14, Monday, January 22, 2001/Rules and Pagulations, p. 7170, 7200		
9-6 Engineering calculation HSPE/COP=3 413		Formatted: Indent: Left: 0", Space Before: 3
10 VEIC Estimate Extrapolation of manufacturer data		pt, After: 3 pt
11. VEIC estimate, based on PEPCo assumptions.		
12. VEIC estimate, based on PEPCo assumptions.		
<u>13.7.</u> Time period allocation factors used in cost-effectiveness analysis.	4	Formatted: Indent: Left: 0", Space Before: 3
14. Northeast Energy Efficiency Partnerships, Inc., "Benefits of HVAC Contractor		pt, Alter. 5 pt
Training", (February 2006): Appendix C Benefits of HVAC Contractor Training:		
Field Research Results 03 STAC 01		
15. Minimum Federal Standard for new Central Air Conditioners between 1990 and 2006		
16. NJ utility analysis of heating customers, annual gas heating usage		
8. "Review of Emerging HVAC Technologies and Practices" 03-STAC-01 Emerging Technologies Report, October 2005, John Proctor, PE, p. 46.		
<u>17-9.</u> Scott Pigg (Energy Center of Wisconsin), "Electricity Use by New Furnaces: -A Wisconsin Field Study", "Technical Report 230-1, October 2003.	4	Formatted: Indent: Left: 0", Space Before: 3 pt, After: 3 pt
10. KEMA, NI Clean Energy Program Energy Impact Evaluation Protocol Review. 2009	<u>.</u>	
<u>11. VEIC Estimate.</u> Consistent with analysis of PEPCo and LIPA, and conservative relative to ARI.	4	Formatted: Indent: Left: 0", Space Before: 3 pt, After: 3 pt, Tab stops: 2.19", Left
18. Ibid., p. 34. ARI charts suggest there are about 20% more full load cooling hours in NJ than southern WI. Thus, average cooling savings in NJ are estimated at 95 to 115		
<u>12. AHRI directory; baseline values are the least efficient "Geothermal – Water-to –Air Heat Pumps" active in the directory, downloaded May 18, 2015.</u>		
13. NEEP, "Benefits of HVAC Contractor Training," Appendix C, February 2006.		
19. The same EER to SEER ratio used for SEER 13 units applied to SEER 10 units.		
$EER_{m} = (11.3/13) * 10$		
20. VEIC estimate. Conservatively assumes less savings than for QIV because of the retrofit context		
21.14 Energy savings are estimated based on 2008 SECC OG300 ratings for a typical 2		Formatted: Indent: Left: 0", Space Before: 3
panel system with solar storage tank in Newark, NJ with electric DHW backup.		pt, After: 3 pt
2.13kW with 20% CF. Load shape and coincidence factors were developed by VEIC		
from ASHRAE Standard 90.2 Hot Water Draw Profile and NREL Red Book insulation data for Newark, NJ.		
22. <u>1.—KEMA, NJ Clean Energy Program Energy Impact Evaluation Protocol Review.</u> 2009.		
23.15. Table 1. (Page 2) From "Heat Pump Water Heaters Evaluation of Field Installed		
Performance." Steven Winter Associates, Inc. (2012). http://www.ma-		
eeac.org/Docs/8.1_EMV%20Page/2012/2012%20Residential%20Studies/MA%20RF	< C	

&LI%20-

%202011%20HPWH%20Field%20Evaluation%20Report%20FINAL%206_26_2012 .pdf

- 24.<u>16.</u> VEIC Estimate based upon range derived from FEMP Federal Technology Alert: S9508031.3a (http://www1.eere.energy.gov/femp/pdfs/FTA_res_heat_pump.pdf)
- 25.<u>17.</u> "Electrical Use, Efficiency, and Peak Demand of Electric Resistance, Heat Pump, Desuperheater, and Solar Hot Water Systems", http://www.fsec.ucf.edu/en/publications/html/FSEC-PF-215-90/
- 26.<u>18.</u> 30% savings (from Zaloum, C. Lafrance, M. Gusdorf, J. "Drain Water Heat Recovery Characterization and Modeling" Natural Resources Canada. 2007. Savings vary due to a number of factors including make, model, installation-type, and household behaviors.) multiplied by standard electric resistance water heating baseline annual usage of 4,857 kWh cited in source #23 above.
- 27:19. Demand savings are estimated based on electric DHW demand of 2.13kW and 20% CF as in cited source #21 adjusting for the proportional difference of 30% savings relative to the 70% solar fraction: 0.426*0.3/0.9 = 0.142.
 - 28. AHRI directory. Baseline values are the least efficient "Geothermal Water to Air Heat Pumps" active in the directory, downloaded May 18, 2015.

Combined space and water heating (Combo)

Participants installing a qualifying boiler or furnace and a qualifying water heater at the same time earn a special incentive. For savings calculations, there is no special consideration. The heating system savings are calculated according to the appropriate algorithm and the water heating savings are calculated separately according to the system type.

Formatted: Default Paragraph Font

Formatted: Default Paragraph Font

Residential Gas HVAC

Protocols

The following two algorithmssections detail savings <u>calculations</u> for gas <u>space</u> heating and <u>gas</u> water heating equipment<u>in residential applications</u>. They are to be used to determine gas energy savings between baseline standard units and the high efficiency units promoted in the program. The input values are based on data on typical customers supplied by the gas utilities, an analysis by the Federal Energy Management Program (FEMP), and customer information on the application form, confirmed with manufacturer data. The energy values are in therms.

<u>Furnaces</u>

This section provides energy savings algorithms for qualifying gas and oil furnaces installed in residential settings. The input values are based on the specifications of the actual equipment being installed, federal equipment efficiency standards, and the most recent impact evaluation of the residential Warm and Cool Advantage programs (2009).

This measure applies to replacement of failed equipment or end of useful life. The baseline unit is a code compliant unit with an efficiency as required by IECC 2015, which is the current residential code adopted by the state of New Jersey.

Algorithms	Formatted: Font: Bold
Space Heaters	Formatted: Heading 4
Algorithms	Formatted: Font: Not Bold, English (U.S
A	Formatted: Font: Not Bold
GasFuel Savings = [(Capy_q(MMBtu/yr) = Cap_{in} * EFLH_h * ((AFUEq/AFUEb) – (Caj AFUEq)] * EFLH / 100,000 BTUs/therm	₽ У ∉ ²
Low Income Gas Savings = [(Capy _q /AFUE⊥) — (Capy _q /- <u>1) / AFUEq)] * EFLH / 100,</u> BTUs/therm	.000
Gas Savings due to duct sealing = (CAP _{avg} AFUE _{avg}) * EFLH * (DuctSF _h /100,000 BTUs/therm)	
Average Heating Use (therms) = (Cap _{avg} / AFUE _{avg}) * EFLH / 100,000 BTUs/therm	
EFLH = Average Heating Use * AFUE _{avg} * 100,000 BTUs/therm) / Cap _{avg}	
Oil Savings for a qualifying boiler = OsavBOILER	
Oil Savings = [(Capy _q /AFUE ₆) (Capy _q /AFUE _q)] * EFLH / 100,000 BTUs/therm	
Circulator Pumps Savings (kWh) = Hours * (Watts_{Base} - Watts_{EE})/ 1000 <u>kBtu/MN</u>	▲Before: 6 pt

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

Definition of Variables	<u>3</u>				
Capy ₄ = Output <u>Ca</u>	<u>o_{in} = Input</u> capacity o	of qualifying unit output	in <mark>BTUs<u>kBtu</u>/hour</mark>	•	Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
Capy, = Output capacit	y of the typical heati	ng unit output in Btus/ho	ur		
Capy _{avg} = Output capa	eity of the average he	eating unit output in Btus	/hour		
$\frac{\text{EFLH}\text{EFLH}_{h}}{\text{unit}} = \text{The}$	e Equivalent Full Loa ating season	ad Hours of operation per	<u>r year</u> for the average	•	Formatted: Indent: Left: 0.25", Space Before: 3 pt, After: 3 pt
DuctSF _h = The Duct Son the test of test	ealing Factor or the a	ssumed savings due to p	roper sealing of all		
AFUE _{avg} = Annual Fue	el Utilization Efficier	ncy of the average furnace	e or boiler		
AEUE – Annual E	wel Utilization Effici	anay of the qualifying he	acting frances on		Formatted: English (U.S.)
boiler		ency of the quantying or		~	Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
$AFUE_b = Annual Fuel$	Utilization Efficienc	y of the baseline furnace	or boiler		Formatted: English (U.S.)
AFUELI = Annual Fuel furnace or boiler.	Utilization Efficience	cy of the Low Income Pro	ogram replaced		
New Jersey heating cu	stomers	eruge unitual neuting usug	se (mernis) or eppied		
Watts_{Base} = Baseline co	onnected kW				
Watts _{EE} = Efficient con	mected kW				
	Space	Heating			
Component	Type	Value	Source	7	
Canva	Variable	, unuc	Application	-	
Capy ₄	Fixed	CAPY	1	-	
DuctSFh	Fixed	13%	5		
AFUEavg	Variable		Application		
AFUE _q	Variable		Application		
AFUE	Fixed	Gas Furnaces: 80% Gas Boilers: Water 82% Steam 80% Oil Boilers: Water	2		

	- type	Value	Source			
		84%				
		Steam 82%				
		Electric Resistance				
		Heating: 35%				
	Warish1.		Application or			
AFUELI	v ariable		utility estimates			
EFLH ⁵	Fixed	965 hours	3			
Vg. Heating Usage	Fixed	860 therms	5			
Time Davia I		Summer = 12%				
Allocation Factors	Fixed	Winter = 88%	4			
WattsBase	Fixed	87.8	8			
WattsEE	Fixed	14.4	8			
Hours	Fixed	2350	9			
neeting current federa	<u>l equipment</u>					
ources:						
1. NJ Residential	HVAC Baseline Stu	dy				
2. Federal minim	ım standards as of 20)15.		•	Formatted: English (U.S.)	
2 NH artilitar an ala	sis of heating ouston	pore ennuel des heating i			Formatted: Body Text Indent 3, Ir	dent: Le
3. NJ utility analy <u>4</u> Prorated based	on 12% of the annue	il degree days falling in the	he summer neriod		0.25", Space Before: 3 pt, After: 3	pt, No
4. Prorated based	on 12% of the annual	ters, annual gas nearing t il degree days falling in the falling in the winter perio	isage he summer period id-		0.25", Space Before: 3 pt, After: 3 bullets or numbering	pt, No
 3. NJ utility analy 4. Prorated based and 88% of the 5. Northeast Ener 	on 12% of the annual degree days	thers, annuar gas nearing to al degree days falling in the falling in the winter perior reasing. Inc. "Repetits of	he summer period he. he. HVAC Contractor		0.25", Space Before: 3 pt, After: 3 bullets or numbering	pt, No
S. NJ utility analy A. Prorated based and 88% of the 5. Northeast Ener Training? (Fel	on 12% of the annual annual degree days gy Efficiency Partne	thers, aintuit gas fleating to a degree days falling in the falling in the winter perior rships, Inc., "Benefits of div C Benefits of HVAC	he summer period h e summer period h d. HVAC Contractor Contractor Training:		0.25", Space Before: 3 pt, After: 3 bullets or numbering	pt, No
 NJ utility analy Prorated based and 88% of the Northeast Ener Training", (Fel Eield Paccarch 	on 12% of the annual annual degree days gy Efficiency Partne oruary 2006): Append Recult: 03 STAC 0	ters, annuar gas nearing to al degree days falling in the falling in the winter perio rships, Inc., "Benefits of dix C Benefits of HVAC 1	he summer period he summer period hd. HVAC Contractor Contractor Training:		0.25", Space Before: 3 pt, After: 3 bullets or numbering	pt, No
 NJ utility analy Prorated based and 88% of the Northeast Ener Training", (Fel Field Research KEMA, NJ Cle 	on 12% of the annuel annual degree days gy Efficiency Partne gruary 2006): Appene Results 03 STAC 0 can Energy Program	ters, annual gas fleating to al degree days falling in the falling in the winter period rships, Inc., "Benefits of dix C Benefits of HVAC and the state of the state of the state for the state of the s	he summer period he summer period HVAC Contractor Contractor Training: he Protocol Review.		0.25", Space Before: 3 pt, After: 3 bullets or numbering	pt, No
 NJ utility analy Prorated based and 88% of the Northeast Ener Training", (Fel Field Research KEMA, NJ Cle 2009. Fluotria resistant 	on 12% of the annual annual degree days- gy Efficiency Partne pruary 2006): Appen Results 03 STAC 0 can Energy Program	thers, annual gas heating to al degree days falling in the falling in the winter perior rships, Inc., "Benefits of dix C Benefits of HVAC dix C Benefits of HVAC far annual state of the succession with the succession of the succession of the succession of the succe	he summer period he summer period HVAC Contractor Contractor Training: he Protocol Review.		0.25", Space Before: 3 pt, After: 3 bullets or numbering	pt, No
 NJ utility analy Prorated based and 88% of the Northeast Ener Training", (Fel Field Research KEMA, NJ Cle 2009. Electric resistat Destrict the 	on 12% of the annual annual degree days- gy Efficiency Partne pruary 2006): Appene Results 03 STAC 0 can Energy Program nece heat calculated b	thers, annual gas fleating to al degree days falling in the falling in the winter perio rships, Inc., "Benefits of dix C Benefits of HVAC 4 <i>Energy Impact Evaluatio</i> y determining the overall the (0.642 RTU per W/b)	he summer period he summer period HVAC Contractor Contractor Training: <i>m Protocol Review</i> . fuel cycle efficiency		0.25", Space Before: 3 pt, After: 3 bullets or numbering	pt, No
 NJ dutity analy Prorated based and 88% of the Northeast Ener Training", (Fel Field Research KEMA, NJ Cle 2009. Electric resistat by dividing the EWb (2,412 PE) 	on 12% of the annual annual degree days- gy Efficiency Partne wuary 2006): Appene Results 03 STAC 0 can Energy Program nece heat calculated b average PJM heat ra	ters, annual gas fleating to al degree days falling in the falling in the winter perio rships, Inc., "Benefits of dix C Benefits of HVAC 4 <i>Energy Impact Evaluatio</i> y determining the overall ate (9,642 BTU per kWh)	he summer period he summer period HVAC Contractor Contractor Training: on Protocol Review. fuel cycle efficiency by the BTUs per		0.25", Space Before: 3 pt, After: 3 bullets or numbering	pt, No
 NJ utility analy Prorated based and 88% of the Northeast Ener Training", (Fet Field Research KEMA, NJ Cle 2009. Electric resistan by dividing the kWh (3,413 BT Efficiency Ver 	on 12% of the annual on 12% of the annual gy Efficiency Partne oruary 2006): Append Results 03 STAC 0 can Energy Program nee heat calculated b average PJM heat ra CU per kWh), giving	ners, annuar gas nearing to al degree days falling in the falling in the winter period rships, Inc., "Benefits of dix C Benefits of HVAC dia C Benefits of HVAC dia C Benefits of HVAC dia C Benefits of HVAC a 2.83 BTU annual benefits of the rence Manuel	he summer period he summer period HVAC Contractor Contractor Training: <i>m Protocol Review</i> . fuel cycle efficiency by the BTUs per		0.25", Space Before: 3 pt, After: 3 bullets or numbering	pt, No
 NJ utility analy Prorated based and 88% of the Northeast Ener Training", (Fel Field Research KEMA, NJ Cla 2009. Electric resistan by dividing the KWh (3,413 BT) Efficiency Verton Poolog run have 	on 12% of the annual annual degree days gy Efficiency Partne oruary 2006): Appene Results 03 STAC 0 can Energy Program nee heat calculated b average PJM heat ra CU per kWh), giving mont Technical Refe	thers, annuar gas nearing to al degree days falling in the falling in the winter period rships, Inc., "Benefits of dix C Benefits of HVAC dix C Benefits of HVAC diversary of TBM methods a 2.83 BTU in per BTU _{out} rence Manual	he summer period he summer period he. HVAC Contractor Contractor Training: <i>on Protocol Review.</i> fuel cycle efficiency by the BTUs per -		0.25", Space Before: 3 pt, After: 3 bullets or numbering	pt, No
 NJ utility analy Prorated based and 88% of the Northeast Ener Training", (Fel Field Research KEMA, NJ Cle 2009. Electric resistan by dividing the kWh (3,413 BT Efficiency Vert 9. Boiler run hour 	on 12% of the annual on 12% of the annual gy Efficiency Partne ruary 2006): Appena Results 03 STAC 0 can Energy Program nee heat calculated b average PJM heat ra CU per kWh), giving mont Technical Refe s, based on Efficience	thers, annuar gas reading to al degree days falling in the falling in the winter period rships, Inc., "Benefits of dix C Benefits of HVAC the C Benefits of HVAC the <i>C</i>	he summer period he summer period HVAC Contractor Contractor Training: on Protocol Review. fuel cycle efficiency by the BTUs per to by the BTUs per to bology, where boilers perafore for NL with		0.25", Space Before: 3 pt, After: 3 bullets or numbering	pt, No
 NJ utility analy Prorated based and 88% of the Northeast Ener Training", (Fel Field Research KEMA, NJ Cle 2009. Electric resistar by dividing the kWh (3,413 BT Efficiency Verr Boiler run hour have EFLH of 065 EFLH the 	on 12% of the annual annual degree days- gy Efficiency Partne ruary 2006): Appene Results 03 STAC 0 can Energy Program nee heat calculated b average PJM heat re CU per kWh), giving mont Technical Refe s, based on Efficience 810 and the circ pur	ters, annuar gas nearing to al degree days falling in the falling in the winter period rships, Inc., "Benefits of dix C Benefits of HVAC- 1 <i>Energy Impact Evaluation</i> y determining the overall the (9,642 BTU per kWh) a 2.83 BTU _{in} per BTU _{out} rence Manual rence Manual ry Vermont TRM method p run hours are 1973. The impact of as 965 * 1973/810	he summer period he summer period HVAC Contractor Contractor Training: <i>on Protocol Review</i> . fuel cycle efficiency by the BTUs per to be the boilers terefore for NJ with b = 2350		0.25", Space Before: 3 pt, After: 3 bullets or numbering	pt, No
 S. NJ utility analy 4. Prorated based and 88% of the 5. Northeast Ener Training", (Fel Field Research 6. KEMA, NJ Cle 2009. 7. Electric resistan by dividing the kWh (3,413 BT 8. Efficiency Ver 9. Boiler run hour have EFLH of 965 EFLH, the 	on 12% of the annual on 12% of the annual gy Efficiency Partne ruary 2006): Append Results 03 STAC 0 can Energy Program nee heat calculated b average PJM heat ra CU per kWh), giving mont Technical Refe s, based on Efficience 810 and the circ pur run hours can be est	ters, annuar gas rieating to al degree days falling in the falling in the winter period rships, Inc., "Benefits of the C Benefits of HVAC to <i>Energy Impact Evaluation</i> y determining the overall the (9,642 BTU per kWh) a 2.83 BTU _{in} per BTU _{out} rence Manual rence Manual ry Vermont TRM method up run hours are 1973. The imated as 965 * 1973/810	he summer period he summer period he summer period HVAC Contractor Contractor Training: <i>On Protocol Review</i> . Fuel cycle efficiency by the BTUs per by the BTUs per to be the boilers herefore for NJ with D = 2350		0.25", Space Before: 3 pt, After: 3 bullets or numbering	pt, No
 NJ utility analy Prorated based and 88% of the Northeast Ener Training", (Fel Field Research KEMA, NJ Cle 2009. Electric resistan by dividing the kWh (3,413 BT Efficiency Vert Boiler run hour have EFLH of 965 EFLH, the 	on 12% of the annual on 12% of the annual gy Efficiency Partne ruary 2006): Append Results 03 STAC 0 can Energy Program nee heat calculated b average PJM heat ra CU per kWh), giving mont Technical Refe s, based on Efficience 810 and the circ purr run hours can be est	the second structure of the se	he summer period he summer period HVAC Contractor Contractor Training: <i>on Protocol Review</i> . fuel cycle efficiency by the BTUs per to be th		0.25", Space Before: 3 pt, After: 3 bullets or numbering	pt, No
 NJ utility analy Prorated based and 88% of the Northeast Ener Training", (Fel Field Research KEMA, NJ Cle 2009. Electric resistan by dividing the kWh (3,413 BT Efficiency Vert Boiler run hout have EFLH of 965 EFLH, the 	on 12% of the annual annual degree days- gy Efficiency Partne ruary 2006): Appene Results 03 STAC 0 an Energy Program nee heat calculated b average PJM heat ra TU per kWh), giving mont Technical Refe s, based on Efficience 810 and the circ purr run hours can be est	the second structure of the se	he summer period he summer period HVAC Contractor Contractor Training: <i>on Protocol Review</i> . fuel cycle efficiency by the BTUs per to lology, where boilers perefore for NJ with) = 2350		0.25", Space Before: 3 pt, After: 3 bullets or numbering	pt, No
 NJ utility analy Prorated based and 88% of the Northeast Ener Training", (Fel Field Research KEMA, NJ Cle 2009. Electric resistan by dividing the kWh (3,413 B1 Efficiency Veri 9. Boiler run hour have EFLH of 965 EFLH, the Vater Heaters Vater Heaters 	on 12% of the annual annual degree days- gy Efficiency Partne ruary 2006): Append Results 03 STAC 0 can Energy Program nee heat calculated b average PJM heat ra U per kWh), giving mont Technical Refe s, based on Efficience 810 and the circ pur run hours can be est	the second structure of the se	he summer period he summer period HVAC Contractor Contractor Training: <i>on Protocol Review</i> . fuel cycle efficiency by the BTUs per to the BTUs per to by the BTUs per 2 by the		0.25", Space Before: 3 pt, After: 3 bullets or numbering	pt, No
 NJ utility analy Prorated based and 88% of the Northeast Ener Training", (Fel Field Research KEMA, NJ Cle 2009. Electric resistan by dividing the kWh (3,413 BT Efficiency Ver 9. Boiler run hour have EFLH of 965 EFLH, the Vater Heaters Mgorithms Gas Savings = ((EF₄) 	annual degree days- annual degree days- gy Efficiency Partne ruary 2006): Append Results 03 STAC 0 an Energy Program nee heat calculated b average PJM heat ra CU per kWh), giving mont Technical Refe s, based on Efficience 810 and the circ pur run hours can be est	te Water Heater Usage	he summer period he summer period HVAC Contractor Contractor Training: <i>on Protocol Review</i> . fuel cycle efficiency by the BTUs per - to by the BTUs per - lology, where boilers terefore for NJ with) = 2350		0.25", Space Before: 3 pt, After: 3 bullets or numbering	pt, No
 3. NJ utility analy 4. Prorated based and 88% of the 5. Northeast Ener Training", (Fel Field Research 6. KEMA, NJ Cle 2009. 7. Electric resistane by dividing the kWh (3,413 BT) 8. Efficiency Vertility 9. Boiler run hour have EFLH of 965 EFLH, the Vater Heaters 	annual degree days- annual degree days- gy Efficiency Partne ruary 2006): Append Results 03 STAC 0 can Energy Program nce heat calculated b average PJM heat ra CU per kWh), giving mont Technical Refe s, based on Efficience 810 and the circ pur run hours can be est	ters, annuar gas rieating to al degree days falling in the falling in the winter perion rships, Inc., "Benefits of dix C Benefits of HVAC 1 <i>Energy Impact Evaluation</i> y determining the overall a 2.83 BTU per kWh) a 2.83 BTU per BTU out rence Manual rence Ma	he summer period he summer period HVAC Contractor Contractor Training: on Protocol Review. fuel cycle efficiency by the BTUs per to by the BTUs per to by the BTUs per 2 bology, where boilers herefore for NJ with D = 2350		0.25", Space Before: 3 pt, After: 3 bullets or numbering Formatted: Font: Not Bold Formatted: Heading 3	pt, No
 3. NJ utility analy 4. Prorated based and 88% of the 5. Northeast Ener Training", (Fel Field Research 6. KEMA, NJ Cle 2009. 7. Electric resistant by dividing the kWh (3,413 BT) 8. Efficiency Vertility 10,413 BT 8. Efficiency Vertility 10,414 BT 8. Efficiency 10,414 BT 8. Efficiency	annual degree days- annual degree days- gy Efficiency Partne wuary 2006): Append Results 03 STAC 0 can Energy Program nce heat calculated b average PJM heat ra CU per kWh), giving mont Technical Refe rs, based on Efficience 810 and the circ pur run hours can be est EFb)/EFq) X Baselin	ters, annuar gas rieating to al degree days falling in the falling in the winter perion rships, Inc., "Benefits of dix C Benefits of HVAC 4 <i>Energy Impact Evaluation</i> y determining the overally the (9,642 BTU per kWh) a 2.83 BTU _{in} per BTU _{out} rence Manual cy Vermont TRM method p run hours are 1973. The imated as 965 * 1973/810 per Water Heater Usage	he summer period he summer period d. HVAC Contractor Contractor Training: on Protocol Review. fuel cycle efficiency by the BTUs per - tology, where boilers herefore for NJ with) = 2350		0.25", Space Before: 3 pt, After: 3 bullets or numbering Formatted: Font: Not Bold Formatted: Heading 3	pt, No
Gas Savings (Drain Water Heat Recover) = GsavDWHR * Baseline Water Heater Usage

Definition of Variables

 EF_{q} = Energy factor of the qualifying energy efficient water heater.

-Note: For qualifying units not rated with an Energy Factor, the estimated EF₄ shall be used:

 $-Est. EF_q = Q_{out}/Q_{in}$

 $=41,094^{6}/(41,094/TE + Volume*SLratio*24hours)$

TE = Thermal (or Recovery) Efficiency of the unit as a percentage Where: Volume = Volume of storage water heater, in gallons. SLratio = Average ratio of rated standby losses water heater (BTU loss per hour for > 90% TE units less than 130 Gallons = 9.73^{7}

Gas & Propane Tankless Water Heaters¹: $EF_{k} = 00.82 - (0.0019 * Gallons of Capacity)$ Gas & Propane Storage or Power Vented Water Heaters⁺:

55 gallons or less: EF_b = 0.675 (0.0015 * Gallons of Capacity)

56 gallons or more: $EF_{b} = 0.8012$ (0.00078 * Gallons of Capacity)

Summary of Inputs

Furnace Assumptions

Baseline Water Heater Usage = Annual usage of the baseline water heater, in therms.

GsavSHW = Gas savings, in therms, for a solar hot water installation augmented by a new gas hot water heater.

GsavDWHR = Gas savings, as a percentage, for a drain water heat recovery installation in a home with a gas hot water heater.

Water Heaters

Component	Туре	Value	Source 🔸	Formatted: Table Header, Left
EF _q Cap _{in}	Variable		Application 🔸	Formatted Table
			Form, confirmed	Formatted: Space After: 2 pt
			with	
			Manufacturer	
			Data	

⁶ Based upon the test conditions of the DOE test protocol for residential water heaters, the amount of energy delivered is equal to 64.3 gallons * density of water (8.3lb/gal) * Specific heat of water (1 BTU/lb-F) and the temperature rise of 77degF (135F 58F).

ed upon February, 2012 query of ARHI/GAMA datab http://cafs.ahrinet.org/gama_cafs/sdpsearch/search.jsp?table=CWH

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: Normal

pace After: 2 pt

Component	Туре	Value	Source 4	Formatted: Table Header, Left
F	- J F -		Application	Formatted Table
			Form. confirmed	
$\overline{\text{TE}} \overline{\text{EFLH}}_h$	Fixed Variable	<u>965 hours</u>	with •	Formatted: Space After: 2 pt
			Manufacturer	
			Data1	
<u>AFUE_qStdby</u>	Variable		Application •	Formatted: Space After: 2 pt
			Form, confirmed	
			with	
			Manufacturer	
			Data	
EF_b	Variable	For Electric Resistance	Application	
		(only): 35%	Form, confirmed	
			with	
			Manufacturer	
			Data	
		180 therms		
		Weatherized gas: 81%		
AFUE ^b Baseline		Weatherized oil: 78%	•	Formatted: Space After: 2 pt
Water Heater	Fixed	Mobile home gas: 80%	2	Formatted Table
Usage		Mobile home oil: 75%		(
		Non-weatherized gas: 80%		
		Non-weatherized oil: 83%		Formatted: Space After: 2 pt
Time Period	Fixed	$1001 \text{ we will find the optimized of the optimized o$	2	(
Allocation	Fixed	Winter $= 50\%$	5	
Factors		Winter = 5070		
GsavSHW	Fixed	130.27	4	
GSavowhp	Fixed	30%	5	
			<u> </u>	
Sources:				Formatted: Heading 4, Space After: 6 pt
1. NJ utility analy	vsis of heating custor	ners, annual gas usage.		

2. US Government Publishing Office, June 2017, *Electronic Code of Federal* <u>Regulations – Title 10, Chapter II, Subchapter D, Part 430, Subpart C, §430.32;</u> <u>available at: https://www.ecfr.gov/cgi-bin/text-</u> <u>idx?SID=2942a69a6328c23266612378a0725e60&mc=true&node=se10.3.430_132&r</u> <u>gn=div8.</u>

<u>Boilers</u>

This section provides energy savings algorithms for qualifying boilers installed in residential settings. The input values are based on the specifications of the actual equipment being installed, federal equipment efficiency standards, and the most recent impact evaluation of the residential Warm and Cool Advantage programs (2009).

This measure applies to replacement of failed equipment or end of useful life. The baseline unit is a code compliant unit with an efficiency as required by IECC 2015, which is the current residential code adopted by the state of New Jersey.

Algorithms

<u>Fuel Savings (MMBtu/yr) = $Cap_{in} * EFLH_{h} * ((AFUE_{g}/AFUE_{b})-1) / 1000 kBtu/MMBtu</u></u>$

Definition of Variables

<u>Cap_{in} = Input capacity of qualifying unit in kBtu/hour</u>

 $EFLH_{b}$ = The Equivalent Full Load Hours of operation for the average unit during the heating season in hours

 $\underline{AFUE}_q = Annual Fuel Utilization Efficiency of the qualifying boiler}$

 $\underline{AFUE}_{b} = Annual Fuel Utilization Efficiency of the baseline boiler$

Summary of Inputs

Space Heating Boiler Assumptions						
Component	<u>Type</u>	<u>Value</u>	Source			
<u>Cap_{in}</u>	<u>Variable</u>		Application			
EFLH _h	Fixed	<u>965 hours</u>	<u>1</u>			
\underline{AFUE}_q	<u>Variable</u>		Application			
<u>AFUE_b</u>	Fixed	<u>Gas fired boiler – 82%</u> <u>Oil fired boiler – 84%</u>	2			

Sources

Formatted: Font: Not Bold

Formatted: Normal

Formatted: Normal

Formatted: Font: Bold

1. NJ utility analysis of heating customers, annual gas usage..

2. US Government Publishing Office, June 2017, Electronic Code of Federal Regulations – Title 10, Chapter II, Subchapter D, Part 430, Subpart C, §430.32; available at: https://www.ecfr.gov/cgi-bin/textidx?SID=2942a69a6328c23266612378a0725e60&mc=true&node=se10.3.430_132&r gn=div8.

Combination Boilers

This section provides energy savings algorithms for qualifying gas combination boilers installed in residential settings. A combination boiler is defined as a boiler that provides domestic hot water and space heating. The input values are based on the specifications of the actual equipment being installed, federal equipment efficiency standards, DOE2.2 simulations completed by the New York State Joint Utilities and regional estimates of average baseline water heating energy usage.

This measure assumes the existing boiler system has failed or is at end of useful life and is replaced with a combination boiler. The baseline boiler unit has an efficiency as required by IECC 2015, which is the current residential code adopted by the state of New Jersey. For the water heating component, this measure assumes that the baseline water heater is a storage water heater, and customers replacing existing tankless water heaters are not eligible.

Note, that as of June 12, 2017, the Federal Trade Commission has published a final rule updating the EnergyGuide label to reflect recent changes by the Department of Energy to the Code of Federal Regulations regarding the use of uniform energy factor (UEF) rather than the traditional energy factor (EF)⁸ for consumer and commercial water heaters. The UEF is newest measure of water heater overall efficiency. The higher the UEF value is, the more efficient the water heater. UEF is determined by the Department of Energy's test method outlined in 10 CFR Part 430, Subpart B, Appendix E.⁹

Algorithms

1. Federal EPACT Standard Table II.1, revised April 16, 2015

- 2. KEMA. NJ Clean Energy Program Energy Impact Evaluation Protocol Review. 2009.
- 3. Prorated based on 6 months in the summer period and 6 months in the winter period.

<u>Fuel Savings (MMBtu/yr) = MMBtu/yr Boiler Fuel Savings + MMBtu/yr DHW Fuel</u> <u>Savings</u>

<u>MMBtu Boiler Fuel Savings/yr = $Cap_{in} * EFLH_{h} * ((AFUE_{g}/AFUE_{b})-1) / 1,000$ kBtu/MMBTU</u>

<u>MMBtu DHW Fuel Savings/yr = $(1 - (UEF_b / UEF_q)) \times$ Baseline Water Heater Usage</u> <u>Cap_{in} = Input capacity of qualifying unit in kBtu/hr</u>

 $EFLH_{h}$ = The Equivalent Full Load Hours of operation for the average unit during the heating season

⁹ https://www.energystar.gov/products/water_heaters/residential_water_heaters_key_product_criteria

Formatted: Normal (Web)
Formatted: Font: Bold

⁸ The final ruling on this change is available at:

https://energy.gov/sites/prod/files/2016/12/f34/WH_Conversion_Final%20Rule.pdf.

<u>AFUE_q = Annual fuel utilization efficiency of the qualifying boiler</u>

<u>AFUE_b = Annual fuel utilization efficiency of the baseline boiler</u>

<u>UEF_q = Uniform energy factor of the qualifying energy efficient water heater.</u>

 $\underline{\text{UEF}}_{b}$ = Uniform energy factor of the baseline water heater. In New Jersey the 2015 International Energy Consertation Code (IECC) generally defines the residential energy efficiency code requirements, but the IECC does not include residential

service water heating provisions, leaving federal equipment efficiency standards to define baseline.

Baseline Water Heater Usage = Annual usage of the baseline water heater derived

Summary of Inputs

Combination Doner Assumptions						
Component	<u>Type</u>	Value	Source			
<u>Cap_{in}</u>	<u>Variable</u>		<u>Application</u>			
$\underline{\mathrm{EFLH}}_h$	<u>Fixed</u>	<u>965 hours</u>	<u>1</u>			
\underline{AFUE}_q	<u>Variable</u>		Application			
<u>AFUE_b</u>	<u>Fixed</u>	<u>Gas fired boiler – 82%</u> Oil fired boiler – 84%	2			
$\underline{\text{UEF}}_{\underline{b}}$	<u>Fixed</u>	Storage Water Heater – 0.657	<u>2</u>			
<u>UEF_q</u>	<u>Fixed</u>	<u>0.87</u>	<u>3</u>			
Baseline Water Heater Usage	Fixed	<u>23.6 MMBtu/yr</u>	<u>4</u>			

Combination Boiler Assumptions

The referenced federal standards for the baseline UEF are dependent on both draw pattern and tank size. A weighted average baseline UEF was calculated with a medium draw pattern from the referenced federal standards and water heating equipment market data from the Energy Information Association 2009 residential energy consumption survey for NJ¹⁰ assuming tank sizes of 30 gallons for small units, 40 gallons for medium units, and 55 gallons for large units.

SourcesUS DOE estimates for the SEEARP (ENERGY STAR®

1. NJ utility analysis of heating customers, annual gas usage..

2. US Government Publishing Office, June 2017, Electronic Code of Federal Regulations – Title 10, Chapter II, Subchapter D, Part 430, Subpart C, §430.32; available at: https://www.ecfr.gov/cgi-bin/textidx?SID=2942a69a6328c23266612378a0725e60&mc=true&node=se10.3.430_132&r gn=div8.

¹⁰ Available at: https://www.eia.gov/consumption/residential/data/2009/hc/hc8.8.xls

oduct criteria.					
4. US Energy Inform	nation Associa	tion, 2009 Residential <u>Energy Con</u>	<u>sumption Survey</u>		Formatted: Font: Italic
Data ¹¹ ; available	<u>at:</u>				
https://www.eia.g	ov/consumptio	on/residential/data/2009/c&e/ce3.2.	<u>xlsx</u>		
Boiler Reset Controls	<u>.</u>				
The following algorith residential boilers. En temperature. Through return water temperature	hm details savi ergy savings a the use of sof ure to control l	ings for installation of boiler reset of re realized through a better control tware settings, boiler reset controls boiler firing and in turn the boiler y	<u>control on</u> of boiler water use outside or vater temperature.		
The input values are b the application form, results.	based on data s confirmed with	upplied by the utilities and custom n manufacturer data. Unit savings a	er information on re based on study		
Fuel Savings (MN	(M Btu/yr) = (%)	<u>Savings) * (EFLH_h * Cap_{in}) / 1,000</u>	<u>) kBtu/MMBtu</u>		Farmattad Indonty Lafty (
Definition of Variable	es		•		Formatted: (none)
% Savings = Estir	mated percenta	ge reduction in heating load due to	boiler reset		Formatted: (Holle)
<u>controls</u> EFLH _b = The Equ heating season	iivalent Full Le	oad Hours of operation for the aver	age unit during the		
<u>Cap_{in} = Inpu</u>	<u>t capacity of q</u>	ualifying unit in kBtu/hr			
Summary of Inputs					
	Boiler R	eset Control Assumptions			
<u>Component</u>	<u>Type</u>	Value	Source		
<u>% Savings</u>	<u>Fixed</u>	<u>5%</u>	<u><u> </u></u>		
<u>EFLH_h</u>	<u>Fixed</u>	<u>965 hours</u>	<u>2</u>		
<u>Cap_{in}</u>	Variable		Application	J	
Sources				_	Formatted: Font: Not Bold
1. GDS Associates, 1	Inc., Natural G	as Energy Efficiency Potential in N	Massachusetts,		
Gas-EE-Potenial-	<u>6-4, http://ma</u> in-MA.pdf.	-eeac.org/wordpress/wp-content/up	<u>pioads/5 Natural-</u>		

3. Minimum UEF for instantaneous (tankless) water heaters from Energy Star

https://www.energystar.gov/products/water_heaters/residential_water_heaters_key_pr

2. NJ utility analysis of heating customers, annual gas usage..

natted: Indent: Left: 0", First line: 0" natted: (none)

atted: Level 4, Keep with next

 $[\]frac{11}{11}$ Data for 2015 will be available in 2018.

This section p	rovides energ	y savings algorithms for qualifying stand alone sto	brage hot					
water heaters	installed in re	esidential settings. This measure assumes that the b	aseline					
water heater i	s a code stora	ge water heater. The input values are based on fed	eral					
equipment efficiency standards and regional estimates of average baseline water heating								
energy usage.								
Note, that as a	of June 12, 20	017, the Federal Trade Commission has published a	a final rule					
updating the H	EnergyGuide	label to reflect recent changes by the Department of	of Energy to					
the Code of F	ederal Regula	ations regarding the use of uniform energy factor (JEF) rather					
than the tradit	ional energy	factor (EF) ¹² for consumer and commercial water l	neaters. The					
UEF is newes	t measure of	water heater overall efficiency. The higher the UE	<u>F value is,</u>					
the more effic	ient the wate	r heater. UEF is determined by the Department of l	Energy's					
test method of	utlined in 10	CFR Part 430, Subpart B, Appendix E. ¹³						
Algorithms				- Fr				
<u>rigoritinis</u>								
Fuel Savii	ngs (MMBtu/	yr) = $(1 - (UEF_b / UEF_q)) \times Baseline Water Heater$	Usage	F				
	<u>.</u>			<u> </u>				
Definition of	<u>Variables</u>		4	Fc				
$\underline{\text{UEF}}_q = \mathbf{U}$	niform energ	y factor of the qualifying energy efficient water he	ater.					
$\overline{\mathbf{UEF}_{h}} = \mathbf{U}$	niform energy	v factor of the baseline water heater. In New Jersey	v the 2015					
Internation	nal Energy Co	onseration Code (IECC) generally defines the resid	lential					
energy eff	iciency code	requirements, but the IECC does not include reside	ential					
service wa	ater heating p	rovisions, leaving federal equipment efficiency sta	ndards to					
define bas	eline.							
Baseline V	Water Heater	Usage = Annual usage of the baseline water heater						
Busenne	<u>i ater rieuter</u>	Couge Thinkar douge of the Subernie Water heater	•					
Summary of I	nputs							
		Storage Water Heater						
Component	<u>Type</u>	<u>Value^a</u>	<u>Sources</u>					
$\underline{\mathrm{UEF}}_q$	<u>Variable</u>		<u>Application</u>					
$\underline{\mathrm{UEF}}_{b}$	<u>Variable</u>	If gas & less than 55 gal: UEF _b = 0.6483 -	<u>1</u>					
		<u>(0.0017×V)</u>						
		If gas & more than 55 gal: $UEF_b = 0.7897 -$						
		<u>(0.0004×V)</u>						
Baseline	Fixed	23.6 MMBtu/yr	2					
Water								

4. <u>Stand Alone Storage</u> Water Heaters: Final Criteria Analysis)

¹² The final ruling on this change is available at: <u>https://energy.gov/sites/prod/files/2016/12/f34/WH_Conversion_Final%20Rule.pdf</u>
¹³ https://www.energystar.gov/products/water_heaters/residential_water_heaters_key_product_criteria

	Formatted: Heading 4
\neg	Formatted: Font: Bold
\neg	Formatted: No underline
{	Formatted: Heading 4

Component	<u>Type</u>	<u>Value^a</u>	<u>Sources</u>	
<u>Heater</u>				
<u>Usage</u>				
^a V refers to v	volume of the	installed storage water heater tank in gallons		
				Formatted: Underline
The reference	d federal star	dards for the baseline UEF are dependent on both	draw	
pattern and ta	nk size. The l	paseline UEF formulas shown in the table above ar	e associated	
with medium	draw patterns	<u>3.</u>		
Sources				
1. US G	overnment Pu	blishing Office, June 2017, Electronic Code of Federation	<u>deral</u>	
<u>Regul</u>	<u>ations – Title</u>	10, Part 430, Subpart C; available at:		
https:/	//www.ecfr.go	<u>ov/cgi-bin/text-</u>		
idx?S	<u>ID=2942a69a</u>	6328c23266612378a0725e60&mc=true&node=se	10.3.430_13	
<u>2&rgr</u>	<u>=div8.</u>			
<u>2. US Er</u>	nergy Informa	tion Association, 2009 Residential Energy Consur	nption	
Surve	y $Data^{14}$; avai	lable at:	^	
https:/	//www.eia.go	v/consumption/residential/data/2009/c&e/ce3.2.xls	<u>X.</u>	

 $\frac{14}{14}$ Data for 2015 will be available in 2018.

Instantaneous Water Heaters

This section provides energy savings algorithms for qualifying instantaneous hot water heaters installed in residential settings. This measure assumes that the baseline water heater is either a code stand alone storage water heater, or an code instantaneous water heater. The input values are based on federal equipment efficiency standards and regional estimates of average baseline water heating energy usage.

Note, that as of June 12, 2017, the Federal Trade Commission has published a final rule updating the EnergyGuide label to reflect recent changes by the Department of Energy to the Code of Federal Regulations regarding the use of uniform energy factor (UEF) rather than the traditional energy factor (EF)¹⁵ for consumer and commercial water heaters. The UEF is newest measure of water heater overall efficiency. The higher the UEF value is, the more efficient the water heater. UEF is determined by the Department of Energy's test method outlined in 10 CFR Part 430, Subpart B, Appendix E.¹⁶

Algorithms

Fuel Savings (MMBtu/yr) = $(1 - (UEF_b / UEF_q)) \times Baseline Water Heater Usage$

Definition of Variables

 $UEF_q = Uniform$ energy factor of the qualifying energy efficient water heater. $UEF_b = Uniform$ energy factor of the baseline water heater. In New Jersey the 2015 International Energy Conservation Code (IECC) generally defines the residential energy efficiency code requirements, but the IECC does not include residential service water heating provisions, leaving federal equipment efficiency standards to define baseline.

Baseline Water Heater Usage = Annual usage of the baseline water heater

Summary of Inputs

Instantaneous water fielders						
Component	Type	Value	<u>Source</u>			
$\underline{\mathrm{UEF}_q}$	Variable		Application			
<u>UEF</u> _b	<u>Variable</u>	Storage water heater – 0.657	<u>1</u>			
		Instantaneous water heater – 0.81				
Baseline Water	Fixed	<u>23.6 MMBtu/yr</u>	<u>2</u>			
Heater Usage						

notontonoous Water Heater

Formatted: English (U.S.)

keep lines together

Page 44

Formatted: Don't keep lines together
Formatted: Underline, (none)
Formatted: Indent: First line: 0.25", Don't

¹⁵ The final ruling on this change is available at:

https://energy.gov/sites/prod/files/2016/12/f34/WH_Conversion_Final%20Rule.pdf

¹⁶ https://www.energystar.gov/products/water_heaters/residential_water_heaters_key_product_criteria

The referenced federal standards for the baseline UEF are dependent on both draw pattern and tank size. A weighted average baseline UEF was calculated with a medium draw pattern from the referenced federal standards and water heating equipment market data from the Energy Information Association 2009 residential energy consumption survey for NJ¹⁷ assuming tank sizes of 30 gallons for small units, 40 gallons for medium units, and 55 gallons for large units.

<u>SourcesZaloum, C. Lafrance, M. Gusdorf, J. "Drain Water Heat Recovery</u> <u>Characterization and Modeling" Natural Resources Canada. 2007. Savings vary due to a</u> <u>number of factors including make, model, installation type, and household behaviors.</u>

- <u>1. US Government Publishing Office, June 2017, Electronic Code of Federal</u> <u>Regulations – Title 10, Part 430, Subpart C</u>; available at: https://www.ecfr.gov/cgibin/textidx?SID=2942a69a6328c23266612378a0725e60&mc=true&node=se10.3.430_132&r gn=div8.
- 2. US Energy Information Association, 2009 Residential Energy Consumption Survey <u>Data¹⁸</u>; available at: https://www.eia.gov/consumption/residential/data/2009/c&e/ce3.2.xlsx.

5.

Formatted: No bullets or numbering

¹⁷ Available at: https://www.eia.gov/consumption/residential/data/2009/hc/hc8.8.xls ¹⁸ Data for 2015 will be available in 2018.

Residential Low Income Program

Protocols

The Protocols set out below are applicable to both the Comfort Partners component of the **Formatted**: Space Before: 6 pt, After: 6 pt Low-income Program currently implemented by the State's electric and gas utilities and the Weatherization Assistance component of the Low-income Program implemented by the New Jersey Department of Community Affairs (DCA).

The savings protocols for the low-income program are based upon estimated per unit installed savings. -In some cases, such as lighting and refrigerators, the savings per unit estimate is based on direct observation or monitoring of the existing equipment being replaced. -For other measures, for example air sealing and insulation, the protocols calculation is based on an average % savings of pre-treatment consumption.

Base Load Measures

Efficient Lighting

Savings from installation of screw-in CFLs, high performance fixtures, fluorescent torchieres, LEDs and LED nightlights are based on a straightforward algorithm that calculates the difference between existing and new wattage, and the average daily hours of usage for the lighting unit being replaced.

Algorithm

Compact Fluorescent Screw In Lamp <u>Electricity ImpactEnergy Savings</u> (kWh/yr) = ((CFL_{watts}) <u>X</u>* (CFL_{hours} <u>X</u>* 365))/1000

Peak Demand $\frac{\text{Impact}Savings}{\text{Margon}}$ (kW) = (CFL_{watts}) $\frac{X^*}{2}$ Light CF

Efficient Fixtures

<u>Electricity ImpactEnergy Savings</u> (kWh/yr) = ((Fixt_{watts}) <u>X*</u> (Fixt_{hours} <u>X*</u> 365))/1000

Peak Demand $\frac{\text{Impact}Savings}{\text{Savings}}$ (kW) = (Fixt_{watts}) X^* Light CF

Efficient Torchieres

Electricity ImpactEnergy Savings (kWh/yr) = ((Torch_{watts}) X^{*} (Torch_{hours} X^{*} 365))/1000

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: Space Before: 6 pt, After: 6 pt

Formatted: Space Before: 3 pt, After: 3 pt

Formatted

Hot Water Conservation Measures	•	Formatted: Page break before
The protocols savings estimates are based on an average package of domestic hot water measures typically installed by low-income programs.		
Low Flow Showerheads		
Savings for lowflow showerhead measures are determined using the total change in flow rate (gallons per minute) from the baseline (existing) showerhead to the efficient showerhead.	• (Formatted: Space Before: 6 pt, After: 6 pt
Algorithms	•	Formatted: Font: Bold
Algorithms		Formatted: Heading 4
		Formatted: Space Before: 6 pt, After: 3 pt
Electricity Import Energy Sovings (LWh/yr) = 0/ Electric DUW * (CDM base		Formatted: Underline
$\frac{\text{Electricity impact_energy Savings}}{\text{GPM}_ee} (kWh/\Delta\text{GPM}) = \% \text{Electric DHW} + (\text{GPM}_base - GPM_ee) * kWh/\Delta\text{GPM}$		Formatted: Space Before: 3 pt, After: 3 pt
Peak Electric Demand ImpactSayings (kW) = Electricity Impact (kWh) * Deman	1	Formatted: Space Before: 3 pt After: 3 pt
Factor	1	
Factor Natural Gas Impact (therm) = %Gas DHW * (GPM_base – GPM_ee) * therm/ΔGPM	•	Formatted: Space Before: 3 pt, After: 3 pt
Factor Natural Gas Impact (therm) = %Gas DHW * (GPM_base – GPM_ee) * therm/ΔGPM Definition of Variables %Electric DHW = proportion of water heating supplied by electricity		Formatted: Space Before: 3 pt, After: 3 pt Formatted: Space Before: 9 pt, Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline
Factor Factor Natural Gas Impact (therm) = %Gas DHW * (GPM_base – GPM_ee) * therm/ΔGPM <u>Definition of Variables</u> <u>%Electric DHW = proportion of water heating supplied by electricity</u> <u>Definition of Variables</u>		Formatted: Space Before: 3 pt, After: 3 pt Formatted: Space Before: 9 pt, Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline Formatted: Space Before: 3 pt, After: 3 pt
Factor Factor Natural Gas Impact (therm) = %Gas DHW * (GPM_base – GPM_ee) * therm/ΔGPM <u>Definition of Variables</u> <u>%Electric DHW = proportion of water heating supplied by electricity</u> <u>Definition of Variables</u>		Formatted: Space Before: 3 pt, After: 3 pt Formatted: Space Before: 9 pt, Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline Formatted: Space Before: 3 pt, After: 3 pt Formatted: Indent: Left: 0". First line: 0"
Factor Factor Natural Gas Impact (therm) = %Gas DHW * (GPM_base – GPM_ee) * therm/ΔGPM <u>Definition of Variables</u> <u>%Electric DHW = proportion of water heating supplied by electricity</u> <u>Definition of Variables</u> <u>%Electric DHW = proportion of water heating supplied by electricity</u>		Formatted: Space Before: 3 pt, After: 3 pt Formatted: Space Before: 9 pt, Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline Formatted: Space Before: 3 pt, After: 3 pt Formatted: Indent: Left: 0", First line: 0" Formatted: (none)
Factor Factor Natural Gas Impact (therm) = %Gas DHW * (GPM_base – GPM_ee) * therm/ΔGPM Definition of Variables %Electric DHW = proportion of water heating supplied by electricity Definition of Variables %Electric DHW = proportion of water heating supplied by electricity		Formatted: Space Before: 3 pt, After: 3 pt Formatted: Space Before: 9 pt, Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline Formatted: Space Before: 3 pt, After: 3 pt Formatted: Indent: Left: 0", First line: 0" Formatted: (none) Formatted: Level 4, Keep with next
Factor Natural Gas Impact (therm) = %Gas DHW * (GPM_base – GPM_ee) * therm/ΔGPM Definition of Variables %Electric DHW = proportion of water heating supplied by electricity Definition of Variables %Electric DHW = proportion of water heating supplied by electricity GPM_base = Flow rate of the baseline showerhead (gallons per minute)		Formatted: Space Before: 3 pt, After: 3 pt Formatted: Space Before: 9 pt, Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline Formatted: Space Before: 3 pt, After: 3 pt Formatted: Indent: Left: 0", First line: 0" Formatted: Level 4, Keep with next Formatted: Space Before: 3 pt, After: 3 pt
Factor Natural Gas Impact (therm) = %Gas DHW * (GPM_base – GPM_ee) * therm/ΔGPM Definition of Variables %Electric DHW = proportion of water heating supplied by electricity Definition of Variables %Electric DHW = proportion of water heating supplied by electricity GPM_base = Flow rate of the baseline showerhead (gallons per minute) GPM_ee = Flow rate of the efficient showerhead (gallons per minute)		Formatted: Space Before: 3 pt, After: 3 pt Formatted: Space Before: 9 pt, Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline Formatted: Space Before: 3 pt, After: 3 pt Formatted: Indent: Left: 0", First line: 0" Formatted: Indent: Left: 0", First line: 0" Formatted: Level 4, Keep with next Formatted: Space Before: 3 pt, After: 3 pt Formatted: Space Before: 3 pt, After: 3 pt Formatted: Space Before: 3 pt, After: 3 pt
Factor Natural Gas Impact (therm) = %Gas DHW * (GPM_base – GPM_ee) * therm/ΔGPM Definition of Variables %Electric DHW = proportion of water heating supplied by electricity Definition of Variables %Electric DHW = proportion of water heating supplied by electricity GPM_base = Flow rate of the baseline showerhead (gallons per minute) GPM_ee = Flow rate of the efficient showerhead (gallons per minute) kWh/ΔGPM = Electric energy savings of efficient showerhead per gallon per minute (GPM)		Formatted: Space Before: 3 pt, After: 3 pt Formatted: Space Before: 9 pt, Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline Formatted: Space Before: 3 pt, After: 3 pt Formatted: Indent: Left: 0", First line: 0" Formatted: Level 4, Keep with next Formatted: Space Before: 3 pt, After: 3 pt Formatted: Space Before: 3 pt, After: 3 pt
Factor Natural Gas Impact (therm) = %Gas DHW * (GPM_base – GPM_ee) * therm/ΔGPM Definition of Variables %Electric DHW = proportion of water heating supplied by electricity Definition of Variables %Electric DHW = proportion of water heating supplied by electricity GPM_base = Flow rate of the baseline showerhead (gallons per minute) GPM_ee = Flow rate of the efficient showerhead (gallons per minute) kWh/AGPM = Electric energy savings of efficient showerhead per gallon per minute (GPM) Demand Factor = energy to demand factor		Formatted: Space Before: 3 pt, After: 3 pt Formatted: Space Before: 9 pt, Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline Formatted: Space Before: 3 pt, After: 3 pt Formatted: Indent: Left: 0", First line: 0" Formatted: Level 4, Keep with next Formatted: Space Before: 3 pt, After: 3 pt Formatted: Space Before: 3 pt, After: 3 pt

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

Formatted: Space Before: 3 pt, After: 3 pt

Low Flow Showerheads				
Component	Туре	Value	Sources	
%_Electric	Variable	Electric DHW = 100%	1	
DHW	variable	Unknown = 13%	1	
		Natural Gas DHW =		
%Gas DHW	Variable	100%	1	
		Unknown = 81%		
GPM base	Variabla	Rebate Application	2	
OF M_base	v allable	Unknown = 2.5	2	
CPM as	Variable	Rebate Application	2	
OFM_ee	variable	Unknown = 1.5	2	
		SF = 360.1		
kWh/ΔGPM	Fixed	MF = 336.9	3	
		Unknown = 390.1		
		SF = 15.5		
therm/ ΔGPM	Fixed	MF = 16.9	3, 4	
		Unknown = 16.8		
Demand Factor	Fixed	0.00008013	3	

therm/ Δ GPM = natural gas energy savings of efficient showerhead per gallon per \triangleleft

minute (GPM)

Formatted: Font: Italic Formatted: Table Caption Formatted: Table Header, Left Formatted: Table Cells Formatted: Table Cells, Left

Formatted: Space After: 6 pt

of the same style

Formatted: Indent: Left: 0", Space Before: 3 pt, After: 3 pt, Add space between paragraphs

Sources

- 1. Unknown hot water heating fuel assumption taken from 2009 RECS data for New Jersey. See: See Table HC8.8 Water Heating in U.S. Homes in Northeast Region, Divisions, and States.
- Flow rate specification taken from rebate application. Default; default assumption for unknown flow rate taken from Pennsylvania Technical Reference Manual. Effective, <u>effective</u> June 2016, <u>pagesp.</u> 120ff. Available; available at <u>http://www.puc.pa.gov/pcdocs/1370278.docx.</u>
- 3. Default assumptions from Pennsylvania Technical Reference Manual (ibid).
- Illinois Statewide Technical Reference Manual for Energy Efficiency, Version 4.0- <u>Effective, effective</u> June 1, 2015-pages, pp. 657ff.-Default; default assumptions for housing demographic characteristics taken from PA TRM.

Low Flow Faucet Aerators

Savings for low-_flow faucet aerator measures are determined using the total change in flow rate (gallons per minute) from the baseline (existing) faucet to the efficient faucet.

Algorithms						•	Formatted: Don't allow hanging punctuation,
Energy Sav	vingsAlgorithm					•	Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline
Electric	vity Impact (kWl	v(vr) = %E	ectric DHW * (GPM base -	- GPM ee) *			Formatted: Heading 4, Space Before: 6 pt
kWh/∆	GPM	1 <u>-11</u>) /012.		01111_00)			Formatted: Indent: Left: 0.25", Space Before: 3 pt, After: 3 pt
Dool: E	lastria Domand 1	maatCavi	nga (kW) - Electricity Imna	at (1-Wh) * D	mond		Formatted: Indent: First line: 0.25". Space
Factor	Demand 1	mpact <u>Savi</u>	iigs (kw) – Electrony impa				Before: 3 pt, After: 3 pt
							Council Indent: First line: 0.25" Cross
Natura	Gas Impact (the	erm) = %Ga	as DHW * (GPM_base – GF	'M_ee) * ther	m/∆GPM		Before: 3 pt, After: 3 pt
Definition	of Variables						Formatted: Underline
<u>Definition</u> %E	lectric DHW = t	proportion of	of water heating supplied by	electricity			Formatted: Normal
Definition	of Variables		C			4	Formatted: Heading 4
%E	lectric DHW = [roportion (of water heating supplied by	-electricity		4	Formatted: Space Before: 3 pt, After: 3 pt
GP	M_base = Flow	rate of the l	paseline faucet (gallons per r	minute)		•	Formatted: Space Before: 3 pt, After: 3 pt
GP	M_ee = Flow rat	e of the eff	icient faucet (gallons per mi	nute)			Formatted: Space Before: 3 pt, After: 3 pt
kW	$h/\Delta GPM = Elec$ (GPM)	tric energy	savings of efficient faucet p	er gallon per 1	minute	•	Formatted: Space Before: 3 pt, After: 3 pt
Der	mand Factor = er	nergy to de	mand factor				Formatted: Space Before: 3 pt, After: 3 pt
%Gas DHW = proportion of water heating supplied by natural gas							Formatted: Space Before: 3 pt, After: 3 pt
therm/ Δ GPM = natural gas energy savings of efficient faucet per gallon per minute (GPM)						•	Formatted: Space Before: 3 pt, After: 3 pt
		Low Fl	ow Faucet Aerators			4	Formatted: Table Caption
	Component	Туре	Value	Source So			Formatted: Table Header, Left
		J F -		urces			Formatted: Font: Not Italic

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Page 50

Formatted: Space Before: 6 pt

Component	Туре	Value	Source So
			urces
%_Electric	Variable	Electric DHW = 100%	1
DHW	variable	Unknown = 13%	1
		Natural Gas DHW =	
%_Gas DHW	Variable	100%	1
		Unknown = 81%	
CDM base	Variable	Rebate Application	2
GPM_base	variable	Unknown = 2.2	2
CDM as	Variable	Rebate Application	2
OFM_ee	v al lable	Unknown = 1.5	2
		SF = 60.5	
kWh/∆GPM	Fixed	MF = 71.0	3
		Unknown = 63.7	
		SF = 4.8	
therm/\0GPM	Fixed	MF = 6.5	3, 4
		Unknown = 5.0	
Demand Factor	Fixed	0. 00008013 000134	3

•	Formatted: Font: Not Italic
	Formatted: Table Header, Left
	Formatted: Table Cells
	Formatted: Table Cells, Left
	Formatted: Table Cells
	Formatted: Table Cells, Left
	Formatted: Table Cells
	Formatted: Table Cells, Left
	Formatted: Table Cells
	Formatted: Table Cells, Left
	Formatted: Table Cells
	Formatted: Table Cells, Left
	Formatted: Table Cells
	Formatted: Table Cells, Left
-	Formatted: Table Cells
	Formatted: Table Cells, Left
•	Formatted: Space After: 6 pt
	Formatted: Space After: 6 pt
•	Formatted: Indent: Left: 0", Space Before: 3 pt, After: 3 pt, Add space between paragraphs of the same style

Sources

Sources

- Unknown hot water heating fuel assumption taken from 2009 RECS data for New Jersey. See: see Table HC8.8 Water Heating in U.S. Homes in Northeast Region, Divisions, and States.
- Flow rate specification taken from rebate application. <u>Default</u>; <u>default</u> assumption for unknown flow rate taken from Pennsylvania Technical Reference Manual. <u>Effective</u>; <u>effective</u> June 2016, <u>pagespp.</u> 114ff. <u>Available</u>; <u>available</u> at <u>http://www.puc.pa.gov/pcdocs/1370278.docx.</u>
- 3. Default assumptions from Pennsylvania Technical Reference Manual (ibid).
- Illinois Statewide Technical Reference Manual for Energy Efficiency, Version 4.0- <u>Effective, effective</u> June 1, 2015-pages, pp. 648ff-Default; default assumptions for housing demographic characteristics taken from PA TRM.

Indirect Hot Water Heaters

Wisconsin's 2013 Focus on Energy Deemed Savings are as follows.¹⁹

$$\Delta Therm = Therm_{Std} - Therm_{Eff}$$

 $Therm_{Out} = EF_{Std} \times Therm_{StdTank}$

 $Therm_{Std} = Standby_{Std} \times 8,760 \times 1/100,000/AFUE_{Std} + Therm_{Out} \times 1/AFUE_{std}$ +-Average hot water use per person were taken from: Lutz, James D., Liu, Xiaomin, McMahan, James E., Dunham, Camilla, Shown, Leslie J., McCure, Quandra T; "Modeling patterns of hot water use in households;" LBL-37805 Rev. Lawrence Berkeley Laboratory, 1996.

 $Therm_{Eff} = Standby_{Eff} \times 8,760 \times 1/100,000/AFUE_{Eff} + Therm_{out} \times 1/AFUE_{Eff}$

$$Standby_{Std} = Vol_{Std} \times \left(\frac{{}^{\circ}F}{hr_{Std}}\right) \times 8.33$$

$$Standby_{Eff} = Vol_{Eff} \times \left(\frac{{}^{\circ}F}{hr_{Eff}}\right) \times 8.33$$

Table IV-13

Definitions and Values for Indirect Hot Water Heaters

Term	Definition	Value
ΔTherm	Gas Savingssavings	
Therm _{Std}	Calculated therms standard tank	206
Therm _{Eff}	Calculated therms replacement tank	177.52
Therm _{Out}		
EF _{Std}	Federal standard energy factor	(.67 – (.0019xvolume))=.58
Therm _{StdTank}	Therms used by standard tank	223
Standby _{Std}	Standby loss from standard water heater	434 <mark>BTU</mark> Btu/hr*
AFUE _{Std}	Efficiency (AFUE) of standard water heater	80%
Standby _{Eff}	Standby loss from efficient water heater	397 BTUBtu/hr**
AFUE _{Eff}	Efficiency (AFUE) of efficient water heater	93%

Formatted: Left

Formatted: Left

Formatted: Font: 12 pt, Not Bold
Formatted: Font: 12 pt
Formatted: Font: Arial, 12 pt, Not Bold
Formatted: Table Caption, Left, Indent: Left: 0", Right: 0", Space Before: 12 pt, Don't keep with next, Tab stops: Not at 0.5"
Formatted: Table Header, Left
Formatted: Table Cells

¹⁹The Cadmus Group, Inc. "Final Report Focus on Energy Evaluated Deemed Savings Changes." *Prepared for the Public Service Commission of Wisconsin.* November 26, 2013. PagesPp. 15-16.

Term	Definition	Value 🔸	Format
Vol _{Std}	Volume of standard water heater (gallons)	63.50	Format
Vol _{Eff}	Volume of efficient water heater (gallons)	51.20	Format
°F/hr _{Std}	Heat lost per hour from standard water heater tank	0.8	Format
°F/hr _{Eff}	Heat lost per hour from efficient water heater tank	0.93	Format
	Conversion factor: density of water (lbs./gallon)	8.33 •	Format

Formatted: Table Header, Left
Formatted: Table Cells
Formatted: Table Cells
Formatted: Table Cells
Formatted: Table Cells
Formatted: Table Cells

*AHRI Database. **Data model look-ups of AHRI Certifications.

Water heater pipe wrap

This section provides energy savings algorithms for insulation on domestic hot water heater pipes. Un-insulated hot water carrying pipes lose considerable heat to outside air due to high thermal conductivity. In order to reduce this heat loss, pipes can be covered with a layer of insulation, which will reduce source heating demand, resulting in significant energy savings. The baseline case assumes un-insulated copper pipes and the qualifying condition assumes polyolefin (Polyethylene) Foam Tube insulation at 3/8" thick for 1/2" pipe and 1/2" thick for 3/4" pipe.

Algorithms

Energy Savings (kWh/yr) = $AKW_W \times L$

<u>Fuel Savings (Ccf/yr) = ACCF_W × L</u>

Definition of Variables

 AKW_W = Annual electric savings per linear foot of heating pipe insulation ACCF_W = Annual gas savings per linear foot of heating pipe insulation

L = Length of heating pipe insulation in ft

Summary of Inputs

Water Heater Pipe Wrap				
Component	Type	Value	Source	
<u>AKWw</u>	<u>Variable</u>	See Table Below	<u>1</u>	
\underline{ACCF}_W	<u>Variable</u>	See Table Below	<u>1</u>	
L	<u>Variable</u>		Application	

Insulation Savings by Pipe Diameter

Pipe Diameter (in)AKW_W (kWh/ft)ACCF_W (Ccf/ft)

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: Underline, (none) Formatted: Indent: First line: 0.25" Formatted: Underline Formatted: Normal, Level 4, Keep with next Formatted: (none) Formatted: Indent: First line: 0.25"

Formatted: Underline, (none)
Formatted: Normal, Level 4, Keep with next

Pipe Diameter (in)	<u>AKW_W(kWh/ft)</u>	ACCF _w (Ccf/ft)
<u>0.50</u>	<u>10.4</u>	<u>0.55</u>
<u>0.75</u>	<u>15.9</u>	<u>0.85</u>

Sources

1. NAIMA, 3E Plus software tool, Version 4.0, Released 2005; available from: https://insulationinstitute.org/tools-resources/free-3e-plus/

Efficient Refrigerators

The eligibility for refrigerator replacement is determined by comparing monitored consumption for the existing refrigerator with the rated consumption of the eligible replacement. -Estimated savings are directly calculated based on the difference between these two values.- Note that in the case where an under-utilized or unneeded refrigerator unit is removed, and no replacement is installed, the Ref_{new} term of the equation will be zero.

Algorithm

<u>Electricity ImpactEnergy Savings</u> (kWh/yr) = Ref_{old} - Ref_{new}

Peak Demand $\frac{\text{Impact}Savings}{\text{Impact}Savings}$ (kW) = (Ref_{old} - Ref_{new}) *(Ref DF)

Space Conditioning Measures

When available, gas heat measure savings will be based on heating use. -If only total gas use is known, heating use will be estimated as total use less 300 therms.

Air Sealing

It is assumed that air sealing is the first priority among candidate space conditioning measures. -Expected percentage savings is based on previous experiences with measured savings from similar programs. -Note there are no summer coincident electric peak demand savings estimated at this time.

Algorithm

<u>Algorithm</u>

Electricity ImpactEnergy Savings (kWh/yr) = ESC_{pre} X* 0.05

MMBtu savings = (GHpre $\frac{1}{2}$ 0.05)

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

	F	Formatted: Heading 3, Tab stops: Not at
Furnace/Boiler Replacement	F	Formatted: Heading 3, None, Tab stops: Not at 0.5"
Quantification of savings due to furnace and boiler replacements implemented under the low-income program will be based on the algorithms presented in the Residential Gas HVAC section of these Protocols.		
	F	Formatted: Space Before: 18 pt
Duct Sealing and Repair The second priority for homes with either Central Air Conditioning (CAC) or some other form of ducted distribution of electric space conditioning (electric furnace, gas furnace or heat pump) is ensuring integrity and effectiveness of the ducted distribution system.		
Algorithm		
<u>Algorithm</u> With CAC		
Electricity ImpactEnergy Savings (kWh/yr) = (ECool _{pre}) X* 0.10	F	Formatted: Space Before: 3 pt, After: 3 pt
Peak Demand $\frac{\text{ImpactSavings}}{\text{ImpactSavings}}$ (kW) = (Ecool _{pre} $\frac{X^*}{2}$ 0.10) / EFLH $\frac{X^*}{2}$ AC CF	F	Formatted: Space Before: 3 pt, After: 3 pt
MMBtu savings = (GHpre $\times 0.02$)	F	Formatted: Space Before: 3 pt, After: 3 pt
No CAC		Formatted: Space Before: 3 pt, After: 3 pt
Electricity ImpactEnergy Savings (kWh/yr) = (ESC _{pre.}) X^{*}_{2} 0.02		
MMBtu savings = (GHpre \mathbf{X}^* 0.02)	F	Formatted: Space Before: 3 pt
	•	Formatted: Indent: First line: 0"
Combined space and water heating (Combo)		
Participants installing a qualifying boiler or furnace and a qualifying water heater at the same time earn a special incentive. For savings calculations, there is no special consideration. The heating system savings are calculated according to the appropriate algorithm and the water heating savings are calculated separately according to the system type.		
Insulation Up-GradesUpgrades	F	Formatted: Space Before: 0 pt
For savings calculations, it is assumed that any applicable air sealing and duct sealing/repair have been done, thereby reducing the space conditioning load, before consideration of upgrading insulationAttic insulation savings are then projected on the basis of the "new" load Gas savings are somewhat greater, as homes with gas heat generally have less insulation.		
New Jersey's Clean Energy Program Page 5 Protocols to Measure Resource Savings	5	

<u>Algorithm</u>

Electricity Impact Energy savings (kWh/yr) = (ESC _{pre}) X^{*} 0.08		Formatted: Space Before: 3 pt, After: 3 pt
MMBtu savings = $GH_{pre} \times 0.13$		Formatted: Space Before: 3 pt, After: 3 pt
		Formatted: Heading 3, Indent: First line: 0"
Thermostat Replacement	-	Formatted
Thermostats are eligible for consideration as an electric space conditioning measure only after the first three priority itemsSavings projections are based on a conservative 3% of the "new" load after installation of any of the top three priority measures.		
Algorithm		
Electricity ImpactEnergy Savings (kWh/yr) = (ESC _{pre}) X^{*}_{-} 0.03		Formatted: Space Before: 3 pt, After: 3 pt
MMBtu savings = $(GH_{pre} \times 0.03)$		Formatted: Space Before: 3 pt, After: 3 pt
	-	Formatted: Heading 3, Indent: First line: 0"
Heating and Cooling Equipment Maintenance Repair/Replacement	-	Formatted
Savings projections for heat pump charge and air flow correctionProtocol savings account for shell measures having been installed that reduce the pre-existing preexisting load		
1000.	•	Formatted: Pattern: Clear (Light Yellow)
Algorithm		Formatted: Body Text, Justified, Right: 0.09", Line spacing: At least 12 pt
<u>Algorithm</u> <u>Electricity ImpactEnergy Savings</u> (kWh/yr) = (ESC _{pre)} X [*] 0.17		Formatted: Space Before: 3 pt, After: 3 pt
Peak Demand ImpactSavings (kW) = (Capy/EER X* 1000) X* HP CF X* DSF		
	-	Formatted: Heading 3
Gas HVAC Repairs		Formatted: Font: Bold, Italic
This section provides energy sayings algorithms for existing gas HVAC repairs in		
residential applications. The savings calculation requires measurement of steady state		
furnace efficiency before and after repairs using an electronic combustion analyzer.		
Alternatively, before and after repair efficiencies may be measured following the method		
described in ANSI/ASHRAE Standard 103-2007, Method of Testing for Annual Fuel		
Utilization Efficiency of Residential Central Furnaces and Boilers. Maximum post repair		
efficiency must not exceed equipment nameplate efficiency. Technicians performing		
repairs must provide documentation of before- and after-combustion analysis results.		Formatted: Underline, (none)
۸		Formatted: Indent: First line: 0.25"
New Jersev's Clean Energy Program Page 56		

Algorithms

Fuel Savings (MMBtu/yr) = $Cap_{in} \times EFLH_h \times (1/SSE_b - 1/SSE_q) / 1,000kBtu/MMBtu$

Definition of Variables

<u>Cap_{in} = input capacity of existing unit in kBtu/hr</u>

 $EFLH_h = equivalent full load heating hours$

<u>SSE_b = Steady state efficiency of baseline gas HVAC equipment</u>

SSE_q = Steady state efficiency of repaired gas HVAC equipment

Summary of Inputs

Gas HVAC Repairs

<u>Component</u>	<u>Type</u>	Value	<u>Source</u>
Furnace rating	<u>Variable</u>		Application
<u>EFLH_h</u>	<u>Fixed</u>	<u>965</u>	NJ utility analysis of heating customers,
			annual gas heating usage
$\underline{SSE_q}$	<u>Variable</u>		Application
<u>SSE</u> _b	<u>Variable</u>		Application

Example: If a furnace has a 90 kBtu/hr input capacity, baseline efficiency of 85%, and post repairs efficiency of 90%, the fuel savings would be calculated as FS = 90kBtu/hr × 965 hr × (1/0.85 – 1/0.90)/1,000kBtu/MMBtu = 5.67 MMBtu/yr.

Formatted: Level 4, Keep with next Formatted: (none) Formatted: Indent: First line: 0.25" Formatted: Font: 12 pt, Not Bold Formatted: Normal, Left, Right: 0", Line spacing: single Formatted: (none)

Formatted: Space After: 1 pt, Don't keep with next Formatted Table

Formatted: Space After: 1 pt

Formatted: Indent: First line: 0" Formatted: Heading 3, Indent: Left: 0", First line: 0", Tab stops: Not at 0.5"

Other "Custom" MeasuresIn addition to the typical measures for which savings algorithms have been developed, itis assumed that there will be niche opportunities that should be identified and addressed.The savings for these custom measures will be reported based on the individualcalculations supplied with the reportingAs necessary the program working group willdevelop specific guidelines for frequent custom measures for use in reporting andcontractor tracking.	•	Formatted: Page break before
Definition of Terms		
CFL_{watts} = Average watts replaced for a CFL installation.	•	Formatted: Space Before: 3 pt, After: 3 pt
CFL_{hours} = Average daily burn time for CFL replacements.	4	Formatted: Space Before: 3 pt, After: 3 pt
Fixt _{watts} = Average watts replaced for an efficient fixture installation.		Formatted: Space Before: 3 pt, After: 3 pt
Fixt _{hours} = Average daily burn time for CFL replacements.	4	Formatted: Space Before: 3 pt, After: 3 pt
Torch _{watts} = Average watts replaced for a Torchiere replacement.	-	Formatted: Space Before: 3 pt, After: 3 pt
Torch _{hours} = Average daily burn time for a Torchiere replacements.	4	Formatted: Space Before: 3 pt, After: 3 pt
LED _{watts} = Average watts replaced for an LED installation.	-	Formatted: Space Before: 3 pt, After: 3 pt
LED _{hours} = Average daily burn time for LED replacements.	-	Formatted: Space Before: 3 pt, After: 3 pt
LEDN _{watts} = Average watts replaced for an LED nightlight installation.	4	Formatted: Space Before: 3 pt, After: 3 pt
LEDN _{hours} = Average daily burn time for LED nightlight replacements.	-	Formatted: Space Before: 3 pt, After: 3 pt
Light CF = Summer demand coincidence factor for all lighting measures. Currently fixed at 5%.		Formatted: Space Before: 3 pt, After: 3 pt
$HW_{eavg} = Average$ electricity savings from typical electric hot water measure package.		Formatted: Space Before: 3 pt, After: 3 pt
$HW_{gavg} = Average$ natural gas savings from typical electric hot water measure package.	-	Formatted: Space Before: 3 pt, After: 3 pt
HW _{watts} = Connected load reduction for typical hot water efficiency measures		Formatted: Space Before: 3 pt, After: 3 pt

HW CF = Summer demand coincidence factor for electric hot water measure package. Currently fixed at 75%.	For	matted: Space Before	: 3 pt, After: 3 pt
Ref _{old} = Annual energy consumption of existing refrigerator based on on-site monitoring.	For	matted: Space Before	: 3 pt, After: 3 pt
$Ref_{new} = Rated$ annual energy consumption of the new refrigerator.	For	matted: Space Before	: 3 pt, After: 3 pt
Ref DF = kW /kWh of savingsRefrigerator demand savings factor.	For	matted: Space Before	: 3 pt, After: 3 pt
Ref CF = Summer demand coincidence factor for refrigeration. Currently 100%, diversity accounted for in the Ref DF factor.	For	matted: Space Before	: 3 pt, After: 3 pt
ESC _{pre} = Pre-treatment electric space conditioning consumption.	For	matted: Space Before	: 3 pt, After: 3 pt
ECool _{pre} = Pre-treatment electric cooling consumption.	For	matted: Space Before	: 3 pt, After: 3 pt
EFLH = Equivalent full load hours of operation for the average unitThis value is currently fixed at 650 hours.	For	matted: Space Before	: 3 pt, After: 3 pt
AC CF = Summer demand coincidence factor for air conditioning. Currently 85%.	For	matted: Space Before	: 3 pt, After: 3 pt
Capy = Capacity of Heat Pump in Btuh	For	matted: Space Before	: 3 pt, After: 3 pt
EER = Energy Efficiency Ratio of average heat pump receiving charge and air flow serviceFixed at 9.2	For	matted: Space Before	: 3 pt, After: 3 pt
HP CF = Summer demand coincidence factor for heat pump. Currently fixed at 70%.	For	matted: Space Before	: 3 pt, After: 3 pt
DSF = Demand savings factor for charge and air flow correctionCurrently fixed at 7%.	For	matted: Space Before	: 3 pt, After: 3 pt
GC _{pre} = Pre-treatment gas consumption.	For	matted: Space Before	: 3 pt, After: 3 pt
GH _{pre} = Pre-treatment gas space heat consumption (=.GC _{pre} less 300 therms if only total gas use is known.	For	matted: Space Before	: 3 pt, After: 3 pt
WS = Water Savings associated with water conservation measures. Currently fixed at 3,640 gallons per year per home receiving low-flow showerheads, plus 730 gallons saved per year aerator installed.	For	matted: Space Before	: 3 pt, After: 3 pt

	Residentia	al Low Income	-
Component	Туре	Value	Sources Source
CFL _{Watts}	Fixed	42 Wattswatts	1 🚽
CFL _{Hours}	Fixed	2.5 hours	1 🔹
Fixt _{Watts}	Fixed	100-120 Wattswatts	1
Fixt _{Hours}	Fixed	3.5 hours	1 🗸
Torch _{Watts}	Fixed	245 Wattswatts	1 🔸
Torch _{Hours}	Fixed	3.5 hours	1 🔸
LEDWatts	Fixed	52 Wattswatts	14 🔹
LEDHours	Fixed	2.5 hours	14 🔹
LEDNWatts	Fixed	6.75 Wattswatts	14 🔹
LEDNHours	Fixed	12 hours	15 🔹
Light CF	Fixed	5%	2 🔹
Elec. Water Heating Savings	Fixed	178 kWh	3 •
Gas Water Heating Savings	Fixed	1.01 MMBTUMMBtu	3 •
WS Water Savings	Fixed	3,640 gal/year per home receiving lowflow shower heads, plus 1,460 gal/year per home receiving aerators.	12 •
HW _{watts}	Fixed	0.022 kW	4 🔸
HW CF	Fixed	75%	4 🔸
$\operatorname{Ref}_{\operatorname{old}}$	Variable		Contractor • Tracking
Ref _{new}	Variable		Contractor • Tracking and Manufacturer data
Ref DF	Fixed	0.000139 kW/kWh savings	5 •
RefCF	Fixed	100%	6 🔹
ESC _{pre}	Variable		7 🔹
Ecool _{pre}	Variable		7 🖣
ELFH	Fixed	650 hours	8 🖣
AC CF	Fixed	85%	4 🖣
Сару	Fixed	33,000 Btu/hr	1 🖣
EER	Fixed	11.3	8 🔺
HP CF	Fixed	70%	9 🖣
DSF	Fixed	7%	10 🔺

Formatted (... Formatted (... Formatted (... **Formatted Table** (... Formatted <u>...</u> Formatted (... Formatted (... Formatted (... Formatted (... Formatted <u>...</u> Formatted (... Formatted (... Formatted (... Formatted <u>...</u> Formatted (... Formatted (... Formatted Formatted <u>(...</u> Formatted (... Formatted (... Formatted (... Formatted (... Formatted (... Formatted (... Formatted (... Formatted (... Formatted <u>...</u> Formatted <u>[...</u> Formatted (... Formatted (... Formatted (... Formatted Formatted <u>...</u> Formatted (...

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

Component	Туре	Value	SourcesSource		Formatted: Table Header
GC _{pre}	Variable		7 🔸	\mathbb{Z}	Formatted: Table Header, Indent: Left: 0"
GH _{pre}	Variable		7 🔸		Formatted Table
Time Period	Fixed	Summer/On-Peak 21%	11 🔸	\mathcal{I}	Formatted: Table Cells
Allocation Factors -		Summer/Off-Peak 22%		\backslash	Formatted: Table Cells
<u>–</u> Electric		Winter/On-Peak 28%			Formatted: Table Cells
		Winter/Off-Peak 29%			
Time Period	Fixed	Heating:	13 🔸		Formatted: Font: Bold
Allocation Factors -		Summer 12%			Formatted: Table Cells
<u>–</u> Gas		Winter 88%			
		Non-Heating:	•		Formatted: Font: Bold
		Summer 50%			Formatted: Table Cells
		Winter 50%			

Sources/Notes:

- 1. Working group expected averages for product specific measures.
- 2. Efficiency Vermont, <u>Technical</u> Reference <u>User</u> Manual, <u>2016</u> average for lighting products.
- 3. Experience with average hot water measure savings from low income and direct install programs.
 - 4. VEIC estimate.
- 5. UI Refrigerator Load Data profile, .16 kW (5pm5 p.m. July) and 1,147 kWh annual consumption.
- 6. Diversity accounted for by Ref DF.
- 7. Billing histories and (for electricity) contractor calculations based on program procedures for estimating space conditioning and cooling consumption.
- 8. Average EER for SEER 13 units.
- 9. Analysis of data from 6 utilities by Proctor Engineering
- 10. From Neme, Proctor and Nadel, 1999.
- 11. These allocations may change with actual penetration numbers are available.
- 12. VEIC estimate, assuming 1 GPM reduction for 14 five-5-minute showers per week for shower heads, and 4 gallons saved per day for aerators.
- 13. Heating:- Prorated based on 12% of the annual degree days falling in the summer period and 88% of the annual degree days falling in the winter period.
- Non-Heating:- Prorated based on 6 months in the summer period and 6 months in the winter period.

Formatted: Space After: 6 pt

Formatted: Indent: Left: 0", Space Before: 3 pt, After: 3 pt

14. "NJ Comfort Partners Energy Saving Protocols and Engineering Estimates." Apprise,
June 2014. Available at
http://www.njcleanenergy.com/files/file/Protocol%20and%20Engineering%20Estima
te%20Summary.pdft," Apprise, June 2014; available at
http://www.njcleanenergy.com/files/file/Protocol%20and%20Engineering%20Estima
<u>te%20Summary.pdf.</u>
15. Pennsylvania Technical Reference Manual., June 2016. Page, p. 27. Available;

available at http://www.puc.pa.gov/pcdocs/1370278.docxthttp://www.puc.pa.gov/pcdocs/137027 8.docxt.

Formatted: Indent: Left: 0", Hanging: 0.25"

Residential New Construction Program

Protocols

- Single-Family, Multi-Single and Low-Rise Multifamily Building Shell

Energy-Whole building energy savings due to thermal shell and mechanical equipment improvements in residential new construction and "gut" renovation projects are calculated using outputs from REM/RateTMRESNET accredited Home Energy Rating System (HERS) modeling software²⁰. -All program homes are modeled in REM/Rateusing accredited software to estimate annual energy consumption for heating, cooling-and, hot water..., and other end uses within the HERS asset rating. Standards for energy efficient new construction in New Jersey are based on national platforms including IECC 2015, EPA ENERGY STAR® Certified New Homes Program, EPA ENERGY STAR Multifamily High-Rise Program (MFHR), and the DOE Zero Energy Ready Home (ZERH) Program. All of these pathways are based on and incorporate by reference the applicable HERS standards, including but not limited to, the Mortgage Industry National Home Energy Rating System Standard & Addenda and ANSI/RESNET/ICC Standard 30.²¹

Single-Family, Multi-Single (townhomes), Low-Rise Multifamily

The program home is then modeled to a baseline specification using <u>REM/Rate'sa</u> program-specific reference home (referred to in some software as a User Defined Reference Home (or UDRH) feature. -The <u>UDRHprogram reference home specifications</u> are set according to the lowest efficiency specified by applicable codes and standards, thereby representing a New Jersey specific baseline specification is forhome against which the improved efficiency of program homes permitted prioris measured.

The NJCEP reference home shall be updated as necessary over time to and reflect the efficiency values of HERS Minimum Rated Features based on:

- The prescriptive minimum values of the IECC 2015 version applicable to the home for which savings are being calculated;
- The Federal Minimum Efficiency Standards applicable to each rated feature at the time of permitting (e.g. minimum AFUE and SEER ratings for heating and air conditioning equipment, etc.);
- An assessment of baseline practice, as available, in the event that either of the above standards reference a non-specific value (e.g. "visual inspection");
- Exclusion of specific rated features from the savings calculation in order to remove penalties for building science based best practice requirements of the

²⁰ Accredited Home Energy Rating Systems (HERS) software,

http://www.remrate.com/resnet.us/professional/programs/software

²¹ http://www.resnet.us/professional/standards

program (e.g. by setting the reference and rated home to the same value for program-required mechanical ventilation);

• Other approved adjustments as may be deemed necessary.

The RNC program currently specifies three standards for program qualification:

- IECC 2015 Energy Rating Index (for homes permitted on or after March 21, 2016-)
- ENERGY STAR Certified Homes v3.1
- Zero Energy Ready Home &Zero Energy Home + RE

The difference in modeled annual energy consumption between the program and UDRHapplicable baseline reference home is the projectprojected savings for heating, hot water, cooling, lighting and appliance end uses. appliances, and other end uses in the HERS Minimum Rated Features, as well as on-site renewable gereration, when applicable. Coincident peak demand savings are also derived from REM/Raterated modeled outputs.

The algorithms that calculate energy and demand savings are as follows:

Energy Savings = (Baseline home energy consumption – Program home energy consumption)

The following table describes the baseline characteristics of Climate Zone 4 and 5 reference homes for single-family, multi-single and low-rise multifamily buildings.

1				Formatted: Don't allow hanging punctuation,
	REM/Rate U	Jser Defined Reference Hon	nes Definition	Don't adjust space between Latin and Asian text, Don't adjust space between Asian text
	Applicable to buildings pe	rmitted prior to March 21, 2	2016 Reflects IECC 2009	and numbers, Font Alignment: Baseline
Note	Data Point	Climate Zone 4	Climate Zone 5	Formatted: Left
(1)	Ceiling Insulation	U=0.030	U=0.030	
	Radiant Barrier	None	None	
(1)	Rim/Band Joist	U=0.082	U=0.057	
(1)	Exterior Walls - Wood	U=0.082	U=0.057	
(1)	Exterior Walls - Steel	U=0.082	<u>U=.057</u>	
	Foundation Walls	U=0.059	U=0.059	
(1)	Doors	U=0.35	U=0.35	
(1)	Windows	U=0.35, SHGC=NR	U=0.35 , SHGC=NR	
(1)	Glass Doors	U=0.35, SHGC=NR	U=0.35 , SHGC=NR	
(1)	Skylights	U=0.60, SHGC=NR	U=0.60 , SHGC=NR	
(2)	Floor	U=0.047	U=.033	
	Unheated Slab on Grade	R-10, 2 ft	R-10, 2 ft	
	Heated Slab on Grade	R-15, 2 ft	R-15, 2 ft	
	Air Infiltration Rate	7 ACH50	7 ACH50	
	Duct Leakage	8 cfm25 per 100ft ² CFA	8 cfm25 per 100ft ² CFA	
	Mechanical Ventilation	None	None	
	Lights and Appliances	Use RESNET Default	Use RESNET Default	
	Thermostat	Manual	Manual	
	Heating Efficiency			
(3)	Furnace	80% AFUE	80% AFUE	
	Boiler	80% AFUE	80% AFUE	
		76% AFUE (Recovery	76% AFUE (Recovery	Formatted Table
	Combo Water Heater	Efficiency)	Efficiency)	
	Air Source Heat Pump	7.7 HSPF	7.7 HSPF	
	Cooling Efficiency			
	Central Air Conditioning &			
	Window AC units	13.0 SEER	13.0 SEER	
	Air Source Heat Pump	13.0 SEER	13.0 SEER	
(4)	Domestic WH Efficiency			
	Electric stand-alone tank	0.90 EF	0.90 EF	
	Natural Gas stand-alone			
	tank	0.58 EF	0.58 EF	
	Electric instantaneous	0.93 EF	0.93 EF	
	Natural Gas instantaneous	0.62 EF	0.62 EF	
	Water Heater Tank Insulation	None	None	
	Duct Insulation, attic supply	R-8	R-8	
	Duct Insulation, all other	R-6	R-6	
	Active Solar	None	None	
	Photovoltaics	None	None	
L	L	I		

UD	RH Table Notes	Formatted: Don't keep with next
(1)		r
(1)	U values represent total wall system U value, including all components (i.e., clear wall,	Formatted: Indent: Left: 0"
	windows, doors).	
	Type A-1 - Detached one and two family dwellings.	
	Type A-2 - All other residential buildings, three stories in height or less.	
(2)	All frame floors shall meet this requirement. There is no requirement for floors over	
	basements and/or unvented crawl spaces when the basement and/or unvented crawl space	
	walls are insulated.	
(3)	MEC 95 minimum requirement is 78 AFUE. However, 80 AFUE is adopted for New	
	Jersey based on typical minimum availability and practice.	
(4)	Based on the Federal Government standard for calculating EF (50 gallon assumed):	
	•Gas-fired Storage-type EF: 0.67 - (0.0019 x Rated Storage Volume in gallons)	
	•Electric Storage-type EF: 0.97 - (0.00132 x Rated Storage Volume in gallons)	
	•Instantaneous Gas-fired EF: 0.62 - (0.0019 x Rated Storage Volume in gallons)	
	•Instantaneous Electric EF: 0.93 - (0.0013 x Rated Storage Volume in gallons)	
_		-

	REM/Rate U	ser Defined Reference Hom	nes Definition	
Ntede	Applicable to buildings perr	nitted on or after March 21	<u>, 2016 Reflects IECC 2015</u>	(
(1)	Cailing Insulation	U = 0.026	U=0.026	
(1)	Dediant Damian	U= 0.020	U=0.020	Formatted: Left
(1)	Raulalli Dallier			
(1)	Killi/Ballu Joist		U=0.060	
(1)	Exterior Walls - Wood	U=0.060	U=0.060	
(1)	Exterior Walls - Steel	U=0.060	<u>U=0.060</u>	
(1)		U=0.039	U=0.030	
(1)	DOOIS	U=0.55	U=0.32	
(1)	Windows Class Daars	U=0.35, SHGC=40	U=0.32, SHGC=NR	
(1)	Glass Doors	U=0.35, SHGC=40	U=0.32, SHGC=NR	
(1)	Skylights	U=0.55, SHGC=40	U=0.55, SHGC=NR	
(2)	Floor	U=0.047	U=.033	
	Unheated Slab on Grade	R-10, 2 ft	R-10, 2 ft	
	Heated Slab on Grade	R-15, 2 ft	R-15, 2 ft	
(3)	Air Infiltration Rate	7 ACH50	7 ACH50	
	Duct Leakage	4 cfm25 per 100ft ² CFA	4 cfm25 per 100ft ² CFA	
	Mechanical Ventilation	Exhaust only	Exhaust only	
	Lighting	75% efficient	75% efficient	
	Appliances	Use RESNET Default	Use RESNET Default	
(4)	Thermostat	Manual	Manual	
	Heating Efficiency			
(5)	Furnace	80% AFUE	80% AFUE	
	Boiler	80% AFUE	80% AFUE	
	Combo Water Heater	76% AFUE (Recovery	76% AFUE (Recovery	
	Combo water Heater	Efficiency)	Efficiency)	
	Air Source Heat Pump Cooling Efficiency	8.2 HSPF	8.2 HSPF	
	Cooling Efficiency	-		
	Central Air Conditioning & Window AC units	13.0 SEER	13.0 SEER	Formatted Table
	Air Source Heat Pump	14.0 SEER	14.0 SEER	
(6)	Domestic WH Efficiency			
	Electric stand-alone tank	0.90 EF	0.90 EF	
	Natural Gas stand-alone			
	tank	0.60 EF	0.60 EF	
	Electric instantaneous	0.93 EF	0.93 EF	
	Natural Gas instantaneous	0.82 EF	0.82 EF	
	Water Heater Tank			
	Insulation	None	None	
	Duct Insulation, attic	R-8	R-8	
	Duct Insulation, all other	R-6	R-6	
	Active Solar	None	None	
I	F			

	REM	/Rate User Defined Refe	erence Homes Definition		
	Applicable to building	ngs permitted on or after	r March 21, 2016 Reflects IECC	<u>2015</u>	
	Photovoltaics	None	None		
	DKH Table Notes				Formatted Normal
(1)) II values represent to	tal system II value inclu	ling all components (i.e., clear wall	-	
(1)	windows doors)	tai system o value, merue	ing an components (i.e., clear wang	,	
	Type A-1 - Detached	one and two family dwel	lings	-	Formatted: Indent: Left: 0"
	Type A-2 - All other	residential buildings thre	e stories in height or less		
\mathcal{O}) All frame floors shall	l meet this requirement. T	here is no requirement for floors ov	er	-
(-,	basements and/or un	vented crawl spaces when	the basement and/or unvented craw	l space	
	walls are insulated.	venteu eruwr spuees when		rspuce	
(3)) Based on New Jersey	y's amendment making the	e IECC 2015 requirement for air lea	kage	-
(0)	testing optional, there	e is no empirical evidence	that baseline new construction is a	chieving	
	the 3 ACH50 tightne	ss level through a visual i	nspection of checklist air sealing ite	ms.	
(4)) While the code requi	res a programmable actua	l programming is an occupant beha	vior. bot	h
	the rated home and re	eference home are set at f	xed temperatures of 68 heating and	78	
	cooling, so that no sa	vings are counted or lost	I Contraction of Contraction		
(5) MEC 95 minimum re	equirement is 78 AFUE. I	However, 80 AFUE is adopted for N	Jew	
	Jersey based on typic	al minimum availability a	and practice.		
(6) Based on the Federal	Government standard for	calculating EF (50 gallon assumed):	
Ì	•Gas-fired Storage-ty	pe EF: 0.675 - (0.0015 x	Rated Storage Volume in gallons)	·	
	•Electric Storage-typ	e EF: 0.97 - (0.00132 x R	ated Storage Volume in gallons)		
	•Instantaneous Gas-f	ired EF: 0.82 - (0.0019 x]	Rated Storage Volume in gallons)		
	 Instantaneous Electr 	ic EF: 0.93 - (0.0013 x R	ated Storage Volume in gallons		
					_
					Formatted: Heading 3
	Multifamily High Ris	e (MFHR)- Protocols			
	M. L.C I. II. L. D.				
-	Multifamily High Kis	e (MFHK)			
A	Innual energy and summ	er coincident peak deman	d savings for qualifying MFHR	-	Formatted: Space Before: 6 pt, After: 6 pt
C	onstruction projects (4-6	-stories) shall be calculate	d from the EPA Project Submittal		
d	ocument, 'As BuiltEnerg	y Star Performance Path	Calculator (PPC).) ²² . Th	e	
Р	PC captures outputs from	n eQuest EPA approved m	odeling softwareCoincident peak		
d	emand is calculated only	for the following end use	es: space cooling, lighting, and		
v	entilationClothes wash	er data cannot be parsed (out of the PPC "Misc Equip' field.		
R	NC coincident factors an	re applied to the MFHR d	emand savings.		
1			C		
					Formatted Cases Deferse (at Afters (at
E	nergy and demand savin	gs are calculated using the	e following equations:		Formatted: space before. 6 pt, Alter. 6 pt
' _					
22	https://www.energystar.gov/	index.cfm?c=bldrs_lenders rat	ers.nh_mfhr_guidance		
. –					
N	ew Jersey's Clean Energy Pro	ogram	Page	e 68	
P	rotocols to Measure Resource	Savings			

Energy Savings = Average Baseline energy (kWh/yr and/or therms/yr) - Proposed Design Formatted: Space Before: 3 pt, After: 3 pt energy (kWh/yr and/or therms/yr)
Coincident peak demand = (Average Baseline non-coincident peak demand - Proposed Formatted: Space Before: 3 pt, After: 3 pt Design non-coincident peak demand) * Coincidence Factor

ENERGY STAR Energy Efficient Products Program Protocols The following sections detail savings calculations ENERGY STAR Appliances; ENERGY STAR_and Lighting, ENERGY STAR Windows, and ENERGY STAR Audit Products in residential and multi-family sectors. ENERGY STAR Appliances Protocols The general form of the equation for the ENERGY STAR Appliance Program measure savings algorithms is: Number of Units X* Savings per Unit To determine resource savings, the per unit estimates in the protocols will be multiplied by the number of appliance units. To determine resource savings, the per unit estimates in the protocols will be multiplied by the number of depliance units. To determine resource savings, the per unit estimates in the protocols will be multiplied by the number of depliance units. To determine resource savings, the per unit estimates in the protocols will be multiplied by the number of appliance units. To determine resource savings, the per unit estimates in the protocols will be multiplied by the number of appliance units.	Formatted: Left: 1.25", Right: 1.25" Formatted Formatted: Heading 3 Formatted: Heading 3 Formatted: Space Before: 6 pt, After: 6 pt Formatted: Space Before: 6 pt, After: 6 pt Formatted: Space Before: 6 pt, After: 6 pt	
ENERGY STAR Energy Efficient Products-Program Protocols The following sections detail savings calculations ENERGY STAR Appliances; ENERGY STAR and Lighting, ENERGY STAR Windows, and ENERGY STAR Audit Products in residential and multi-family sectors. ENERGY STAR Appliances — Protocols The general form of the equation for the ENERGY STAR Appliance Program measure savings algorithms is: Number of Units X* Savings per Unit To determine resource savings, the per unit estimates in the protocols will be multiplied by the number of appliance units. To determine resource savings, the per unit estimates in the protocols will be multiplied by the number of appliance units. To determine resource savings, the per unit estimates in the protocols will be multiplied	Formatted Formatted: Heading 3 Formatted Formatted: Space Before: 6 pt, After: 6 pt Formatted: Space Before: 6 pt, After: 6 pt Formatted: Space Before: 6 pt, After: 6 pt	
Protocols F The following sections detail savings calculations ENERGY STAR Appliances; ENERGY STAR- and Lighting; ENERGY STAR Windows, and ENERGY STAR Audit Products in residential and multi-family sectors. ENERGY STAR Appliances Protocols The general form of the equation for the ENERGY STAR Appliance Program measure savings algorithms is: Number of Units X* Savings per Unit To determine resource savings, the per unit estimates in the protocols will be multiplied by the number of appliance with To determine resource savings, the per unit estimates in the protocols will be multiplied by the number of appliance with the protocols will be multiplied by the number of appliance with the per unit estimates in the protocols will be multiplied by the number of appliance with the per unit estimates in the protocols will be multiplied by the number of appliance with the per unit estimates in the protocols will be multiplied by the number of appliance with the per unit estimates in the protocols will be multiplied by the number of appliance with the per unit estimates in the protocols will be multiplied by the number of appliance with the per unit estimates in the protocols will be multiplied by the number of appliance with the per unit estimates in the protocols will be multiplied by the number of appliance with the per unit estimates in the protocols will be multiplied by the number of appliance with the per unit estimates in t	Formatted: Heading 3 Formatted: Heading 3 Formatted: Space Before: 6 pt, After: 6 pt Formatted: Space Before: 6 pt, After: 6 pt	
The following sections detail savings calculations ENERGY STAR Appliances; ENERGY STAR_and Lighting, ENERGY STAR Windows, and ENERGY STAR Audit Products in residential and multi-family sectors. ENERGY STAR Appliances — Protocols The general form of the equation for the ENERGY STAR Appliance Program measure savings algorithms is: Number of Units X* Savings per Unit To determine resource savings, the per unit estimates in the protocols will be multiplied by the number of appliance units. To determine resource savings, the per unit estimates in the protocols will be multiplied by the number of appliance units. To determine resource savings, the per unit estimates in the protocols will be multiplied by the number of appliance units. To determine resource savings, the per unit estimates in the protocols will be multiplied by the number of appliance units. To determine resource savings, the per unit estimates in the protocols will be multiplied	Formatted: Heading 3 Formatted Formatted: Space Before: 6 pt, After: 6 pt Formatted: Space Before: 6 pt, After: 6 pt	
ENERGY STAR- and Lighting, ENERGY STAR Windows, and ENERGY STAR Audit Products in residential and multi-family sectors. ENERGY STAR Appliances — Protocols The general form of the equation for the ENERGY STAR Appliance Program measure savings algorithms is: Number of Units X* Savings per Unit To determine resource savings, the per unit estimates in the protocols will be multiplied by the number of appliance units. To determine resource savings, the per unit estimates in the protocols will be multiplied for the savings.	Formatted: Heading 3 Formatted Formatted: Space Before: 6 pt, After: 6 pt Formatted: Space Before: 6 pt, After: 6 pt	
Products in residential and multi-family sectors. ENERGY STAR Appliances — Protocols The general form of the equation for the ENERGY STAR Appliance Program measure savings algorithms is: Number of Units X* Savings per Unit To determine resource savings, the per unit estimates in the protocols will be multiplied by the number of appliance units. To determine resource savings, the per unit estimates in the per uni	Formatted: Heading 3 Formatted Formatted: Space Before: 6 pt, After: 6 pt Formatted: Space Before: 6 pt, After: 6 pt	
ENERGY STAR Appliances Protocols The general form of the equation for the ENERGY STAR Appliance Program measure savings algorithms is: Number of Units X* Savings per Unit To determine resource savings, the per unit estimates in the protocols will be multiplied by the number of appliance units. To determine resource savings, the per unit estimates in the protocols will be multiplied	Formatted: Heading 3 Formatted Formatted: Space Before: 6 pt, After: 6 pt Formatted: Space Before: 6 pt, After: 6 pt Formatted: Space Before: 6 pt, After: 6 pt	
Protocols The general form of the equation for the ENERGY STAR Appliance Program measure savings algorithms is: Number of Units X* Savings per Unit To determine resource savings, the per unit estimates in the protocols will be multiplied by the number of appliance units. To determine resource savings, the per unit estimates in the protocols will be multiplied by the number of appliance units. To determine resource savings, the per unit estimates in the protocols will be multiplied	Formatted: Space Before: 6 pt, After: 6 pt	
Protocols The general form of the equation for the ENERGY STAR Appliance Program measure savings algorithms is: Number of Units X* Savings per Unit To determine resource savings, the per unit estimates in the protocols will be multiplied by the number of appliance units. To determine resource savings, the per unit estimates in the p	Formatted: Space Before: 6 pt, After: 6 pt	
The general form of the equation for the ENERGY STAR Appliance Program measure savings algorithms is: Number of Units X* Savings per Unit To determine resource savings, the per unit estimates in the protocols will be multiplied by the number of appliance units. To determine resource savings, the per unit estimates in the per unit estimates i	Formatted: Space Before: 6 pt, After: 6 pt	
Number of Units X [*] Savings per Unit To determine resource savings, the per unit estimates in the protocols will be multiplied by the number of appliance units. To determine resource savings, the per unit estimates in the number of appliance units.	formatted: Space Before: 6 pt, After: 6 pt	
To determine resource savings, the per unit estimates in the protocols will be multiplied by the number of appliance units. To determine resource savings, the per unit estimates in	Formatted: Space Before: 6 pt, After: 6 pt	
by the number of appliance units. To determine resource savings, the per unit estimates in		
will be determined using market assessments and market tracking.		
ENERGY STAP Refrigerators - CEE Tier 1	ermatted, Heading 4	
Electricity ImpactSavings (kWh/yr) = ESavney	Formatted: Normal, Indent: First line: 0.25".	
Si S	pace Before: 3 pt, After: 3 pt	
<u>Peak</u> Demand <u>ImpactSavings</u> (kW) = DSav _{REF1} $\frac{*}{2}$ CF _{REF}	Formatted: Normal, Indent: First line: 0.25", ipace Before: 3 pt, After: 3 pt	
FILEDCY STAD Definition CEE Tion 2	ormatted: Subscript	
Electricity Import Surings (I:Wh/m) = ESay	Formatted: Heading 4	
Electricity $\frac{1}{10000000000000000000000000000000000$	formatted: Normal, Indent: First line: 0.25", pace Before: 3 pt, After: 3 pt	
<u>Peak</u> Demand <u>ImpactSavings</u> (kW) = DSav _{REF2} \star^* CF _{REF}	Formatted: Normal, Indent: First line: 0.25", ipace Before: 3 pt, After: 3 pt	
ENERGY STAR Clothes Washers – CEE Tier 1	Formatted: Heading 4	
Electricity $\frac{\text{ImpactSavings}}{\text{ImpactSavings}}$ (kWh/yr) = ESav _{CW1}	Formatted: Normal, Indent: First line: 0.25", pace Before: 3 pt, After: 3 pt	
<u>Peak</u> Demand <u>ImpactSavings</u> (kW) = DSav _{CW1} $\frac{*}{2}$ CF _{CW}	Formatted: Normal, Indent: First line: 0.25", pace Before: 3 pt, After: 3 pt	
Gas $\frac{\text{ImpactSavings}}{\text{Substitution}}$ (Therms/yr) = EGSav _{CW1}	Formatted: Normal, Indent: First line: 0.25", pace Before: 3 pt, After: 3 pt	
Water $\frac{\text{Impact}Savings}{\text{B}}$ (gallons/ <u>yr</u>) = WSav _{CW1}	Formatted: Indent: First line: 0.25", Space Before: 3 pt. After: 3 pt	
ENERGY STAR Clothes Washers — CEE Tier 2	•	Formatted: Heading 4
--	---	--
Electricity ImpactSavings (kWh/yr) = ESav _{CW2}	•	Formatted: Normal, Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt, Don't keep with next
<u>Peak</u> Demand <u>ImpactSavings</u> (kW) = $DSav_{CW2} \times CF_{CW}$	•	Formatted: Normal, Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt, Don't keep with next
Gas $\frac{\text{Impact}Savings}{\text{Impact}Sav_{CW2}}$ (Therms/yr) = EGSav _{CW2}	•	Formatted: Normal, Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt, Don't keep with next
Water ImpactSavings (gallons/yr) = WSav _{CW2}		Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
ENERGY STAP Set Ten Boyes [Inective 2017 Not Paviewed]		Formatted: Subscript
Electricity Impact (kWh) = ESay		Formatted: Heading 4
Electricity inipact ($K W II$) – $ESav_{STB}$		Formatted: Indent: First line: 0.25"
Demand Impact (kW) = $DSav_{STB} \times CF_{STB}$	4	Formatted: Indent: First line: 0.25"
Advanced Power Strip – Tier 1	4	Formatted: Heading 4
Electricity Impact (kWh) = $ESav_{APS}$	-	Formatted: Indent: First line: 0.25"
Demand Impact (kW) = $DSav_{APS} \times CF_{APS}$		Formatted: Indent: First line: 0.25"
	4	Formatted: Normal
Advanced Power Strip – 1ier 2 Electricity Learner (LWH ($_{\rm e}$) = ES		
Electricity impact $(KW n/\underline{Vr}) = ESav_{APS2}$	-	Formatted: Indent: First line: 0.25"
Demand Impact (kW) = $DSav_{APS2} \times CF_{APS}$	•	Formatted: Indent: First line: 0.25"
ENERGY STAR Electric Clothes Drivers – Tier 1		Formatted: Heading 4
Electric Lange (Deline (DVI) (D) EQ		Exemption Normal Indent: Eirst line: 0.25"
Electricity $\frac{\text{Hippact}Savings}{\text{Mippact}}$ (kwh ₂ yr) = ESav _{CDE1}		Space Before: 3 pt, After: 3 pt
<u>Peak</u> Demand <u>ImpactSavings</u> (kW) = DSav _{CDE1} $\frac{*}{2}$ CF _{CD}	-	Formatted: Space Before: 3 pt, After: 3 pt
ENERGY STAR Gas Clothes Dryers – Tier 1	4	Formatted: Heading 4
Electricity ImpactSavings (kWh/yr) = ESav _{CDG1}	•	Formatted: Normal, Indent: First line: 0.25", Space Before: 3 pt. After: 3 pt
<u>Peak</u> Demand <u>ImpactSavings</u> (kW) = DSav _{CDG1} $\underline{*}^{\underline{*}}$ CF _{CD}	•	Formatted: Space Before: 3 pt, After: 3 pt
Gas $\frac{\text{Impact}Savings}{\text{Impact}Savings}$ (Therms/yr) = $GSav_{CDG1}$	-	Formatted: Normal, Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
ENERCY STAR 2014 Emerging Technols are Arrend Electric Clather Dr		Promotion (
EINERG I STAR 2014 Energing rechnology Award Electric Clothes Dryers – Her 2		
Electricity ImpactSavings (kWh/yr) = ESav _{CDE2}		Formatted: English (U.S.)
		Formatted: English (U.S.)
<u>Peak</u> Demand <u>ImpactSavings</u> (kW) = DSav _{CDE2} \times CF _{CD}		Formatted: Normal, Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
		Formatted: Space Before: 3 pt, After: 3 pt

ENERGY STAR 2014 Emerging Technology Award Gas Clothes Dryers – Tier 2						
Electricity ImpactEnergy Savings (kWh/yr) = ESav _{CDG2}						
Peak Demand	<u>Peak</u> Demand <u>ImpactSavings</u> (kW) = $DSav_{CDG2} \times CF_{CD}$					
Gas <mark>Impact<u>Sav</u></mark>	<u>ings</u> (Therms) =	GSav_{CDG1}/yr) = (GSav _{CDG2}			
ENERGY STAR R Electricity Imp	<u>koom AC – Tier</u> act (kWh) = ESa	<u>1 [Inactive 2017,</u> IV _{RAC1}	Not Reviewed]			
Demand Impac	et (kW) = $DSav_{RA}$	AC1				
ENERGY STAR B Electricity Imp	<u>Room AC – Tier</u> act (kWh) = ESa	2 [Inactive 2017, WRAC2	Not Reviewed]			
Demand Impac	et (kW) = $DSav_{RA}$	AC2				
ENERGY STAR R Electricity Imp	<u>Room Air Purifie</u> act (kWh) = ESa	r [Inactive 2017,] IV _{RAP}	Not Reviewed]			
Demand Saving	<u>gs (kW) = DSav</u> F	RAC2 is based on th	ne CADR in the table	e below		
Where ESav _{RAI}	P is based on the	CADR in table b	elow			
Room Air Purifier Deemed kWh Table						
Clean Air Delivery Rate (CADR)CADR used in calculationBaseline Unit Energy Consumption (kWh/year)ENERGY STAR Unit Energy Consumption (kWh/year)ESav _{RAP}						
CADR 51-100	75	441	148	293		
CADR 101-150	125	733	245	488		
CADR 151-200	175	1025	342	683		
CADR 201-250	225	1317	440	877		
CADR Over	275	1609	537	1072		

Demand Impact (kW) = $DSav_{RAC2}$ is based on the CADR in the table below

Tormatte	a: Heading 4
Formatte	d: Normal, Indent: First line: 0.25
Space Befe	pre: 3 pt, After: 3 pt
Formatte	d: Indent: First line: 0.25", Space
Before: 3	pt, After: 3 pt
Formatte	d: Normal, Indent: First line: 0.25
Space Befe	ore: 3 pt, After: 3 pt
Formatte	d: Heading 4
Formatte	d: Normal, Indent: First line: 0.25
Space Afte	r: 3 pt
Formatte	d: Indent: First line: 0.25", Space
After: 3 p	t
Formatte	d: Heading 4
Formatte	d: Normal, Indent: First line: 0.25
Space Befe	ore: 3 pt, After: 3 pt
Formatte	d: Indent: First line: 0.25", Space
Before: 3	pt, After: 3 pt
Formatte	d: Heading 4

Widow/Orphan control, Keep with next

Formatted: Font: Times New Roman, German (Germany), Not Superscript/ Subscript

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

250

Room Air Purifier Deem	ed kW Table		
Clean Air Delivery Rate	DSav _{RAC2}		
CADR 51-100	0.034		
CADR 101-150	0.056		
CADR 151-200	0.078		
CADR 201-250	0.101		
CADR Over 250	0.125	_	Formatted: (none)
ENERGY STAR Freezer [Inactive 2017, Not Revie	ewedl		Formatted: Heading 4
-Electricity Impact (kWh) = ESav _{FRZ}		-	Formatted: Indent: First line: 0.25"
Demand Impact (kW) = $DSav_{FRZ}$ based on table	e below	-	Formatted: Indent: First line: 0.25"
ENERGY STAR Soundbar Inactive 2017, Not Rev	viewed	4	Formatted: Heading 4
Electricity Impact (kWh) = $ESav_{SDB}$		-	Formatted: Indent: First line: 0.25"
Demand Impact $(kW) = DSavapp$			Formatted: Indent: First line: 0.25"
Demand Impact $(KW) = DSav_{SDB}$			Formatted: English (U.S.)
Definition of Variables			Formatteu: English (0.5.)
		•	Formatted: Font: 10 pt, Bold
Definition of Terms			Formatted: Body Text, Justified, Right: 0.09", Line spacing: At least 12 pt
ESav _{REF1} = Electricity savings per purchased ENER	GY STAR refrigerator – CEE Tier 1.	-	Formatted: Space Before: 3 pt, After: 3 pt
	-		
DSav _{PEE1} - Summer demand savings per purchased	ENERGY STAR refrigerator – CEE Ti	er	Formatted: Space Before: 3 pt, After: 3 pt
1.			
ESavarra – Electricity savings per purchased ENED	CV STAP refrigerator – CEE Tier 2		Formatted: Space Before: 3 pt, After: 3 pt
LSav _{REF2} – Electricity savings per purchased Electricity	of Startenigerator – CLL The 2.		
	Ever of the CEE T		Formatted: Space Before: 3 pt After: 3 pt
DSav _{REF2} = Summer demand savings per purchased 2	ENERGY STAR refrigerator – CEE 11	er	Formatten space before. 5 pt, Alter. 5 pt
_2. 			
			Earmatted: Space Befere: 3 pt After: 3 pt
$ESav_{CW1} = Electricity savings per purchased ENERG$	GY STAR clothes washer.		Formatted. Space before. 5 pt, Alter. 5 pt
$DSav_{CW1} = Summer demand savings per purchased$	ENERGY STAR clothes washer.		Formatted: Space Before: 3 pt, After: 3 pt
GSav _{CW1} = Gas savings per purchased clothes wash	er ENERGY STAR clothes washer.	•	Formatted: Space Before: 3 pt, After: 3 pt
WSav _{CW1} = Water savings per purchased clothes wa	asher ENERGY STAR clothes washer.		Formatted: Space Before: 3 pt, After: 3 pt
$ESav_{cw2} = Electricity savings per purchased CEE.$	Fier 2 ENERGY STAR clothes washer	-	Formatted: Space Before: 3 pt, After: 3 pt
224.0w2 Electrony savings per parenased CEE			·

$DSav_{CW2}$ = Summer demand savings per purchased CEE-Tier 2 ENERGY STAR clothes washer.	Formatted: Space Before: 3 pt, After: 3 pt
$GSav_{CW2} = Gas$ savings per purchased CEE Tier 2 ENERGY STAR clothes washer	Formatted: Space Before: 3 pt, After: 3 pt
$WSav_{CW2} = Water savings per purchased CEE Tier 2 ENERGY STAR clothes washer.$	Formatted: Space Before: 3 pt, After: 3 pt
ESav _{STB} = Electricity savings per purchased ENERGY STAR set top box.	Formatted: Space Before: 3 pt, After: 3 pt
DSav _{STB} = Summer demand savings per purchased ENERGY STAR set top box.	Formatted: Space Before: 3 pt, After: 3 pt
ESav _{APS1} = Electricity savings per purchased advanced power strip.	Formatted: Space Before: 3 pt, After: 3 pt
DSav _{APS1} = Summer demand savings per purchased advanced power strip.	Formatted: Space Before: 3 pt, After: 3 pt
$ESav_{APS2} = Electricity$ savings per purchased Tier 2 advanced power strip.	Formatted: Space Before: 3 pt, After: 3 pt
DSav _{APS2} = Summer demand savings per purchased Tier 2 advanced power strip.	Formatted: Space Before: 3 pt, After: 3 pt
ESav _{CDE1} = Electricity savings per purchased ENERGY STAR electric clothes dryer.	Formatted: Space Before: 3 pt, After: 3 pt
DSav _{CDE1} = Summer demand savings per purchased ENERGY STAR electric clothes dryer	Formatted: Space Before: 3 pt, After: 3 pt
ESav _{CDG1} = Electricity savings per purchased ENERGY STAR gas clothes dryer.	Formatted: Space Before: 3 pt, After: 3 pt
DSav _{CDG1 =} summer <u>Summer</u> demand savings per purchased ENERGY STAR gas clothes dryer.	Formatted: Space Before: 3 pt, After: 3 pt
GSav _{CDG1} = Gas savings per purchased ENERGY STAR gas clothes dryer.	Formatted: Space Before: 3 pt, After: 3 pt
ESav _{CDE2} = Electricity savings per purchased <u>Tier 2 ENERGY STAR</u> electric clothes dryen meeting the ENERGY STAR 2014 Emerging Technology Award criteria.	Formatted: Space Before: 3 pt, After: 3 pt
DSav _{CDE2} = Demand savings per purchased <u>Tier 2 ENERGY STAR</u> electric clothes dryer meeting the ENERGY STAR 2014 Emerging Technology Award criteria.	Formatted: Space Before: 3 pt, After: 3 pt
ESav _{CDG2} = Electricity savings per purchased <u>Tier 2 ENERGY STAR</u> gas clothes dryer meeting the ENERGY STAR 2014 Emerging Technology Award criteria.	Formatted: Space Before: 3 pt, After: 3 pt
New Janey 2 Class France Descure	75

DSav _{CDG2} = Demand savings per purchased gas <u>Tier 2 ENERGY STAR</u> gas clothes dryer meeting the ENERGY STAR 2014 Emerging Technology Award criteria.	•	Formatted: Space Before: 3 pt, After: 3 pt
GSav _{CDG2} = Gas savings per purchased <u>Tier 2</u> ENERGY STAR gas clothes dryer-meeting the ENERGY STAR 2014 Emerging Technology Award criteria.		Formatted: Space Before: 3 pt, After: 3 pt
ESav _{RAC1} = Electricity savings per purchased ENERGY STAR room air conditioner.		Formatted: Space Before: 3 pt, After: 3 pt
DSav _{RAC1} = Summer demand savings per purchased ENERGY STAR room air conditioner.		Formatted: Space Before: 3 pt, After: 3 pt
$ESav_{RAC1} = Electricity savings per purchased Tier 2 room air conditioner.$	•	Formatted: Space Before: 3 pt, After: 3 pt
DSav _{RAC2} = Summer demand savings per purchased Tier 2 room air conditioner.		Formatted: Space Before: 3 pt, After: 3 pt
ESav _{RAC1} = Electricity savings per purchased ENERGY STAR room air purifier.	4	Formatted: Space Before: 3 pt, After: 3 pt
$DSav_{RAP} = Summer demand savings per purchased ENERGY STAR room air purifier.$	-	Formatted: Space Before: 3 pt, After: 3 pt
ESav _{FRZ} = Electricity savings per purchased ENERGY STAR freezer.		Formatted: Space Before: 3 pt, After: 3 pt
DSav FRZ = Summer demand savings per purchased ENERGY STAR freezer.		Formatted: Space Before: 3 pt, After: 3 pt
ESav _{SDB} = Electricity savings per purchased ENERGY STAR soundbar.		Formatted: Space Before: 3 pt, After: 3 pt
DSav _{SDB} = Summer demand savings per purchased ENERGY STAR soundbar		Formatted: Space Before: 3 pt, After: 3 pt
TAF = Temperature Adjustment Factor		Formatted: Space Before: 3 pt, After: 3 pt
LSAF = Load Shape Adjustment Factor		Formatted: Space Before: 3 pt, After: 3 pt
CF_{REF} , CF_{CW} , CF_{DH} , CF_{RAC} , CF_{STB} , , , CF_{APS} , CF_{CD} = Summer demand coincidence	•>>	Formatted: Not Superscript/ Subscript
factor.		Formatted: Space Before: 3 pt, After: 3 pt
Summary of Inputs		Formatted: Table Caption, Left, Space Before: 6 pt, Don't keep with next

ENERGY STAR Appliances				•
Component	Туре	Value	Sources	-
ESav _{REF1}	Fixed	59 kWh	5	-

Page 76

Formatted Table Formatted: Table Cells Formatted: Subscript

Component	Туре	Value	Sources	4
DSav _{REF1}	Fixed	0.007 kW	5	•
ESav _{REF2}	Fixed	89 kWh	5	-
DSav _{REF2}	Fixed	0.01 kW	5	-
REF Time Period	Fixed	Summer/On-Peak 20.9%	1	•
Allocation Factors		Summer/Off-Peak 21.7%		
		Winter/On-Peak 28.0%		
		Winter/Off-Peak 29.4%		
ESav _{CW1}	Fixed	55 kWh	2	-
Gsav _{CW1}	Fixed	4.8 therms	2	•
DSav _{CW1}	Fixed	0.005 kW	2	•
WSav _{CW1}	Fixed	2175 gallons	2	
ESav _{CW2}	Fixed	61 kWh	2	
Gsav _{CW2}	Fixed	9.00 therms	2	
DSav _{CW2}	Fixed	0.006 kW	2	
WSav _{CW2}	Fixed	2966 gallons	2	-
CW, CD Electricity	Fixed	Summer/On-Peak 24.5%	1	-
Time Period Allocation		Summer/Off-Peak 12.8%		
Factors		Winter/On-Peak 41.7%		
		Winter/Off-Peak 21.0%		
CW, CD Gas Time	Fixed	Summer 50%	3	•
Period Allocation Factors		Winter 50%		J
CF _{REF,} CF _{CW,} CF _{STB,}	Fixed	1.0, 1.0, 1.0, 1.0, 1.0,	4	•
CF _{APS} , CF _{CD}		1.0<u>1.0</u>		
$CF_{AC}CF_{RAC}$	Fixed	0.31	14	•
ESav _{STB}	Fixed	44 kWh	6 7	
DSav _{STB}	Fixed	0.005 kW	<u>67</u>	
ESav _{APS1}	Fixed	102.8 kWh	8	•
DSav _{APS1}	Fixed	0.012 kW	8	_1
ESav _{APS2}	Fixed	346 kWh	9	1
DSav _{APS2}	Fixed	0.039 kW	9	
APS, STB Time Period	Fixed	Summer/On-Peak 16%	10	1
Allocation Factors		Summer/Off-Peak 17%		
		Winter/On-Peak 32%		
		Winter/Off-Peak 35%		
ESav _{CDE1}	Fixed	186 kWh	12	_
DSav _{CDE1}	Fixed	0.016 kW	12	_ \
ESav _{CDG1}	Fixed	9 kWh 12		1
DSav _{CDG1}	Fixed	0.001 kW	12	
GSav _{CDG1}	Fixed	5.8 therms	12	

Formatted (... **Formatted Table** (... Formatted <u>...</u> Formatted (... Formatted (... Formatted (... Formatted (... Formatted Formatted (... Formatted (... Formatted (... Formatted (<u>...</u> Formatted (... Formatted (... Formatted Formatted (... Formatted (... Formatted (... Formatted (... Formatted <u>(...</u> Formatted (... Formatted (... Formatted (... Formatted (... Formatted <u>...</u> Formatted (<u>...</u> Formatted (... Formatted (... Formatted (... Formatted ... Formatted (... Formatted (... Formatted ...

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

Component	Туре	Value	Sources
ESav _{CDE2}	Fixed	388 kWh	12,13
DSav _{CDE2}	Fixed	0.029 kW	12,13
ESav _{CDG2}	Fixed	42.94 kWh	14
DSav _{CDG2}	Fixed	0.003 kW	14
GSav _{CDG2}	Fixed	7.69 therms	14
ESav _{RAC1}	Fixed	9 kWh	14
DSav _{RAC1}	Fixed	0.008	14
ESav _{RAC2}	Fixed	19.3 kWh	14
DSav _{RAC2}	Fixed	0.018	14
ESav _{RAP}	Variable	Dependent on CARD	
DSav _{RAP}	Variable	Dependent on CADR	
ESav _{FRZ}	Fixed	41.2 kWh	14
DSav _{FRZ}	Fixed	0.0067 kW	14
ESav _{SDB}	Fixed	44 kWh	15 14
DSav _{SDB}	Fixed	0.0005 kW	15 14
TAF	Fixed	1.23	14
LSAF	Fixed	1.15	14

Sources:

- 1. Time period allocation factors used in cost-effectiveness analysis.- From residential appliance load shapes.
- 2. Clothes washer energy and water savings estimates are based on clothes washers that exceed the federal standard with a shipment weighted average measured integrated modified energy factor (IMEF) of 1.66 and integrated water factor (IWF) of 5.92 versus that of ENERGY STAR models with IMEF of 2.26 and of 3.93 and CEE Tier 2 models at IMEF of 2.74 and WF of 3.21. See Mid-Atlantic Technical Reference Manual Version 5.0 April 2015 page 209 available at http://www.neep.org/mid-atlantic-technical-reference-manual-v5.6.0. This assumes 87% of participants have gas water heating and 56% have gas drying (the balance being electric) based on 2009 RECS data for New Jersey. Demand savings are calculated based on 317 annual cycles from 2009 RECS data for New Jersey. See 2009 RECS Table HC8.8 -Water Heating in U.S. Homes in Northeast Region, Divisions, and States and Table HC3.8 -Home Appliances in Homes in Northeast Region, Divisions, and States.
- 3. Prorated based on 6 months in the summer period and 6 months in the winter period.
- 4. The coincidence of average appliance demand to summer system peak equals 1 for demand impacts for all appliances reflecting embedded coincidence in the DSav factor.
- 5. ENERGY STAR and CEE Tier 2 refrigerator savings are based on refrigerators that exceed the federal standard with a shipment weighted average 2014 measured energy use of 592 kWh versus 533 kWh and 503 kWh respectively for eligible

Formatted: Table Header
Formatted Table
Formatted: Table Cells
Formatted: Table Cells, Indent: Left: 0"
Formatted: Table Cells
Formatted: Table Cells, Indent: Left: 0"
Formatted: Table Cells
Formatted: Table Cells, Indent: Left: 0"
Formatted: Table Cells
Formatted: Table Cells, Indent: Left: 0"
Formatted: Table Cells
Formatted: Table Cells, Indent: Left: 0"
Formatted: Table Cells
Formatted: Table Cells, Indent: Left: 0"
Formatted: Table Cells
Formatted: Table Cells, Indent: Left: 0"
Formatted: Table Cells
Formatted: Table Cells, Indent: Left: 0"
Formatted: Table Cells
Formatted: Table Cells, Indent: Left: 0"
Formatted: Centered
Formatted: Table Cells
Formatted: Table Cells, Indent: Left: 0"
Formatted: Table Cells
Formatted: Table Cells, Indent: Left: 0"
Formatted: Heading 4, Space After: 6 pt
Formatted: Space Before: 3 pt, After: 3 pt

	ENERGY STAR and CEE Tier 2 modelsDemand savings estimated based on a
	flat 8760 hours of use during the year Energy Star Ref:
	https://data.energystar.gov/Active-Specifications/ENERGY-STAR-Certified-
	Residential-Refrigerators/p5st-her9 CEE Tier 2 Ref:
	http://library.cce1.org/content/qualifying-product-lists-residential-
	refrigeratorshttp://library.cee1.org/content/qualifying-product-lists-residential-
	refrigerators.
6.	Energy savings represent the difference between the weighted average eligible
	ENERGY STAR V4.1 models (132 kWh) and minimum requirements of the 2012
	voluntary agreement established by the cable industry and fied to ENERGY

voluntary agreement established by the cable industry and tied to ENERGY STAR V3.0 (88 kWh). -Demand savings estimated based on a flat 8760 hours of use during the year. On average, demand savings are the same for both Active and Standby states and is based on 8760 hours usage.

- Set top box lifetimes: National Resource Defense Counsel, Cable and Satellite Set-Top Boxes Opportunities for Energy Savings, 2005. <u>http://www.nrdc.org/air/energy/energyeff/stb.pdf</u>
- 8. 2010 NYSERDA Measure Characterization for Advanced Power Strips. Study; study based on review of:
 - a. Smart Strip Electrical Savings and Usability, Power Smart Engineering, October 27, 2008.
 - b. Final Field Research Report, Ecos Consulting, October 31, 2006-<u>Prepared</u>; prepared for California Energy Commission's PIER Program.
 - c. Developing and Testing Low Power Mode Measurement Methods, Lawrence Berkeley National Laboratory (LBNL), September 2004.
 Prepared; prepared for California Energy

Commission's Public Interest Energy Research (PIER) Program.

- d. 2005 Intrusive Residential Standby Survey Report, Energy Efficient Strategies, March, 2006.
- 9. Energy savings estimates are based on a California Plug Load Research Center report, "Tier 2 Advanced Power Strip Evaluation for Energy Saving Incentive." Demand savings estimated based on a flat 8760 hours of use during the year. Savings for Tier 2 APS are temporarily included pending additional support.
- 10. 2011 Efficiency Vermont Load shape for Advanced Power Strips.
- Advanced Power Strip Measure Life: David Rogers, Power Smart Engineering, October 2008: "Smart Strip electrical savings and usability", p22," p 22.
- 12. Clothes dryer energy and demand savings are based on Mid Atlantic Technical Reference Manual Version 5.0 April 2015 page 237 available at <u>http://www.neep.org/mid_atlantic_technical_reference_manual_v5</u>. Demand savings are calculated based on 297 annual cycles from 2009 RECS data for New Jersey (See RECS 2009 Table HC3.8 -Home Appliances in Homes in Northeast Region, Divisions, and States) and an average 10.4 lb load based on paired ENERGY STAR washers. <u>Available at http://www.neep.org/mid-atlantictechnical-reference-manual-v6.</u>

Formatted: Space Before: 3 pt, After: 3 pt

13.	Savings for clothes dryers meeting the 2014 Emerging Technology Award criter assume an average of measured performance and a 50% usage of both normal an most efficient dryer settings for eligible models.	a d	Formatted: Space Before: 3 pt, After: 6 pt
14.]	NEEP, Mid-Atlantic TRM V5		Formatted: Font: Italic
15. 1	4. Mid-Atlantic TRMTechnical Reference Manual, V6 Draft, May 2016.	4	Formatted: Space Before: 3 pt, After: 3 pt
	Residential ENERGY STAR Lighting	•	Formatted: Space After: 10 pt, Line spacing: Multiple 1.15 li, Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto
			Formatted: Table Caption, Space Before: 6
Protoc	cols		Formatted: Heading 2

Residential ENERGY STAR Lighting

Savings from <u>the</u> installation of screw-in ENERGY STAR CFLs, ENERGY STAR <u>LED</u> <u>lamps, ENERGY STAR</u> fluorescent torchieres, ENERGY STAR <u>indoor specialty LED</u> fixtures <u>and</u>, ENERGY STAR <u>outdoor</u> fixtures are based on a straightforward algorithm that calculates the difference between <u>existing the baseline lamp/fixture wattage</u> and new <u>lamp/fixture</u> wattage, and the average daily hours of usage for the lighting unit being replaced. <u>An "</u>

<u>Using the tables provided in service'' rate_this section, the baseline lamp wattage reflects</u> the input wattage associated with a lamp that is used_compliant with the corresponding standards included in the Energy and Independence and Security Act of 2007.

The coincidence factor (CF) discounts the peak demand savings to reflect the fact that not all lighting products purchased are actually installed kW reduction realized during the summer on-peak demand period. This is based on typical operating schedules for the geographical area covered by the program.

HVAC interactive factors are applied to capture the additional savings or penalty associated with the impact of lighting measures on the building's HVAC system. A reduction in lighting load will result in additional cooling savings during the summer period, and a gas heating penalty during the winter period.

Algorithms

Energy Savings $\left(\frac{kWh}{yr}\right) = \frac{(Watts * Qty)_b - (Watts * Qty)_q}{1,000 \frac{Watts}{kW}} * (Hrs) * (1 + HVAC_e)$

Peak Demand Savings
$$(kW) = \frac{(Watts * Qty)_b - (Watts * Qty)_q}{1,000 \frac{Watts}{kW}} * (CF) * (1 + HVAC_d)$$

Fuel Savings
$$\left(\frac{\text{MMBtu}}{\text{yr}}\right) = \frac{(\text{Watts * Qty})_b - (\text{Watts * Qty})_q}{1,000 \frac{Watts}{kW}} * (\text{Hrs}) * (\text{HF}) * \left(\frac{0.003412}{nHeat}\right)$$

The gener	ral formDefinition of the equation for the ENERGY STARVariables	 Formatted: Underline, (none)
<u>Watts_b</u>	<u>= Wattage of baseline connected fixture</u> or other high efficiencylamp	
<u>Watts_q</u>	= Wattage of qualifying connected fixture or lamp	
<u>Qty</u> _b	<u>= Quantity of baseline fixtures or lamps</u>	
<u>Qtyq</u>	= Quantity of energy-efficient fixtures or lamps	
Hrs	= Annual lighting operating hours	

New Jersey's Clean Energy Program Protocols to Measure Resource Savings **Formatted:** Space After: 10 pt, Line spacing: Multiple 1.15 li, Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto

Formatted: English (U.S.)

CF = Coincidence factor

HVACeheat = HVAC interaction factor for annual cooling energy savings algorithm is:

HVACecool = HVAC interaction factor for annual electric heating energy savings

 $HVAC_d$ = HVAC interaction factor for peak demand reduction = 1 - ((HF / *nHeat*) * %ElecHeat))

HF = Heating factor, or percentage of lighting savings that must be heated

nHeat = Efficiency of heating system

Summary of Inputs

Residential ENERGY STAR Lighting

Number of Units X Savings per Unit

Per unit savings estimates are derived primarily from a 2004 Nexus Market Research report evaluating similar retail lighting programs in New England (MA, RI and VT). Per unit savings will decrease for CFLs in operation after 2012 due to the effects of federal minimum efficiency standards for incandescent lighting. Because CFLs typically have rated lifespans of 6-8000 hours (5-7 years) and incandescent light bulbs are rated at 1000 hours (1 year), after 2013 there will be less of a difference between CFLs in service and the incandescents that they would have been replacing.

National lighting efficiency standards are being increased according to the Energy Independence and Security Act of 2007 (EISA).²³ EISA pertains to the efficiency of newly manufactured bulbs, not existing stock. Existing Protocol baselines and measure lifetimes will remain until the impact of the standard can be fully measured and quantified. The future EISA wattage standards are:

	EISA Phase I					
Component	Type	<u>Value</u>	Source			
<u>Watts_b</u>	<u>Variable</u>	See Tables below	<u>1</u>			
<u>Watts</u> _q	<u>Variable</u>	Actual Lamp/Fixture Wattage	Application			
<u>Qty</u> _b	<u>Variable</u>	Actual Lamp/Fixture Quantity	Application			
<u>Qty</u> _q	<u>Variable</u>	Actual Lamp/Fixture Quantity	Application			
<u>Hrs</u>	Variable	Interior: 1,205 hrs Exterior: 2,007 hrs	2			
<u>CF</u>	<u>Fixed</u>	<u>0.08</u>	<u>3</u>			
HVACeheat HVACecool	Variable	See Table below	<u>1</u>			
<u>HVAC</u> d	Variable	See Table below	<u>1</u>			

23 EISA information available at http://www1.eere.energy.gov/femp/regulations/eisa.html

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: Space Before: 3 pt, After: 3 pt, Tab stops: 0.69", Left

Formatted: Table Caption, Space Before: 6

Component	<u>Type</u>	Value	Source
HF	<u>Fixed</u>	Interior: 0.47 Exterior: 0.00	<u>1</u>
nHeat	Fixed	0.72	<u>1</u>
<u>%ElecHeat</u>	Fixed	<u>1.0</u>	<u>Default</u>

HVAC Interactive Factors

	HVAC _{eheat}	HVAC _{ecool}	<u>HVAC_d</u>
Building with cooling	-0.11^{24}	0.12^{25}	0.24^{26}
Building without cooling	<u>0.0</u>	<u>0.0</u>	<u>0.0</u>
or exterior			
Unknown	-0.11^{27}	0.10^{28}	0.21^{29}

Standard for General Service Bulbs

Rated Lumen Ranges	Maximum Rate Wattage	Minimum Rate Lifetime	Effective Date	Efficacy Ranges (lumens per watt)
1490-2600 (~90W – 150W)	72	1000 hrs	1/1/2012	21 - 36
1050-1489 (~75W - 90W)	53	1000 hrs	1/1/2013	20 - 28
750-1049 (~60W - 75W)	43	1000 hrs	1/1/2014	17 - 24
310-749 (~30W - 60W)	29	1000 hrs	1/1/2014	11 - 26

 $[\]frac{^{24}}{^{25}}$ From NEEP Mid-Atlantic TRM V6, pg 23: "Calculated using defaults; 1-((0.47/1.67) * 0.375)" $\frac{^{25}}{^{25}}$ From NEEP Mid-Atlantic TRM V6, pg 23: "The value is estimated at 1.12 (calculated as 1 + (0.33 / 2.8)). Based on cooling loads decreasing by 33% of the lighting savings (average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC), assuming typical cooling system operating efficiency of 2.8 COP (starting from standard assumption of SEER 10.5 central AC unit, converted to 9.5 EER using algorithm (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003); A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder), converted to COP = EER/3.412 = 2.8COP)."

²⁶ From NEEP Mid-Atlantic TRM V6, pg 23: "The value is estimated at 1.24 (calculated as 1 + (0.66 / 2.8)). See footnote relating to WHFe for details. Note the 66% factor represents the Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load (i.e. consistent with the PJM coincident definition)."

 ²⁷ From NEEP Mid-Atlantic TRM V6, pg. 23: "Calculated using defaults; 1-((0.47/1.67) * 0.375)"
 ²⁸ From NEEP Mid-Atlantic TRM V6, pg. 23: "The value is estimated at 1.10 (calculated as 1 + (0.89*(0.33 / 2.8)). Based on assumption that 89% of homes have central cooling (based on KEMA Maryland Energy Baseline Study. Feb 2011.)."
 ²⁹ From NEEP Mid-Atlantic TRM V6, pg. 23: "The value is estimated at 1.21 (calculated as 1 + 1.21)

²⁷ From NEEP Mid-Atlantic TRM V6, pg. 23: "The value is estimated at 1.21 (calculated as 1 + (0.89 * 0.66 / 2.8))."

ENERGY STAR-CFL Standard and Specialty Bulbs

	Si	tandard CFLLEI	<mark>) Lamp</mark> Wattage	Equival	ency <mark>-1</mark>	•	Formatted: Table Caption
			Minir Lum	num ens	Maximum Lumens	Wa	atts _{Base}
	<u>Minimum</u> <u>Lumens</u>	<u>Maximum</u> <u>Lumens</u>	Watts _b				
	4000	6000	300			•	Formatted: Table Cells
	3001	3999	200			•	Formatted Table
	2550	3000	150			•	Formatted: Table Cells
	2000	2549	125			•	Formatted: Table Cells
	1600	1999	72			•	Formatted: Table Cells
	1100	1599	53			•	Formatted: Table Cells
	800	1099	43				Formatted: Table Cells
	450	799	29				Formatted: Table Cells
-	250	1/9	25				Formatted: Table Cells
	230	C40 Cloba	25				Formatted: Table Cells
Deco	rative and non-	LumensLumensWattsgaseum nsMaximum LumensFormatted: Table Cells)600030013999200)3000150)2549125)199972)15995310994379929440925di non-G40 GlobeFormatted: Table CellsContineerFormatted: Table CellsFormatted: Table CellsForma					
	Spec	ialty CFL and L	ED Lamp Wattag	ge Equiv	alency_1	•	Formatted: Table Caption, Space Before: 12 pt

	<u>Minimum</u> <u>Lumens</u>	<u>Maximum</u> <u>Lumens</u>	<u>Watts_b</u>
Decorative	<u>500</u>	<u>699</u>	<u>43</u>
	<u>500</u>	<u>574</u>	<u>43</u>
<u>Non-G40</u>	<u>575</u>	<u>649</u>	<u>53</u>
<u>Globe</u>	<u>650</u>	<u>1099</u>	<u>72</u>
	<u>1100</u>	<u>1300</u>	<u>150</u>

Specialty Bulb Type	Lower Lumen Range	Upper Lumen Range	WattsBase
	250	449	25
	4 50	799	40
	800	1099	60
3 Way	1100	1599	75
	1600	1999	100
	2000	2549	125
	2550	2999	150
Globe	90	179	10
(medium and intermediate bases less	180	249	15

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

Specialty Bulb Type	Lower Lumen Range	Upper Lumen Range	WattsBase
than 750 lumens)	250	349	25
	350	749	40
Decorative	70	89	10
(Shapes B, BA, C, CA, DC, F, G, medium	90	149	15
and intermediate bases less than 750	150	299	25
lumens)	300	749	40
	90	179	10
Globa	180	<u>249</u>	15
(candelabra bases less than 1050	250	349	25
lumens)	350	499	40
	500	1049	60
	70	<u>89</u>	10
Decorative	90	149	15
(Shapes B, BA, C, CA, DC, F, G,	150	299	25
candelabra bases less than 1050	300	499	40
iumens)	500	1049	60
	400	449	40
Poflector with medium screw bases w/	450	499	45
diameter <= 2.25"	500	649	50
	650	1100	45
	<u>640</u>	720	40
	740	935 <u>840</u>	45
	<u>850</u>	<u>1170</u>	50
	1120	11/5	65
R, PAR, ER, BR, BPAR or similar bulb	1420	1780	75
diameter >2 5" (*see exceptions below)	1700	2049	75
	2050	2045	50
	2030	2379	120
	2420	3429 4270	150
	5430	4270	10
	540	629	40
	630	719	45
D. DAD. 50. DD. DDAD on similar bulk	720	999	50
K, FAK, EK, SK, SPAK of Similar Buib	1000	1199	65
diameter > 2.26" and ≤ 2.5" (*see	1200	1519	75
exceptions below)	1520	1729	90
	1730	2189	100
	2190	2899	120
	2900	3850	150
*5220 2220 5240 5240	400	449	40
*EK30, BK30, BR40, or ER40	450	499	45

Specialty Bulb Type	Lower Lumen Range	Upper Lumen Range	WattsBase
	500	649-1179³⁰	50
*BR30, BR40, or ER40	650	1419	65
*020	400	449	40
*R20	450	719	45
*All reflector lamps	200	299	20
below lumen ranges specified above	300	399-639³¹	30

Energy Savings (kWh) = (CFL_{watts}[CFL_{base} – CFL_{ee}]/1000) X CFL_{hours} X 365 X CFL_{ISR}

Demand Savings (kW) = ([CFL_{base} - CFL_{ee}]CFL_{watts}/1000) X CF X CFL_{ISR}

ENERGY STAR LED Recessed Downlights & Integral Lamps/Fixtures

Some LED products do not allow for a fixture-to-fixture comparison due to unique form factors, such as LED rope lights, sign lighting, and cove lighting.

In these instances, a similar savings and demand algorithm may be used, however with a different metric other than fixture quantity entered. For example, a comparison of watts per linear foot between LED and incandescent technologies would result in accurate energy savings calculations.

Algorithms

Peak Demand Savings (kW) = $(\Delta kW) * (CF) * (1 + HVAC_d)$

Energy Savings $\left(\frac{kWh}{yr}\right) = (\Delta kW) * (Hrs) * (1 + HVAC_e)$

Fuel Savings
$$\left(\frac{\text{MMBtu}}{\text{yr}}\right) = \frac{(\text{Watts } * \text{ Qty})_b - (\text{Watts } * \text{ Qty})_q}{1,000 \frac{Watts}{kW}} * (\text{Hrs}) * (\text{HF}) * \left(\frac{0.003412}{n\text{Heat}}\right)$$

where:

³⁴ As above.

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Page 86

Formatted: Underline, (none)

Formatted: English (U.S.) Formatted: Underline, (none)

Formatted: (none)

³⁹ The upper bounds for these categories depends on the lower bound of the next higher wattage, which varies by bulb type.

The remaining variables are unchanged from those presented above in the Summary of Inputs.

Sources

- NEEP, Mid-Atlantic Technical Reference Manual, V6. May 2016., p. 21, pp. 30–31, 38–39, 46–47, 51–52, and 59–60. From the NEEP Mid-Atlantic TRM: "Base wattage is based upon the post first phase of EISA wattage and wattage bins consistent with ENERGY STAR, v1.1."
- 2. Efficiency Vermont, Technical Reference User Manual, 2016, p. 265. The hours of use for this measure are based on the assumption that these will be installed in the highest use locations due to their high cost. Residential hours of use are based on average daily hours of use of 3.3, from Table 3-5, page 43, value for Living Space for Upstate New York, from NMR Group, Inc., Northeast Residential Lighting Hours-of-Use Study, prepared for CT Energy Efficiency Board, Cape Light Compact, Massachusetts Energy Efficiency Advisory Council, National Grid MA, National Grid RI, NYSERDA, Northeast Utilities, May 5, 2014.
- 3. NY, Standard Approach for Estimating Energy Savings, V4, April 2016, p.133. From the NY TRM: "From NY TRM 2016, for NYC due to proximity to NJ. From the NY TRM: "The coincidence factors were derived from an examination of studies throughout New England that calculated coincident factors based on the definition of system peak period at the time, as specified by the New England Power Pool and later, ISO-New England."

Appliance Recycling Program

Protocols

LED Fixture Wattage Equivalency

Bulb Type	Lower Lumen Range	Upper Lumen Range	WattsBase
	400	449	40
Reflector with medium screw bases w/	450	499	45
diameter <= 2.25"	500	649	50
	650	1199	65
	640	739	40
	740	849	45
	850	1179	50
R DAR ER RR RDAR or similar hulb	1180	1419	65
shapes with medium screw bases w/	1420	1789	75
diameter >2.5" (*see exceptions below)	1790	2049	90
-	2050	2579	100
	2580	<u>3429</u>	120
-	3430	4270	150
	540	629	40
-	630	719	45
-	720	999	50
R, PAR, ER, BR, BPAR or similar bulb	1000	1199	65
shapes with medium screw bases w/	1200	1519	75
diameter > 2.26" and ≤ 2.5" (*see	1520	1729	90
exceptions below)	1730	2189	100
-	2190	2899	120
-	2900	3850	150
	400	449	40
*ER20, BR30, BR40, or ER40	450	499	45
	500	649-1179³²	50
*BR30, BR40, or ER40	650	1419	65
	400	449	40
* R20	450	719	4 5
*All reflector lamps	200	299	20

³² The upper bounds for these categories depends on the lower bound of the next higher wattage, which varies by bulb type.

³³ As above.

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: Heading 2

Energy Savings (kWh) = (([LEDF_{base} – LEDF_{ee}] / 1000) X LEDF_{Hours} X 365 X LEDF_{ISR}

Demand Savings (kW) = ([LEDF_{base} – LEDF_{ee}] /1000) X CF X LEDF_{ISR}

Energy Savings (kWh) = ((LED_{watts} / 1000) X LED_{Hours} X 365 X LED_{ISR}

Demand Savings (kW) = (LED_{watts} /1000) X CF X LED_{ISR}

The following sections detail savings calculations ENERGY STAR LED Standard and Specialty Bulbs

Bulb Type	Lower Lumen Range	Upper Lumen Range	WattsBase
	250	449	25
Standard	450	799	29
	800	1099	43
	1100	1599	53
Standard	1600	1999	72
	2000	2549	125
-	2550	3000	150
	3001	<u>3999</u>	200
	4000	6000	300
3 Way	250	449	25
	450	799	40
	800	1099	60
	1100	1599	75
	1600	1999	100
	2000	2549	125
	2550	2999	150
	90	179	10
Globe	180	249	15
(medium and intermediate bases less than 750 lumons)	250	349	25
than 750 tamenty	350	749	40
Decorative	70	89	10
(Shapes B, BA, C, CA, DC, F, G, medium	90	149	15
and intermediate bases less than 750	150	299	25
lumens)	300	749	40
Globo	90	179	10
(candelabra bases less than 1050	180	249	15
lumens)	250	349	25

LED Wattage Equivalency

Bulb Type	Lower Lumen Range	Upper Lumen Range	WattsBase
	350	499	40
	500	1049	60
	70	89	10
Decorative	90	149	15
(Shapes B, BA, C, CA, DC, F, G,	150	299	25
Lumonel	300	499	40
lances,	500	1049	60
	4 00	44 9	40
Reflector with medium screw bases w/	450	499	45
diameter <=2.25"	500	649	50
	650	1199	65
	640	739	40
	740	849	4 5
	850	1179	50
P DAP EP PP RDAP or similar bulb	1180	1419	65
shapes with medium screw bases w/	1420	1789	75
diameter >2.5" (*see exceptions below)	1790	2049	90
	2050	2579	100
	2580	3429	120
	3430	4270	150
	540	629	40
	630	719	4 5
	720	999	50
R, PAR, ER, BR, BPAR or similar bulb	1000	1199	65
shapes with medium screw bases w/	1200	1519	75
alameter > 2.25° and 5 2.5° (*500	1520	1729	90
	1730	2189	100
	2190	2899	120
	2900	3850	150
	400	<u>449</u>	40
*ER30, BR30, BR40, or ER40	450	499	4 5
	500	649-1179³⁴	50
*BR30, BR40, or ER40	650	1419	65
	400	44 9	40
* *R20	450	719	45
*All reflector lamps	200	299	20
-			

³⁴ The upper bounds for these categories depends on the lower bound of the next higher wattage, which varies by bulb type.

	Bulb Type	Lower Lumen Range	Upper Lumen Range	WattsBase
þ	elow lumen ranges specified above	300	399-639³⁵	30
1	Energy Savings (kWh) = (([LEE Demand Savings (kW) = ([LED	D _{base} <u>LED</u> ee]/1 base <u>LED</u> ee]/10	000) X LED _{Hot}	urs X 365 X LED _{ISR}
Definiti	on of Terms			
CFL _{base} -	= Based on lumens of the CFL	bulb		
CFL _{ee} =	Actual wattage of CFL purchas	sed/installed		
CFL	-= Average hours of use per day	/ per CFL		
CF _{Bulb} -	Summer demand coincidence f	factor for CFLs a	und LEDs	
CFL_{ISR}∺	= In service rate per CFL			
CF_{Fixture}	. = Summer demand coincidenc	e factor for CFL	fixtures.	
LED _{base}	= Based on lumens of the LED			
LED _{ee} -=	-Actual wattage of LED purcha	sed/installed		
LED _{hour}	, = Average hours of use per day	y per LED recess	ed downlight (o r integral lamp
LED _{ISR} -	= In service rate per LED reces	sed downlight or	· integral lamp	
LEDF _{ba}	_{æ=} Based on lumens of the LED	Fixture		
LEDF _{ee} -	= Actual wattage of LED Fixtu	re purchased/inst	talled	
LEDF_{ho} lamp	ars = Average hours of use per d	ay per LED Fixt	ure recessed do	wnlight or integral
LEDF _{ISI}	e = In service rate per LED Fixt	ure recessed dov	vnlight or integ	gral lamp
	ENERG	Y STAR Light i	ng	

³⁵ As above.

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

Component	Туре	Value	Sources
CFL _{base}	Variable	Based on lumens	8
CFLee	Variable	Actual bulb wattage	
CFL _{hours}	Fixed	2.8	6
CFL _{ISR}	Fixed	83.4%	5
CF _{Bulb}	Fixed	9.9 %	4
LED _{watts}	Variable	Based on lumens	8
LED _{ee}	Variable	Actual bulb wattage	
LED _{hours}	Fixed	2.8	6
LED _{ISR}	Fixed	100%	7
CF _{LED}	Fixed	8.2%	
LEDF _{watts}	Variable	Based on lumens	8
LEDF _{ee}	Variable	Actual fixture wattage	
LEDF _{hours}	Fixed	2.8	6
LEDF _{ISR}	Fixed	100%	7
CFLEDF	Fized	8.2%	

Sources:

- 1. Nexus Market Research, "Impact Evaluation of the Massachusetts, Rhode Island and Vermont 2003 Residential Lighting Programs", Final Report, October 1, 2004, p. 43 (Table 4 9) The delta watts are reduced by 22.2% in the same proportion to individual CFLs (48.5W to 32.9W) following full enactment of EISA requirements.
- 2. US Department of Energy, Energy Star Calculator.
- 3. Nexus Market Research, "Impact Evaluation of the Massachusetts, Rhode Island and Vermont 2003 Residential Lighting Programs", Final Report, October 1, 2004. p. 42 (Table 4-7). These values reflect both actual installations and the % of units planned to be installed within a year from the logged sample. The logged % is used because the adjusted values (i.e. to account for differences between logging and telephone survey samples) were not available for both installs and planned installs. However, this seems appropriate because the % actual installed in the logged sample from this table is essentially identical to the % after adjusting for differences between the logged group and the telephone sample (p. 100, Table 9-3).
- RLW Analytics, "Development of Common Demand Impacts for Energy Efficiency Measures/Programs for the ISO Forward Capacity Market (FCM)", prepared for the New England State Program Working Group (SPWG), March 25, 2007, p.-IV.
- 5. The average wattage (18.4W) of the standard CFL established in the 2009 "NJCEP Residential CFL Impact Evaluation and Protocol Review", September 28, 2008, p.3–8 (Table 3–6) is adjusted by a post EISA multiplier (1.79) of the 2014 Mid-Atlantic Technical Reference Manual V4.0 for calculating the new delta watts after the incandescent bulb wattage is reduced (from 100W to 72W in 2012, 75W to 53W in 2013 and 60W to 43W and 40W to 29W in 2014).
- RLW Analytics, New England Residential Lighting Markdown Impact Evaluation, January 20, 2009.

For determining demand savings the baseline was adopted from 2009 KEMA evaluation and represents the replacement of a 65W BR30 downlight and high efficiency is the average of ENERGY STAR qualified downlights (11/10/2009) with lighting output exceeding 475 lumens. Due to the high incremental cost and limited market availability of products, the higher ISR reflects the assumption that every LED downlight purchased is directed towards immediate use.
 Mid Atlantic TRM V5

Home Energy Reporting System

-Protocols

The purpose of the program is to provide information and tools that residential customers can use to make decisions about what actions to take to improve energy efficiency in their homes. The information is mailed in reports separately from a utility's regular bill to create a neighbor to neighbor comparison where homes of similar size are compared to each other, as well as targeting energy saving tips to individuals. The quantity and timing of mailed reports will vary by utility and fuel type.

Home Energy Reporting System

Gas Savings (Therms) = GSav_{HERS}

Component	Type	Value	Sources
Gsav_{HERS}	Fixed	13.1 therms	1

Sources:

The average natural gas savings from similar program offered to Puget Sound Energy customers. (Reference: Evidence from Two Large Field Experiments that Peer Comparison Feedback Can Reduce Residential Energy Usage, Ayres, 2009)

Refrigerator/Freezer Retirement Program

-Protocols

retirement program. The general form of the equation for the Refrigerator/Freezer **Formatted:** Space Before: 6 pt, After: 6 pt Retirement Program savings algorithm is:

Number of Units X^{*}/₂ Savings per Unit

To determine resource savings, the per unit estimates in the protocols will be multiplied by the number of appliance units.

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: Underline

Formatted: Space Before: 6 pt, After: 6 pt

Formatted: Pattern: Clear (Light Yellow) Formatted: Body Text, Justified, Right: 0.09", Line spacing: At least 12 pt

Algorithm

To determine resource savings, the per unit estimates in the protocols will be multiplied by the number of appliance units.

Unit savings are the product of average fridge/freezer consumption (gross annual savings), and a net to gross ratio that adjusts for both free ridership and the portion of retired units that are replaced with more efficient new units.

Electricity ImpactEnergy Savings (kWh/yr) = ESav _{RetFridge} , ESav _{RAC} , ESav _{DEHRetFreezer}	0.25",
<u>Peak</u> Demand <u>ImpactSavings</u> (kW) = $DSav_{RetFridge} \times CF_{RetFridge} CF_{RetFridge}$	0.25",
Definition of Torms	
Formatted: Body Text, Justified, Righ 0.09", Line spacing: At least 12 pt	t:
Pofinition of Terms	
Formatted: Normal, Left, Right: 0", L spacing: single	ine
ESav _{RetFridge} = Gross annual energy savings per unit retired refrigerator Formatted: (none)	
ESav _{RetFreezer} = Gross annual energy savings per unit retired freezer	: line: After: 3
DSav _{RetFridge} = Summer demand savings per retired refrigerator	: line: After: 3
DSav _{RefErrezer} = Summer demand savings per retired freezer	Space
Formatted: Indent: First line: 0.25", Before: 3 pt, After: 3 pt	Space
CF _{RetFridge} = Summer demand coincidence factor.	Space

Summary of Inputs					
	Refrigerator	/Freezer Recycling		\checkmark	Formatted: Not Small caps
	Actingerator	Treezer Recyching			Formatted: Table Caption, Left, Don't keep with next
Component	Туре	Value	Source Source		Formatted: Table Header
			es		Formatted: Table Cells
ESav _{RetFridge}	Fixed	761<u>1,098</u> kWh	1		Formatted: Table Cells, Left, Indent: Left:
ESav _{RetFreezer}	Fixed	639<u>715</u> kWh	1		Formatted: Table Cells
ESav _{RAC}	Fixed	166 kWh	4		Formatted: Table Cells, Left, Indent: Left:
ESav _{DEH}	Fixed	169 kWh	5		Formatted: Table Cells
DSav _{RetFridge}	Fixed	0. <mark>114<u>16</u> kW</mark>	<u>31,2</u>		Formatted: Table Cells, Left, Indent: Left:
DSav _{RetFreezer}	Fixed	0. <mark>114<u>107</u> kW</mark>	<u> 31,2</u>		Formatted: Table Cells
DSav_{RAC}	Fixed	0.16 kW	4		Formatted: Table Cells, Left, Indent: Left:

New Jersey's Clean Energy Program Protocols to Measure Resource Savings ells, Left, Indent: Left: 0" ells ells, Left, Indent: Left: 0" ells ells, Left, Indent: Left: 0" ells ells, Left, Indent: Left: 0"

Component	Туре	Value	Source Source		Formatted: Table Header
			es		
DSav_{DEH}	Fixed	0.114	5		
CF _{RetFridge}	Fixed	1	4 <u>1</u>		Formatted: Table Cells
		•	•		Formatted: Table Cells, Left, Indent: Left: 0"
Sources:				•	Formatted: Heading 4, Space After: 6 pt

Sources:

- Northeast Energy Efficiency Partnerships, "NEEP, Mid-Atlantic Technical 1. Reference Manual", Version 4.0, June, 2014, p. 96. Savings incorporate regression analysis results of EmPower Maryland evaluation of the 2013 Appliance Recycling Program.
- 2.1. Northeast Energy Efficiency Partnerships, "Mid Atlantic Technical Reference Manual", Version 4.0, June, 2014, p. 98, V7. May 2017.
- 3.2. Coincidence factor already embedded in summer peak demand reduction estimates

4. Mid-Atlantic TRM V5

5. Rhode Island TRM 2016 Program Year https://www9.nationalgridus.com/non_html/cer/ri/PY2016%20RI%20TRM.pdf (pg 20)

Formatted: Centered

Formatted: Font: Italic

Formatted: Space Before: 3 pt, After: 3 pt

Formatted: Space Before: 6 pt, After: 6 pt In order to implement Home Performance with Energy Star, there are various standards a program implementer must adhere to in order to deliver the program. -The program implementer must use software that meets a national standard for savings calculations from whole-house approaches such as home performance. -The difference in modeled annual energy consumption between the program and existing home is the project savings for heating, hot water, cooling, lighting and appliance end uses. The software the program implementer uses must adhere to at least one of the following standards: The software the program implementer uses must adhere to at least one of the following standards: A software tool whose performance has passed testing according to the National • Renewable Energy Laboratory's HERS BESTEST software energy simulation testing protocol.³⁶ Software approved by the US Department of Energy's Weatherization Assistance Program.³⁷ RESNET approved rating software.³⁸ •

There are numerous software packages that comply with these standards.- Some examples of the software packages are REM/Rate, Real Home Analyzer, EnergyGauge, TREAT, and HomeCheck.

Home Performance with ENERGY STAR Program

Formatted: Space Before: 6 pt

Formatted: Space Before: 3 pt, After: 2 pt

³⁶ Information about BESTEST-EX can be found at <u>http://www.nrel.gov/buildings/bestest_ex.html.</u>

³⁷ A listing of the approved software available at

http://www.waptac.org/data/files/Website_Docs/technical_tools/EnergyAuditMatrixTable2.pdf..http://www waptac.org/data/files/Website_Docs/technical_tools/EnergyAuditMatrixTable2.pdf

³⁸ A listing of the approved software available at <u>http://resnet.us</u>-

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

Commercial and Industrial Energy Efficient Construction

C&I Electric Protocols

Baselines and Code Changes

In general, efficiency baselines are designed to reflect current market practices - typically, the higher of applicable codes or the minimum efficiency of available new equipment - and are updated periodically to reflect upgrades in code or information from evaluation results. There are exceptions to this approach, as in the Direct Install program (see below).

Baseline data reflect ASHRAE 90.1-2007 for existing building retrofit and ASHRAE 90.1-2013 for new construction, replacement of failed equipment, end of useful life, and entire facility rehabilitation-unless otherwise noted for applications designated "2011".

Building Shell

Building shell measures identified in an approved Local Government Energy Audit (or equivalent) are eligible for incentives through the Custom and Pay for Performance program. -Savings for these measures will vary from project to project based on factors such as building size, existing levels of insulation and infiltration levels. As a result, energy savings for these installed building shell measures will be taken from what is provided in the approved <u>AuditenergyAudit and/or energy</u> analysis provided with the application submission.

C&I Electric Protocols

The following measures are outlined in this section: Performance Lighting, Prescriptive Lighting, Refrigerated Case LED Lights, Lighting Controls, ECMs for Refrigeration, Electric HVAC Systems, Fuel Use Economizers, Dual Enthalpy Economizers, Occupancy Controlled Thermostats, Electric Chillers, VFDs, and Commercial Refrigeration.

Performance Lighting

For new construction and entire facility rehabilitation projects, savings are calculated by comparing the lighting power density of fixtures being installed to the baseline power densities fromlighting power density, or "lighting power allowance," from the building code. For the state of New Jersey, the applicable building code is ASHRAE 90.1 2013.

Formatted: Normal, Space Before: 6 pt, After: 6 pt

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: Centered Formatted: Space Before: 6 pt, After: 6 pt Formatted: Space Before: 6 pt, After: 6 pt Formatted: Space Before: 6 pt, After: 6 pt

Lighting equipment includes fluorescent fixtures, ballasts, compact fluorescent fixtures, LED fixtures, and <u>lamps</u>, and <u>high-intensity</u> discharge fixtures such as metal halide lamps. The measurement of energy savings is based on algorithms with measurement of key variables (i.e., Coincidence Factor and Operating Hours) through end-use metering data accumulated from a large sample of participating facilities from 1995 through 1999.and high pressure sodium luminaires.

<u>Algorithms</u>

$\Delta kW =$	(# of replaced fixtures) * (Watts _b) <u>–</u>	
	(# of fixtures installed) * $(Watts_q) = (LPD_b - LPD_q) * (SF)$	

Energy Savings $\left(\frac{kWh}{yr}\right) = (\Delta kW) * (Hrs) * (1 + HVAC_e)$

Peak Demand Savings (kW) = $(\Delta kW) * (CF) * (1 + HVAC_d)$

_Fuel Savings
$$\left(\frac{MMBtu}{vr}\right) = (\Delta kW) * (Hrs) * (HVAC_g)$$

Definition of Variables

Algorithms

Demand Savings = $\Delta kW \times CF \times (1+IF)$

Energy Savings = $\Delta kW \times EFLH \times (1 + IF)$

 $\Delta kW = (LPD_{base} - LPD_{inst}) X SF$

Definition of Variables

 $\frac{AkW}{LPD_{base}} = Change in connected load from baseline to efficient lighting level.$ $\frac{LPD_{base}}{Watts_{b,q}} = Wattage of existing baseline and qualifying equipment$ $LPD_{b} = Baseline lighting power density in Watt per square foot of space floor$

area, based on ASHRAE 90.1 Table 9.6.1 (Space-by-Space Method)

LPD_{inst} LPD_g = Lighting power density of <u>installedqualified</u> fixtures, equal to the sum of installed fixture wattage divided by floor area of the space where the fixtures are installed. Wattage of installed fixtures is based on table at <u>http://www.see.com/NR/rdonlyres/FC51087D-2848-42DF-A52A-</u> BDBA1A09BF8D/0/SCE_B_StandardFixtureWatts010108.pdf.

___SF = space ____ = <u>Space</u> floor area, Square Footin square feet

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Page 99

Formatted: Normal, Space Before: 6 pt, After: 6 pt

Formatted: Normal

Formatted: Underline, (none) Formatted: Normal, Level 4, Keep with next Formatted: Normal Formatted: Font: Bold

Formatted: Indent: First line: 0"

Formatted: Indent: Left: 0.25", First line: 0", Space Before: 3 pt, After: 3 pt, Tab stops: 1", Left

Formatted: Normal, Indent: Left: 0.25", Hanging: 0.75", Space Before: 3 pt, After: 3 pt, Tab stops: 1", Left

Formatted: Normal, Indent: Left: -0.75", Hanging: 1.75", Space Before: 3 pt, After: 3 pt, Tab stops: 0.25", Left + 0.56", Left + 0.63", Left + 1", Left + 1.91", Left + 2.54", Left + 3.18", Left + 3.82", Left + 4.45", Left + 5.09", Left + 5.73", Left + 6.36", Left + 7", Left + 7.63", Left + 8.27", Left + 8.91", Left + 9.54", Left + 10.18", Left

Formatted: (none)
Formatted: (none)

Formatted: Space Before: 3 pt, After: 3 pt, Tab stops: 0.25", Left + 0.63", Left

|--|

EFLH = Equivalent Full Load Hours

 $\frac{H}{H} = Hrs = Annual operating hours$

 $HVAC_d$ = HVAC Interactive Factor for peak demand savings

 $\frac{HVAC_{e}}{HVAC} = \frac{HVAC}{HVAC}$ Interactive Factor for annual energy savings

HVACg = HVAC Interactive Factor for annual energy savings

Summary of Inputs

Formatted: Indent: Left: -0.25", Space Before: 3 pt, After: 3 pt, Tab stops: 0.63", Left + 1", Left

Formatted: Indent: Left: -0.25", Space Before: 3 pt, After: 3 pt, Tab stops: 1", Left

	Ligl	nting Verification Performance Lighti	ng 🔸	Formatted: Table Caption, Left
Component	Туре	Value	Source 🔸	Formatted: Table Header
AkWWattsb,q	FixedVa	See California SPCNGrid Fixture	• 1 •	Formatted Table
	<u>riable</u>	Wattage Table:	Baseline LPD from	Formatted: Table Cells
			ASHRAE 90.1	Formatted: Subscript
		http://www.sce.com/NR/rdonlyres/F	2013 Table 9.6.1	Formatted: Table Cells, No bullets or
		C51087D-2848-42DF-A52A-	 Installed LPD, 	numbering
		BDBA1A09BF8D/0/SCE_B_Standar	space type and floor	
		dFixtureWatts010108.pdf	area from customer	
		Fixture counts and types, space type,	application.	Formatted: Table Cells
		floor area from customer application.		
		And-Formula Above.	4	Formatted: Table Cells
<u>SF</u>	Variable	From Customer Application	<u>Application</u>	
CF	Fixed	–See Lighting Table by Building	<u>-24</u>	Formatted: Table Cells
		Type		Formatted Table
		Type		
			▲	Formatted: Table Cells, Line spacing: single
<u>Hrs</u>	Fixed	See Table by Building Type	<u>4</u>	
<u>₩HVAC_d</u>	Fixed	See Lighting Table by Building Type	3	Formatted: Table Cells
			<u>,5</u> •	Formatted Table
EFLHHVAC	Fixed	–See Lighting Table by Building	3, 5	Formatted: Table Cells
<u>e</u>		Туре	•	Formatted: Table Cells
HVAC	Fixed	See Table by Building Type	6	Formatted: Table Cells, Line spacing: single
I PD.	Variable	Lighting Power Density for W/SE	2	Formatted: Table Cells, Line spacing: single
	Variable	Lighting Power Density W/SF		
	variable	Lighting I ower Delisity, W/SI		Formattada Forda Dald
▲			`	
				Formatted: Allow hanging punctuation Adjust

Formatted: Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto

LightingHours of O	peration and Coincidence	Factor by	Building Type

Building Type	EFLH Sector	CF	Hours IF
Education Primary School	1,440	0.57	0.15
Education Secondary School	2,456	0.57	0.15
Education Community College	3,416	0.64	0.15
Education University	3,416	0.64	0.15
Grocery	<u>6,019Large</u> Commercial/Industria <u>1 & Small</u> Commercial	0. <u>8896</u>	<u>0.13</u> 7,134 <u></u> ▲
Medical Hospital	8,736	0.72	0.18
Medical – Clinic	4,007 <u>Large</u> Commercial/Industria <u>1 & Small</u> Commercial	0. 72 8	<u>0.183,909</u> .◄
Lodging Hotel (Guest Rooms)	1,145	0.67	0.14
Lodging Motel	8,736	1.00	0.14
Manufacturing Light Industrial <u>Medical -</u> Hospital	4,781 <u>Large</u> Commercial/Industria <u>1 & Small</u> Commercial	0. 63<u>8</u>	0.04 <u>8,760</u> ◀
Office-Large	<u>3,642Large</u> Commercial/Industria	0. <u>687</u>	<u>0.172,969</u> , ◄
Office-Small	3,642 <u>Small</u> Commercial	0. <u>6867</u>	<u>0.172,950</u>
Restaurant Sit Down	4,089	0.76	0.15
Restaurant – Fast-Food	6,188	0.76	0.15
Retail <u>3 Story LargeOther</u>	4,103 <u>Large</u> Commercial/Industria <u>1 & Small</u> Commercial	0. 78<u>66</u>	<u>0.114,573</u> •
Retail—Single Story Large	4,103 <u>Large</u> <u>Commercial/Industria</u> <u>1</u>	0. 78 96	<u>0.114,920</u> , ◄
Retail Small	4,103 <u>Small</u> Commercial	0. 78<u>86</u>	<u>0.114,926</u> •

Formatted	
Formatted	
Formatted	<u> (</u>
Formatted	
Formatted	<u> </u>
Formatted	<u> </u>
Formatted	
Formatted	()
Formatted	
Merged Cells	
Formatted	

³⁹ Assume hospital operations are year round.

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

Building Type	EFLHSector	CF	Hours ^{IF}
Storage Conditioned School	4 <u>,290Large</u> Commercial/Industria <u>1 & Small</u> Commercial	0. છ<u>50</u>	<u>0.06</u> 2,575,◄
Storage Heated or Unconditioned	4,290	0.69	0.00
Warehouse/ Industrial	<u>4,009Large</u> <u>Commercial/Industria</u>	0. 69 7	<u>0.064,116</u> •
Average = Miscellaneous	<u>4,268Small</u> <u>Commercial</u>	0. 72<u>68</u>	0.13 3,799
Unknown ⁴⁰	Large Commercial/Industria <u>l</u>	<u>0.50</u>	<u>2,575</u>

HVAC Interactive Effe	ct	t	ί													l	l						1																		1																					•										(1			1	2						1				ľ	l	I											ł	•			6	6	(1		1	ÿ	١	۱	1			Ì	j	j		ł	l	1			•	•		2	[C	(((l	i		1	1	1	1		ć	2
-----------------------	----	---	---	--	--	--	--	--	--	--	--	--	--	--	--	---	---	--	--	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	--	---	--	---	--	--	---	---	--	--	--	--	--	---	--	--	--	---	---	---	--	--	--	--	--	--	--	--	--	--	---	---	--	--	---	---	---	---	--	---	---	---	---	---	--	--	---	---	---	--	---	---	---	--	--	---	---	--	---	---	---	---	---	---	--	--	---	---	--	---	---	---	---	--	---	---

Building Type	Demand Heat I (HVA	<u>l Waste</u> Factor AC _d)	<u>Annual E</u> <u>Coolin</u>	nergy Wa g/Heating	<u>ste Heat I</u> Type (H	<u>Factor by</u> VAC _e)
	<u>AC</u> (Utility)	<u>AC</u> (PJM)	<u>AC/</u> NonElec	<u>AC/</u> ElecRes	<u>Heat</u> <u>Pump</u>	NoAC/ ElecRes
Office	<u>0.35</u>	<u>0.32</u>	<u>0.10</u>	<u>-0.15</u>	<u>-0.06</u>	<u>-0.25</u>
<u>Retail</u>	<u>0.27</u>	<u>0.26</u>	<u>0.06</u>	<u>-0.17</u>	<u>-0.05</u>	<u>-0.23</u>
Education	<u>0.44</u>	<u>0.44</u>	<u>0.10</u>	<u>-0.19</u>	<u>-0.04</u>	<u>-0.29</u>
Warehouse	<u>0.22</u>	<u>0.23</u>	<u>0.02</u>	<u>-0.25</u>	<u>-0.11</u>	<u>-0.27</u>
Other ⁴¹	0.34	0.32	0.08	<u>-0.18</u>	-0.07	-0.26

Formatted: Font: 12 pt, Font color: Black
Formatted: Font: 12 pt, Font color: Black
Formatted: Font: Bold, Font color: Black
Formatted: Font: 12 pt, Font color: Black
Formatted: Don't keep with next
Formatted: Don't keep with next
Formatted: Font: 12 pt, Font color: Black
Formatted: Font: 12 pt, Font color: Black
Formatted: Font: 12 pt, Font color: Black
Formatted: Font: 12 pt, Font color: Black
Merged Cells
Formatted: Font: 12 pt, Font color: Black
Formatted: Don't keep with next
Formatted: Font: 12 pt, Font color: Black
Formatted: Font: 12 pt, Font color: Black
Formatted: Font: 12 pt, Font color: Black
Formatted: Font: 12 pt, Font color: Black
Formatted: Font: 12 pt, Font color: Black
Formatted: Font: 12 pt, Font color: Black
Formatted: Font: 12 pt, Font color: Black
Formatted: Font: 12 pt, Font color: Black

Interactive Factor (HVACg) for Annual Fuel Savings

<u>Project</u>	<u>Fuel</u>	<u>Impact</u>
<u>Type</u>	<u>Type</u>	(MMBtu/∆kWh)
<u>Large</u> <u>Retrofit</u>	<u>C&I</u> <u>Gas</u> <u>Heat</u>	<u>-0.00023</u>

⁴⁰ Per the NEEP Mid-Atlantic TRM, v7: "The "Other" building type should be used when the building type is known but not explicitly listed above. A description of the actual building type should be recorded in the project documentation. To encourage the use of building type-specific values, the assumed lighting coincidence factors for unknown building types have been set equal to the lowest values from the table."
⁴¹ Per the NEEP Mid-Atlantic TRM, v7: "The 'Other' building type should be used when the building type is known but not explicitly listed above. A description of the actual building type should be recorded in the project documentation."

Large	<u>Oil</u>	<u>-0.00046</u>
<u>Retrofit</u>		
Small	Gas	<u>-0.001075</u>
Retrofit	<u>Heat</u>	
Small	<u>Oil</u>	<u>-0.000120</u>
Retrofit	Heat	

Sources *Note: Figures in italics are

1. Device Codes and Rated Lighting System Wattage Table Retrofit Program, National Grid, January 13, 2015.

https://www1.nationalgridus.com/files/AddedPDF/POA/RILightingRetrofit1.pdf

- 2. ASHRAE Standards 90.1-2013, Energy Standard for Buildings Except Low Rise Residential Buildings, Table 9.6.1.; available at: https://www.ashrae.org/standardsresearch--technology/standards--guidelines.
- Average HVAC interactive effects by building type derived from the NEEP Mid-Atlantic TRM 2017, NEEP, Mid-Atlantic Technical Reference Manual, V7. May 2017, pp. 464-465. From NEEP TRM: "EmPOWER Maryland DRAFT Final Impact Evaluation Report – July 2011 (source #5)Evaluation Year 4 (June 1, 2012 – May 31, 2013) Commercial & Industrial Prescriptive & Small Business Programs, Navigant, March 31, 2014. Values for Washington, D.C. and Delaware assume values from Maryland, Pepco and Maryland, DPL, respectively."
- 4. NEEP Mid-Atlantic TRM 2017, NEEP, *Mid-Atlantic Technical Reference Manual*, V7. May 2017, pp. 462-463.

Massachusetts TRM, 2016-2018 Program Years, October 2015. Original source: DNV KEMA (2013). Impact

Sources:

- 1. California Standard Performance Contracting Program
- RLW Analytics, Coincident Factor Study, Residential and Commercial & Industrial Lighting Measures, 2007.
- Quantum Consulting, Inc., for Pacific Gas & Electric Company, Evaluation of *Pacific Gas & Electric Company's 1997 Commercial* 2010 Prescriptive Lighting Installations. Prepared for Massachusetts Energy Efficiency Incentives Program: Lighting Technologies", March 1, 1999
- 4.5. KEMA. New Jersey's Clean Energy Program Energy Impact Evaluation and Protocol Review. 2009Administrators and Massachusetts Energy Efficiency Advisory Council.
- 5.6.Northeast Energy Efficiency Partnerships & KEMA-for NEEP., C&I Lighting Load Shape Project. July 19, 2011. FINAL Report - Prepared for the Regional Evaluation, Measurement and Verification Forum. July 19, 2011.
 <u>http://www.neep.org/sites/default/files/products/NEEP_CI_Lighting_LS_FINAL_Report_ver_5_719_11.pdf</u>

Formatted: Font: Not Bold

Formatted: Space After: 10 pt, Line spacing: Multiple 1.15 li, Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto

Formatted: Font: Bold, Italic

Formatted

Formatted: No underline

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted: List Paragraph, Indent: Left: 0" Formatted: Font: Not Italic

Formatted: Font: Not Italic

Prescriptive Lighting

This is a fixture replacement program for existing commercial customers targeted for facilities performing efficiency upgrades to their lighting systems.

The baseline for linear and U bend fluorescent measures is standard T8 fixtures with electronic ballasts or actual existing HID fixtures.

The baseline for LED fixtures is the actual fixture being replaced.

The baseline for induction lighting is an equivalent pulse start metal halide fixture (6).

The baseline for LED refrigerator Case Lighting is that the fixture replaced was 2.63 times the wattage of the replacement LED (7).

New fixtures and technologies available after publication will be periodically updated. Baselines will be established based on the guidelines noted below.

<u>Algorithms</u>

Algorithms

Demand Savings = $(\Delta kW) \times (CF) \times (1 + IF)$

Energy Savings = $(\Delta kW) \times (1 + IF) \times (EFLH)$

AKW = (Number of fixtures installed X baseline wattage for new fixture) – (number of replaced fixtures X wattage from table)

For refrigerated case LED fixtures, the following protocols will be applied to account for the lighting and refrigeration energy savings associated with this measure.

Algorithms	4	Formatted: Heading 4
A		Formatted: Font: Bold
$\frac{\text{Demand Savings} = (\Delta kW) \times (CF) \times (1 + IF) \times (1 + (0.28 \times Eff))}{(1 + (0.28 \times Eff))}$		Formatted: No underline

Energy Savings = $(\Delta \Delta kW = (\# of replaced fixtures) * (baseline fixture wattage from table)_- (\# of fixtures installed) * (wattage of new fixture)$

Energy Savings
$$\left(\frac{kWh}{yr}\right) = (\Delta kW) * (Hrs) * (1 + HVAC_e)$$

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Page 105

Formatted: Space Before: 6 pt

Formatted: Normal (Web)

Formatted: Font: Bold

Fuel Savings $\left(\frac{MMBtu}{yr}\right) = (\Delta kW) * (Hrs) * (HVAC_g)$ **Definition of Variables** ΔkW X (1 + IF) X EFLH X (1 + (0.28 X Eff)) Formatted: Space Before: 9 pt, Don't allow **Definition of Variables** hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font AkW. _= Change in connected load from baseline to efficient lighting level. Alignment: Baseline Formatted: Indent: Left: 0", First line: 0", Space Before: 3 pt, After: 3 pt, Tab stops: CF _____ = Coincidence Factor factor 0.25", Left Formatted: Indent: Left: 0", First line: 0.25", Space Before: 3 pt, After: 3 pt, Tab EFLH = Equivalent Full Load Hours stops: 1", Left IF = Interactive Factor 0.28 = Conversion from kW to tons (Refrigeration) Eff = Efficiency of typical refrigeration system in kW/ton Hrs = Annual hours of operation HVAC_d = HVAC interactive factor for peak demand savings <u>HVAC</u>_e = <u>HVAC</u> interactive factor for annual energy savings $HVAC_{\sigma}$ = HVAC interactive factor for annual fuel savings Summary of Inputs Formatted: Indent: Left: 0", Keep with next Formatted: Table Caption, Space Before: 6 **Prescriptive Lighting for Commercial Customers** Formatted: Table Header Component Value Source Туре See LightingNGrid Fixture Wattage ΔkW FixedVariable 1 🔸 **Formatted Table** Table derived from California SPC Table Fixture counts Formatted: Table Cells at: and types, space Formatted: Table Cells, Right: 0" type, floor area from customer https://www1.nationalgridus.com/files/Adde dPDF/POA/RILightingRetrofit1.pdf application. Formatted: Table Cells

Peak Demand Savings (kW) = $(\Delta kW) * (CF) * (1 + HVAC_d)$

New Jersey's Clean Energy Program Protocols to Measure Resource Savings And

(http://www.sce.com/NR/rdonlvres/FC51

Component	Туре	Value	Source	Formatted: Table Header
		087D-2848-42DF-A52A-		Formatted Table
		BDBA1A09BF8D/0/SCE_B_StandardFi		
		xtureWatts010108.pdf)		
		formula above	••	Formatted: Font: Not Italic
<u>CF</u>	Fixed	Table by Building in Performance	<u>3</u>	Formatted: Table Cells
		Lighting Section Above		
CF<u>Hrs</u>	Fixed	See-Lighting Table by Building in		Formatted: Table Cells, Left, Right: 0", Don't
		Performance Lighting Section Above	<u>23</u> •	keep with next
EFLHHVAC	Fixed	See Lighting Table by Building Type in	•	Formatted Table
d		Performance Lighting Section Above	3, 4 2•	Formatted: Table Cells
	Fixed	See Lighting Table by Building Type in	3 •	Formatted: Table Cells, Right: 0", Don't keep
<u></u>		Performance Lighting Section Above	2 •	with next
EffHVAC	Fixed	1 6See Table by Building Type in	51 +	Formatted: Table Cells, Right: 0", Don't keep with next
Em <u>it V ACg</u>	TIXEU	Derformance Lighting Section Above	<u>54</u>	
		renormance Lighting Section Above		

Sources & Notes:

- 1. Device Codes and Rated Lighting System Wattage Table Retrofit Program, National Grid, January 13, 2015; available at: https://www1.nationalgridus.com/files/AddedPDF/POA/RILightingRetrofit1.pdf.
- 2. Average HVAC interactive effects by building type derived from the NEEP Mid-Atlantic TRM 2017, NEEP, Mid-Atlantic Technical Reference Manual, V7. May 2017, pp. 464-465. From NEEP TRM: "EmPOWER Maryland DRAFT Final Impact Evaluation Report Evaluation Year 4 (June 1, 2012 – May 31, 2013) Commercial & Industrial Prescriptive & Small Business Programs, Navigant, March 31, 2014. Values for Washington, D.C. and Delaware assume values from Maryland, Pepco and Maryland, DPL, respectively.
- 3. NEEP Mid-Atlantic TRM 2017, NEEP, Mid-Atlantic Technical Reference Manual, V7. May 2017
- 4. Massachusetts TRM, 2016-2018 Program Years, October 2015. Original source: DNV KEMA (2013). Impact Evaluation of 2010 Prescriptive Lighting Installations. Prepared for Massachusetts Energy Efficiency Program Administrators and Massachusetts Energy Efficiency Advisory Council

Refrigerated Case LED Lights

This measure includes the installation of LED lamps in commercial display refrigerators, coolers or freezers. The display lighting in a typical cooler or freezer add to the load on that unit by increasing power consumption of the unit when the lamp is on, and by adding heat to the inside of the unit that must be overcome through additional cooling.

Replacing fluorescent lamps with low heat generating LEDs reduces the energy consumption associated with the lighting components and reduces the amount of waste heat generated from the lamps that must be overcome by the unit's compressor cycles.

	Formatted: Table Header
/	Formatted Table
-	Formatted: Font: Not Italic
	Formatted: Table Cells
	Formatted: Table Cells, Left, Right: 0", Don't keep with next
۲	Formatted Table
	Formatted: Table Cells
	Formatted: Table Cells, Right: 0", Don't keep with next
	Formatted: Table Cells, Right: 0", Don't keep with next
$\langle \rangle$	Formatted: Table Cells
Ì	Formatted: Table Cells, Right: 0"
$\left(\right)$	Formatted: Table Cells, Right: 0"
Ì	Formatted: Table Cells
()	Formatted: Table Cells, Right: 0"
V	Formatted: Table Cells, Right: 0"
V	Formatted: Table Cells
V	Formatted: Table Cells, Left, Right: 0"
	Formatted: Table Cells
	Formatted: Heading 4, Space After: 6 pt
+	Formatted: Right: 0"
---	----------------------
Algorithms	
L.1071-	Formatted: (none)
Energy Savings $\left(\frac{kWH}{yr}\right) = units * (Lighting kWh_{base} - lighting kWh_{ee}) + Refrig_{sav}$	
Peak Demand Savings (kW) = $units * (kW_{base} - kW_{ee}) * (1 + Comp_{factor}) * CF$	
$Refrig_{sav} = units * (lighting kWh_{base} - lighting kWh_{ee}) * Comp_{eff}$	
Definition of Variables	
<u>Units</u> = Number of LED linear lamps or fixtures installed	
<u>kW_b</u> = Baseline fixture wattage	
kW_g = Qualified LED fixture wattage	
<u>Lighting kWh_{base} = Total energy usage of lighting fixtures being replaced</u>	
Lighting kWh _{ee} = Total energy usage of new LED lighting fixtures are being	
installed	
<u>$Comp_{factor}$</u> = Compressor factor for cooler or freezer, depending on location of	
<u>install</u>	
<u>Comp_{eff} = Compressor efficiency for cooler or freezer; the efficiency factors in</u>	
portion of saved energy eliminated via the compressor	
$\underline{CF} = \underline{Coincidence factor}$	

Summary of Inputs

<u>Refrigerated Case Assumptions</u>

Component	<u>Type</u>	<u>Value</u>	Methodology	<u>Source</u>
Lighting <u>kWh_{base}</u>	Variable	Variable	Total lighting operating hours per year × wattage of baseline lighting; use 2 × LED watts as default	<u>Application</u>
<u>Lighting</u> <u>kWh_{ee}</u>	<u>Variable</u>	<u>Variable</u>	Total lighting operating hours per year × wattage of LED lighting.	Application
Hrs	Fixed	<u>6,205</u>		<u>2</u>
<u>Comp_{eff} – cooler</u>	<u>Fixed</u>	<u>0.41</u>	Value is calculated by multiplying 0.51 (compressor efficiency for cooler) by 0.80 (portion of saved energy eliminated via the compressor).	<u>1, 3</u>
<u>Comp_{eff} –</u> <u>freezer</u>	<u>Fixed</u>	<u>0.52</u>	Value is calculated by multiplying 0.65 (compressor efficiency for cooler) $\times 0.80$ (portion of saved energy eliminated viathe compressor).	1

<u>Component</u>	<u>Type</u>	<u>Value</u>	Methodology	<u>Source</u>
<u>Comp_{factor} –</u> <u>cooler</u>	<u>Fixed</u>	<u>0.40</u>	$\frac{\text{Based on EER value of } 1.8 \text{ kW/ton} \times 0.285 \text{ ton/kW} \times 0.8 (20\% \text{ of case lighting})}{\text{load not converted into case cooling load}} = 0.40$	<u>1</u>
<u>Comp_{factor} –</u> <u>freezer</u>	<u>Fixed</u>	<u>0.51</u>	$\frac{\text{Based on EER value of 2.3 kW/ton} \times 0.285 \text{ ton/kW} \times 0.8 (20\% \text{ of case lighting})}{\text{load not converted into case cooling load}} = 0.51$	<u>1</u>
<u>CF</u>	<u>Fixed</u>	<u>0.92</u>		2

Formatted: Font: Bold, Italic

Formatted

Formatted: Space After: 10 pt, Line spacing: Multiple 1.15 li, Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto

<u>Sources</u>

- 1. NY, Standard Approach for Estimating Energy Savings, V4, April 2016, pages 223-22
- 2. Pennsylvania PUC, Technical Reference Manual, June 2016, page 258. From PA <u>TRM: "Methodology adapted from Kuiken et al, "State of Wisconsin Public</u> <u>Service Commission of Wisconsin Focus on Energy Evaluation Business</u> <u>Programs: Deemed Savings Parameter Development", KEMA, November 13,</u> <u>2009, assuming summer coincident peak period is defined as June through August</u> <u>on weekdays between 3:00 p.m. and 6:00 p.m., unless otherwise noted.</u> <u>https://focusonenergy.com/sites/default/files/bpdeemedsavingsmanuav10_evaluati</u> <u>onreport.pdf"</u>
- 3. PA TRM, p.258. Values adopted from Hall, N. et al, New York Standard <u>Approach for Estimating Energy Savings from Energy Efficiency Measures in</u> <u>Commercial and Industrial Programs, TecMarket Works, September 1, 2009.</u> <u>http://www3.dps.ny.gov/W/PSCWeb.nsf/0/06f2fee55575bd8a852576e4006f9af7/</u> <u>\$FILE/TechManualNYRevised10-15-10.pdf</u>

Specialty LED Fixtures

Some LED fixtures do not adhere to the Prescriptive Lighting algorithm due to unique form factors that do not lend to a fixture-to-fixture comparison, such as LED rope lights, cove lighting, and so on.

In these instances, a similar algorithm may be used, with a different metric other than fixture quantity entered. For example, a comparison of watts per linear foot between LED and incandescent technologies would result in accurate energy savings calculations.

Formatted: Right: 0"

<u>Algorithms</u>

 $\Delta kW =$

(linear feet of replaced cove lighting) *
(baseline fixture wattage of cove lighting per foot)_
(linear feet of installed LED cove lighting) *
(wattage of new LED cove lighting per foot)

Energy Savings
$$\left(\frac{kWh}{yr}\right) = (\Delta kW) * (1 + HVAC_e) * (Hrs)$$

Peak Demand Savings (kW) = $(\Delta kW) * (CF) * (1 + HVAC_d)$

Fuel Savings
$$\left(\frac{\text{MMBtu}}{\text{yr}}\right) = (\Delta kW) * (\text{Hrs}) * (\text{HVAC}_g)$$

Definition of Variables

- 2. RLW Analytics, Coincident Factor Study, Residential and Commercial & Industrial Lighting Measures, 2007.
- Quantum Consulting, Inc., for Pacific Gas & Electric Company, Evaluation of Pacific Gas & Electric Company's 1997 Commercial Energy Efficiency Incentives Program: Lighting Technologies", March 1, 1999
- 4. KEMA for NEEP. C&I Lighting Load Shape Project. July 19, 2011 <u>http://www.neep.org/sites/default/files/products/NEEP_CI_Lighting_LS_FINAL_</u> <u>Report_ver_5_7-19-11.pdf</u>
- 5.<u>1.Select Energy Services, Inc. Cooler Control Measure Impact Spreadsheet User's</u> <u>Manual. 2004.</u>

The remaining variables are unchanged from those presented in the Prescriptive Lighting section:

Summary of Inputs

	Specialty Lighting for Commercial Customers					
Component	<u>Type</u>	Value	Source			
<u>ΔkW</u>	<u>Variable</u>	See algorithm above	Application			
<u>CF</u>	<u>Fixed</u>	See Lighting Table by Building in Performance Lighting Section <u>Above</u>	<u>1</u>			
<u>Hrs</u>	<u>Variable</u>	See Lighting Table by Building <u>Type in Performance Lighting</u> <u>Section Above</u>	<u>1</u>			
<u>HVAC_d</u>	<u>Fixed</u>	See Lighting Table by Building <u>Type in Performance Lighting</u> <u>Section Above</u>	2			
<u>HVAC</u> _e	Fixed	See Lighting Table by Building	<u>2</u>			

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: English (U.S.)

Formatted: List Paragraph, Space Before: 6 pt, Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.25" + Indent at: 0.5"

Page 110

^{1.} California Standard Performance Contracting Program

Component	<u>Type</u>	Value	Source
		<u>Type in Performance Lighting</u> <u>Section Above</u>	
<u>HVAC_g</u>	<u>Fixed</u>	See Lighting Table by Building <u>Type in Prescriptive Lighting</u> <u>Section Above</u>	3

- 6. <u>Sources</u>For induction Lighting, used the lowest PSMH that would produce a 30% reduction in wattage to the induction fixture, which is the minimum requirement for incentives replacing HID with induction lighting. Assume 5% increase for input wattage vs nominal wattage.
- 7. Based on assuming LED is 62% more efficient than replacement as per RPI study: <u>http://www.lrc.rpi.edu/programs/solidstate/pdf/SPIE4776-13_Raghavan.pdf</u>
- 1. NEEP, Mid-Atlantic Technical Reference Manual, V7. May 2017.
- <u>Average HVAC interactive effects by building type derived from the NEEP Mid-Atlantic TRM 2017, NEEP, Mid-Atlantic Technical Reference Manual, V7. May 2017, pp. 464-465. From NEEP TRM: "EmPOWER Maryland DRAFT Final Impact Evaluation Report Evaluation Year 4 (June 1, 2012 May 31, 2013) Commercial & Industrial Prescriptive & Small Business Programs, Navigant, March 31, 2014.</u>
 Values for Washington, D.C. and Delaware assume values from Maryland, Pepco and Maryland, DPL, respectively.
- 3. Massachusetts TRM, 2016-2018 Program Years, October 2015. Original source: DNV KEMA (2013). Impact Evaluation of 2010 Prescriptive Lighting Installations. Prepared for Massachusetts Energy Efficiency Program Administrators and Massachusetts Energy Efficiency Advisory Council

Formatted: Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline

1	Lighting Controls		•	Formatted: Page break before
] 0 0 0 0 1 1 0	Lighting controls include controlled hi-low control energy savings is based of equivalent full load hour facilities or from other us annual lighting energy sa manual switch, based on Construction Baseline St	e occupancy sensors, daylight dimmer systems, and occupancy s for fluorescent, LED and HID fixturesThe measurement of on algorithms with key variables (i.e., coincidence factor, s) provided through existing end-use metering of a sample of tility programs with experience with these measures (i.e., % of aved by lighting control)For lighting controls, the baseline is a the findings of the New Jersey Commercial Energy Efficient tudy.	-	Formatted: Space Before: 6 pt
4	Algorithms			
ĺ	Energy Savings (^{kWh})	$= kW_c * SVG * Hrs * (1 + HVAC_e)$		
	Peak Demand Savings	$s (kW) = kW_c * SVG * CF * (1 + HVAC_d)$		
	Fuel Savings $\left(\frac{MMBtu}{yr}\right)$	$\left(\frac{1}{2}\right) = kW_c * SVG * (Hrs) * (HVAC_g)$		
1	Definition of Variables		4	Formatted: Right: 0"
]	Demand Savings = kW_e -	X SVG X CF X (1+ IF)		
1	Energy Savings = - kWe	X SVG X EFLH X (1+IF)		(-
				Formatted: Normal
	Definition of Variables		4	
	SVG -= % of an control ty	nnual lighting energy saved by lighting control; refer to table by pe	•	Formatted: Indent: Left: 0.25", Hanging: 0.75", Space Before: 3 pt, After: 3 pt, Tab stops: 0", Left
4	SVG -= % of an control ty	nnual lighting energy saved by lighting control; refer to table by pe		Formatted: Indent: Left: 0.25", Hanging: 0.75", Space Before: 3 pt, After: 3 pt, Tab stops: 0", Left
	Definition of Variables SVG -= % of an control ty kW _€ = kW ligh	nnual lighting energy saved by lighting control; refer to table by pe nting load connected to control		Formatted: Indent: Left: 0.25", Hanging: 0.75", Space Before: 3 pt, After: 3 pt, Tab stops: 0", Left Formatted: Subscript Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt, Tab stops: 1", Left
	$\frac{\text{Detimition of Variables}}{\text{SVG}} = \% \text{ of ar control ty}$ $kW_{\underline{e}} = kW \text{ ligh}$ $\frac{\text{IF-HVAC}_{d}}{\text{represents}} = \text{Interact}$ $\frac{\text{resulting tr}}{\text{resulting tr}}$	nnual lighting energy saved by lighting control; refer to table by pe tting load connected to control ive Factor – This applies to C&I interior lighting onlyThis the secondary demand and in reduced HVAC consumption from decreased indoor lighting wattage.		Formatted: Indent: Left: 0.25", Hanging: 0.75", Space Before: 3 pt, After: 3 pt, Tab stops: 0", Left Formatted: Subscript Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt, Tab stops: 1", Left
	Definition of VariablesSVG-= % of an control ty kW_c = kW lightIF-HVAC_d_= Interact represents resulting the second se	nnual lighting energy saved by lighting control; refer to table by pe nting load connected to control ive Factor – This applies to C&I interior lighting onlyThis is the secondary demand andin reduced HVAC consumption from decreased indoor lighting wattage. ive Factor – This applies to C&I interior lighting only. This is the secondary energy savings in reduced HVAC consumption from decreased indoor lighting wattage.		Formatted: Indent: Left: 0.25", Hanging: 0.75", Space Before: 3 pt, After: 3 pt, Tab stops: 0", Left Formatted: Subscript Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt, Tab stops: 1", Left Formatted: Indent: Left: 0.25", Hanging: 0.75", Space Before: 3 pt, After: 3 pt, Tab stops: 1", Left
	Definition of Variables SVG -= % of an control ty kW_e = kW light IF-HVAC _d _= Interact represents resulting the second	nnual lighting energy saved by lighting control; refer to table by pe nting load connected to control ive Factor – This applies to C&I interior lighting onlyThis is the secondary demand and in reduced HVAC consumption from decreased indoor lighting wattage. ive Factor – This applies to C&I interior lighting only. This is the secondary energy savings in reduced HVAC consumption from decreased indoor lighting wattage. <i>This value will be fixed</i> VAC_g = Interactive Factor – This value applies to C&I interior nly. This represents the percentage of the total load which is on etric system's peak window.secondary energy savings in		Formatted: Indent: Left: 0.25", Hanging: 0.75", Space Before: 3 pt, After: 3 pt, Tab stops: 0", Left Formatted: Subscript Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt, Tab stops: 1", Left Formatted: Indent: Left: 0.25", Hanging: 0.75", Space Before: 3 pt, After: 3 pt, Tab stops: 1", Left Formatted: Indent: Left: 0.25", Hanging: 0.75", Space Before: 3 pt, After: 3 pt, Tab stops: 1", Left Formatted: Indent: Left: 0.25", Hanging: 0.75", Space Before: 3 pt, After: 3 pt, Tab stops: 1", Left

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

age

reduced HVAC consumption resulting from decreased indoor lighting wattage.

EFLH = Equivalent full load hours.

<u>CF = Coincidence factor</u>

<u>Hrs</u> = Annual hours of operation prior to installation of controls

Summary of Inputs

Lighting Controls Component Туре Value Source kW_c Variable Load connected to control Application -SVG Fixed Occupancy Sensor, Controlled Hi-See sources below Low Fluorescent Control, LED and controlled HID = 30%Daylight Dimmer System=50% CF See Lighting Table by Building in Fixed Performance Lighting Section Above 4 EFLH Fixed See Lighting Table by Building in Performance Lighting Section Above 2 3 ₽₽ See Lighting Table by Building in 2 Fixed Performance Lighting Section Above

<u>SVG</u>	<u>Fixed</u>	Occupancy Sensor, Controlled Hi- Low Fluorescent Control, LED and controlled HID = 31%	<u>4, 5, 6</u>
		Daylight Dimmer System= 40%	
<u>CF</u>	<u>Fixed</u>	See Table by Building in Performance Lighting Section <u>Above</u>	1
<u>Hrs</u>	<u>Fixed</u>	<u>See Table by Building in</u> <u>Performance Lighting Section</u> <u>Above</u>	<u>1</u>
<u>HVAC_d</u>	<u>Fixed</u>	See Table by Building Type in Performance Lighting Section <u>Above</u>	2
<u>HVAC</u> _e	<u>Fixed</u>	See Table by Building Type in Performance Lighting Table Above	<u>2</u>

Formatted: Keep with next, Tab stops: 1", Left Formatted: Table Caption

Formatted: Table Header, Keep with next

Formatted: Table Cells, Keep with next

Formatted: Table Cells, Right: 0", Keep with next

<u>HVAC</u> g	Fixed	See Table by Building Type in	3	
		Performance Lighting Table Above		
Sources:			•	Formatted: Heading 4, Space After: 6 pt
1. RLW A	analytics, <i>Coinc</i>	cident Factor Study, Residential and Co	mmercial &	
<i>Industr</i>	ial Lighting Me	easures, 2007.		
<u>1. Quantum C</u>	Consulting, Inc.	, for Pacific Gas & Electric Company ,	NEEP, Mid-Atlantic	
<u>Technical I</u>	<u>Reference Mani</u>	<i>ual</i> , V7. May 2017.		
2. Average H	VAC interactiv	e effects by building type derived from	the NEEP Mid-	
Atlantic Th	<u>RM 2017, NEE</u>	P, Mid-Atlantic Technical Reference Me	anual, V7. May	
<u>2017, pp. 4</u>	<u>64-465. From I</u>	NEEP TRM: "EmPOWER Maryland D	RAFT Final Impact	
Evaluation	Report Evaluat	tion Year 4 (June 1, 2012 – May 31, 20	13) Commercial &	
Industrial F	rescriptive & S	Small Business Programs, Navigant, Ma	<u>irch 31, 2014.</u>	
Values for	Washington, D	<u>C. and Delaware assume values from N</u>	Maryland, Pepco and	
Maryland,	DPL, respective	<u>ely.</u>	×··· 1	
3. Massachus	etts TRM, 2016	5-2018 Program Years, October 2015. C	<u>Driginal source:</u>	
DNV KEM	<u>IA (2013). Imp</u>	act Evaluation of <i>Pacific Gas & Electri</i>	e Company's 1997	Formatted: Font: Not Italic
Commercue	# <u>2010 Prescrip</u>	ptive Lighting Installations. Prepared to	<u>r Massachusetts</u>	
Energy Eff	iciency Incenti	<i>ves Program</i> : Program Administrators a	nd Massachusetts	Formatted: Font: Not Italic
Energy Eff	Iciency Adviso	<u>ry Council</u>	March 1	
<u>4.A Meta-An</u>	alysis of Energ	y Savings from Lignung <i>reconologies</i>	, March 1,	pt, After: 3 pt, Don't add space between
<u>1999Contro</u>	ols in Commerc	cial Buildings, Lawrence Berkeley Natio	onal Laboratory,	paragraphs of the same style, Line spacing:
<u>September</u>	<u>2011.</u>	Listing Land Change Dusing Later 10	2011	Adjust space between Latin and Asian text,
3. KEWIA	TOF NEEP. Ca	ites/default/files/products/NEED_CL_Li	, 2011 abting IS EINAI	Adjust space between Asian text and numbers,
Report	ver 5 7 19 11	Lpdf	gitting Lo FINAL	Formatted: Font: Not Italic
5. LBNL Ou	antifying Natio	nal Energy Savings Potential of Lightin	g Controls in	Formatted: Font. Not Italic
<u>Commercia</u>	al Buildings, M	av 2012.	<u>g controls in</u>	
6. Unified Fac	cilities Criteria	(UFC), Design: Interior, Exterior, Ligh	ting and Controls.	
UFC 3-530	-01. September	r 2012.		
0100000				
				Formatted: Font: 12 pt
Motors <u>[Inacti</u>	ve 2017, Not R	<u>eviewed]</u>		Formatted: Font: 12 pt
For premium e	fficiency motor	rs 1-200 HP.	4	Formatted: Normal
Algorithms				Formatted: English (U.S.)
			4	Formatted: Keep with next
From application	on form calcula	ate ΔkW where:		
A 1-337	0746 * 110 * 1	$\Gamma * (1/m - 1/m)$		
$\Delta \mathbf{K} \mathbf{W} =$	0.746 * HP * I	$\Gamma_{VFD} = (1/\eta_{base} - 1/\eta_{prem})$		

Demand Savings = $(\Delta kW) \times CF$

Energy Savings = $(\Delta kW)^*HRS * LF$

Definition of Variables

 $\Delta kW = kW$ Savings at full load

HP = Rated horsepower of qualifying motor, from nameplate/manufacturer specs.

LF = Load Factor, percent of full load at typical operating condition

 $IF_{VFD} = VFD$ Interaction Factor, 1.0 without VFD, 0.9 with VFD

 $\eta_{base} = Efficiency \ of \ the \ baseline \ motor$

 $\eta_{prem} = Efficiency$ of the energy-efficient motor

HRS = Annual operating hours

CF = Coincidence Factor

Component	Туре	Value	Source
HP	Variable	Nameplate/Manufacturer Spec. Sheet	Application
LF	Fixed	0.75	1
hp _{base}	Fixed	ASHRAE 90.1-2013 Baseline Efficiency Table	ASHRAE
hp _{prem}	Variable	Nameplate/Manufacturer Spec. Sheet	Application
IF _{VFD}	Fixed	1.0 or 0.9	3
Efficiency - η_{ee}	Variable	Nameplate/Manufacturer Spec. Sheet	Application
CF	Fixed	0.74 1	
HRS	Fixed	Annual Operating Hours Table	1

Formatted: Indent: Left: 0", First line: 0"

Formatted: Normal, Indent: Left: 0", Hanging: 1"

Formatted Table

Baseline Motor Efficiency Table

Motor	1200 RPM (6 pole)		tor 1200 RPM (6 pole) 1800 RPM (4 pole)		3600 RPM (2 pole)	
Horsepower	ODP	TEFC	ODP	TEFC	ODP	TEFC
1	0.8	0.8	0.825	0.825	na	0.755
1.5	0.84	0.855	0.84	0.84	0.825	0.825
2	0.855	0.865	0.84	0.84	0.84	0.84
3	0.865	0.875	0.865	0.875	0.84	0.855
5	0.875	0.875	0.875	0.875	0.855	0.875
7.5	0.885	0.895	0.885	0.895	0.875	0.885
10	0.9002	0.895	0.895	0.895	0.885	0.895
15	0.902	0.902	0.91	0.91	0.895	0.902
20	0.91	0.902	0.91	0.91	0.902	0.902
25	0.917	0.917	0.917	0.924	0.91	0.91
30	0.924	0.917	0.924	0.924	0.91	0.91
40	0.93	0.93	0.93	0.93	0.917	0.917
50	0.93	0.93	0.93	0.93	0.924	0.924
60	0.936	0.936	0.936	0.936	0.93	0.93
75	0.936	0.936	0.941	0.941	0.93	0.93
100	0.941	0.941	0.941	0.945	0.93	0.936
125	0.941	0.941	0.945	0.945	0.936	0.945
150	0.945	0.95	0.95	0.95	0.936	0.945
200	0.945	0.95	0.95	0.95	0.945	0.95

Formatted: Keep with next

*Note: For the Direct Install Program, different baseline efficiency values are used.

Motor	Motor 1200 PPM (6 pole)			1800 PPM (4 pole)		$\frac{1}{2}$
Horsepower	ODP	TEFC	ODP	TEFC	ODP	TEFC
1	0.825	0.825	0.855	0.855	0.77	0.77
1.5	0.865	0.875	0.865	0.865	0.84	0.84
2	0.875	0.885	0.865	0.865	0.855	0.855
3	0.885	0.895	0.895	0.895	0.855	0.865
5	0.895	0.895	0.895	0.895	0.865	0.885
7.5	0.902	0.91	0.91	0.917	0.885	0.895
10	0.917	0.91	0.917	0.917	0.895	0.902
15	0.917	0.917	0.93	0.924	0.902	0.91
20	0.924	0.917	0.93	0.93	0.91	0.91
25	0.93	0.93	0.936	0.936	0.917	0.917
30	0.936	0.93	0.941	0.936	0.917	0.917
40	0.941	0.941	0.941	0.941	0.924	0.924
50	0.941	0.941	0.945	0.945	0.93	0.93
60	0.945	0.945	0.95	0.95	0.936	0.936
75	0.945	0.945	0.95	0.954	0.936	0.936
100	0.95	0.95	0.954	0.954	0.936	0.941
100	0.95	0.95	0.954	0.954	0.941	0.95
150	0.954	0.958	0.958	0.958	0.941	0.95
200	0.954	0.958	0.958	0.962	0.95	0.954

NEMA ASHRAE 90.1-2013 Motor Efficiency Table – General Purpose Subtype I

Annual Operating Hours Table

Operating Hours, HRS
2,745
3,391
4,067
5,329
5,200

Formatted: Keep with next

Electronically Commutated Motors for Refrigeration

This measure is applicable to existing walk-in, multi-deck and free standing coolers and freezers with shaded pole or permanent split capacitor (PSC) motors. -These fractional horsepower motors are significantly more efficient than mechanically commutated, brushed motors, particularly at low speeds or partial load. -By employing variable-speed technology, EC motors are able to optimize fan speeds for changing load requirements. Because these motors are brushless and utilize DC power, losses due to friction and phase shifting are eliminated. -Calculations of savings for this measure take into account both the increased efficiency of the motor as well as the reduction in refrigeration load due to motor heat loss.

Formatted: Heading 3, None, Space Before: 0 pt, After: 0 pt, Page break before, Don't keep with next

EC Motor retrofitsRetrofits in Walk-in Coolers and Freezers		Formatted: Font: Not Bold, Italic, No
		Formatted: Font: Not Bold, Italic, No
Algorithms	•	Formatted: Heading 4
1/2 (1000) * DE * 1 D (70)		
$\Delta kW = ((Amps_{EF} * Volts_{EF} * (Phase_{EF})^{-1})/1000) * PF_{EF} * LR65\%$		Formatted: Indent: First line: 0.25"
Gross <u>kWhEnergy</u> Savings (kWh/yr) = kWh Savings _{EF} + kWh Savings _{RH}	•	Formatted: Indent: First line: 0.25"
<i>kWh</i> Savings _{EF} = ((Amps _{EF} * Volts _{EF} * (Phase _{EF}) ^{$1/2$})/1000) * PF _{EF} * Operating Hours * LR65%	4	Formatted: Indent: Left: 0.25"
$kWh Savings_{RH} = kWh Savings_{FF} * 0.28 * 1.6$	4	Formatted: Indent: First line: 0.25"
$\frac{PLEASE \ NOTE:}{((Amps_{EF} * Volts_{EF} * (Phase_{EF})^{1/2})/1000) * PF_{EF}}$ is equivalent to "HP * 0.746"		
Definition of Variables	4	Formatted: Heading 4
ΔkW = Demand Savings due to EC Motor Retrofit	•	Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
<i>kWh</i> Savings _{EF} = Savings due to Evaporator Fan Motors being replaced	•	Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
<i>kWh</i> Savings _{RH} = Savings due to reduced heat from Evaporator Fans		Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
Amps _{EF} = Nameplate Amps of Evaporator Fan	•	Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
Volts _{EF} = Nameplate Volts of Evaporator Fan	-	Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
$Phase_{EF}$ = Phase of Evaporator Fan		Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
PF_{EF} = Evaporator Fan Power Factor		Formatted: Indent: Left: 0", First line: 0.25", Space Before: 3 pt, After: 3 pt, Tab stops: 0.25", Left
Operating Hours _= Annual operating hours if Evaporator Fan Control		Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
LR = Percent reduction of load by replacing motors		Formatted: Indent: Left: 0", First line: 0.25", Space Before: 3 pt, After: 3 pt, Tab stops: 1", Left + 1.94", Left + Not at 1.25"
0.28 = Conversion from kW to tons (Refrigeration)		Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
1.6 = Efficiency of typical refrigeration system in kW/ton		Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt

Algorithms	Formatted: Page break before, Don't allow
Gross kWhEnergy Savings (kWh/yr) = kWh Savings _{CM} + kWh Savings _{RH}	 between Latin and Asian text, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline
	Formatted: Heading 4
$kWh \ Savings_{CM} = kW * ER * RT8, 500$	Formatted: Keep with next
	Formatted: Indent: First line: 0.25"
$kWh Savings_{RH} = kWh Savings_{EF} * 0.28 * Eff$	Formatted: Indent: First line: 0.25"
	Formatted: Indent: First line: 0.25"
Definition of Variables	Formatted: Heading 4
<i>kWh Savings_{CM}</i> = Savings due to Case Motors being replaced	 Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
<i>kWh</i> Savings _{RH} = Savings due to reduced heat from Case Motors	Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
kW = Metered load of Case Motors	Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
ER= Energy reduction if a motor is being replaced	Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
RT= Average runtime of Case Motors	Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
0.28= Conversion from kW to tons (Refrigeration)	Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
Eff= Efficiency of typical refrigeration system in kW/ton	 Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt

Summary of Inputs

ECM Fraction HP Motors

Component	Туре	Value	Source 🔸
Amps _{EF}	Variable	Nameplate/Manufacturer Spec. Sheet	Application •
Volts _{EF}	Variable	Nameplate/Manufacturer Spec. Sheet	Application •
Phase _{EF}	Variable	Nameplate/Manufacturer Spec. Sheet	Application •
PF _{EF}	Fixed	0.55	1 +
Operating Hours	Fixed	Not Installed = 8,760	4
		Installed $= 5,600$	

Formatted:	Table Capt	ion

(Formatted: Table Header
\backslash	Formatted Table
\neg	Formatted: Table Cells
(Formatted: Table Cells
(Formatted: Table Cells
(Formatted: Table Cells
-(Formatted: Table Cells

	Component	Туре	Value	Source		Formatted: Table Header
	LR	Fixed	65%	2		Formatted Table
	ER	Fixed	Shaded Pole Motor	3		Formatted: Table Cells
			Replaced = 53%			Formatted: Table Cells
			PSC Motor Replaced =			
			29%			
	RT	Fixed	8500		•	Formatted: Table Cells
ĺ	Eff	Fixed	1.6		4	Formatted: Table Cells

Sources:

- 1. Select Energy Services, Incr., Cooler Control Measure Impact Spreadsheet User's Manualr, 2004.
- This value is an estimate by NRM based on several pre_ and post_ meter readings of installations.- This is supported by RLW report for National Grid, "Small Business Services, Custom Measure Impact Evaluation"," March 23, 2007.
- 3. Based on numerous pre_ and post-_meterings conducted by NRM.

- Formatted Table

 Formatted: Table Cells

 Formatted: Indent: Legish (U.S.)

 Formatted: Indent: Left: 0", Space Before: 3 pt, After: 3 pt, Keep with next
- **Formatted:** Indent: Left: 0", Space Before: 3 pt, After: 3 pt

Electric HVAC Systems

The measurement of This measure provides energy and demand savings for C/I Efficient HVAC program for Room AC, Central AC, and air cooled DX is based on algorithms. (Includes for C&I Electric HVAC systems. The type of systems included in this measure are: split systems, single package systems, air to air cooled heat pumps, packaged terminal systems, (PTAC and PTHP), single package vertical systems, (SPVAC and SPVHP), central DX AC systems, water source heat pumps, ground water source heat pumps, and/or ground source heat pumps).

This measure applies to new construction, replacement of failed equipment, or end of useful life. The baseline unit is a code compliant unit with an efficiency as required by ASHRAE Std. 90.1 – 2013, which is the current code adopted by the state of New Jersey.

Algorithms

Air Conditioning Algorithms:		Formatted: Font: Italic
$\frac{\text{Demand}\underline{\text{Energy}} \text{ Savings} = (\text{BtuH/1000}) X(\underline{kWh/yr}) = N * \text{Tons} * 12 \underline{kBtuh/To}}{(1/\text{EER}_{b}-1/\text{EER}_{q})} X CF + \underline{\text{EFLH}}_{g}}$	<u>on *</u> ◀	Formatted: Indent: First line: 0.25" Formatted: Subscript
$\frac{\text{Energy}Peak \text{ Demand }Savings}{(1/\text{EER}b-1/\text{EER}q)} = N * \text{Tons }* 12 \text{ kBtuh/T}}$	<u>`on *</u>	Formatted: Indent: Left: 0", First line: 0.25"
Heat Pump Algorithms:		Formatted: Font: Italic
		Formatted: Font: Italic
<u>Cooling</u> Energy Savings Cooling = (BtuH _c /1000) X (kWh/yr) = N * Tons * 12 kBtuh/Ton * (1/EER _b -1/EER _q) X* EFLH _c	2	Formatted: Indent: First line: 0.25"
<u>Heating</u> Energy Savings- <u>Heating = BtuH_h/1000 X (Btu/yr) = N * Tons * 12 kF</u> <u>* ((1/ (COP_b X<u>*</u> 3.412))-(1/ (COP_q X<u>*</u> 3.412))) X)) * EFLH_h</u>	<u> Stuh/Tor</u>	Formatted: Indent: Left: 0.25"
Where c is for cooling and h is for heating.	4	Formatted: Indent: Hanging: 0.75"
Definition of Variables		
Bruff = Cooling N = Number of units		
Tons = Rated cooling capacity in Btu/Hour of unit. This value comes from ARI/AHRI or AHAM rating or manufacturer data.	4	Formatted: Indent: Left: 0.25", Space Before: 3 pt, After: 3 pt
EER_{b} = Energy Efficiency Ratio of the baseline unit. This data is found in th and Heat Pumps table belowFor units < 65,000 BtuH ₇ (5.4 tons), SEER shou used in place of EER.	e HVAC ild be	Formatted: Indent: Left: 0.25", Space Before: 3 pt, After: 3 pt
New Jersey's Clean Energy Program	Page 122	

Protocols to Measure Resource Savings

Formatted: Space Before: 6 pt, After: 6 pt

COP_b = Coefficient of Performance of the baseline unitThis data is found in the HVAC and Heat Pumps table belowFor units < 65,000 BtuH ₇ (5.4 tons), SEER and $HSDE/2$ 412 for a big baseline unit.	Formatted: Indent: Left: 0.25", Space Before: 3 pt, After: 3 pt
HSPF/3.412 should be used in place of COP $\frac{1}{2}$ 3.412 for cooling and heating savings, respectively.	
EER_q = Energy Efficiency Ratio of the high efficiency unit. This value comes from the ARI/AHRI or AHAM directories or manufacturer data. For units < 65,000 (5.4)	Formatted: Indent: Left: 0.25", Space Before: 3 pt, After: 3 pt
tons) BtuH, SEER should be used in place of EER.	
COP_q = Coefficient of Performance of the high efficiency unit. This value comes from the ARI/AHRI or AHAM directories or manufacturer dataFor units < 65,000 BtuH ₃ ,	Formatted: Indent: Left: 0.25", Space Before: 3 pt, After: 3 pt
(5.4 tons), SEER and HSPF/3.412 should be used in place of COP \times 3.412 -for cooling and heating savings, respectively.	
CF = Coincidence Factor – This value represents the percentage of the total load •	Formatted: Indent: Left: 0.25", Space Before: 3 pt, After: 3 pt
existing measured usage and determined as the average number of operating hours during the peak window period.	
EFLH-EFLH _{c or h} = Equivalent Full Load Hours – This represents a measure of	Formatted: Indent: Left: 0.25", Space Before: 3 pt, After: 3 pt
determined by existing measured data of kWh during the period divided by kW at design conditions-peak periods.	
Summary of Inputs	

HVAC and Heat Pumps			Formatted: Table Caption		
Component	Туре	Value	Source •	ᡶ	Formatted: Table Header
BtuHTons	Variable	ARI/AHRI or AHAM or Manufacturer	Application 🔸		Formatted Table
		DataRated Capacity, Tons			Formatted: Table Cells
EERb	Variable	See Table below	Collaborative		Formatted: Table Cells
			agreement and C/I		
			baseline study1		
EERq	Variable	ARI/AHRI or AHAM Values	Application •		Formatted: Table Cells
CF	Fixed	67<u>50</u>%	Engineering •		Formatted: Table Cells
			estimate2		
EFLH _(c or h)	FixedVa	HVAC 1,495	1, JCP&L metered	-	Formatted: Table Cells
	<u>riable</u>	HP cooling 381	data ⁴² 3		Formatted: Subscript

⁴² Results reflect metered use from 1995 – 1999.

Component	Туре	Value	Source	•	 Formatted: Table Header
		HP heating 800See Tables below		+	Formatted Table
				+	Formatted: Table Cells
					Formatted: Normal

HVAC Baseline	Efficiencies	Table – <mark>E</mark>	xisting B	Buildings Ne	ew Constru	uction/EUL/RoF

Equipment Type	Baseline = ASHRAE Std. 90.1 - 2007_ 2013			
Unitary HVAC/Split Systems a	nd			
Single Package, Air Cooled				
-<=5.4 tons:, split	13 SEER			
-<=54 tons single	14 SEER			
>5.4 to 11.25 tons	11.0 FER 12.7 IEED			
>11.25 to 20 tons	10.8 EER 12.2 IEER			
21 to 63 tons	10.8 EEP. 0.5 IN V11.4 IEEP			
>62 Tons	9.8 EER, 9.5 IPLV11.4 IEER			
>03 10115	9.5 EER, 9.2 IPLV 11.0 IEER			
Air Air Cooled Heat Pump	1.			
Systems, Split System and Sing	je			
r ackage	<u>1314</u> SEER, 7.7 <u>8.2</u> HSPF			
=5.4 tons single	<u>14 SEER, 8.0 HSPF</u>			
$= \frac{2}{3.4} \frac{11}{25} \frac{25}{5} \frac{11}{25} \frac{11}{25} \frac{11}{5} \frac{11}{25} \frac{11}{5} 1$	10.8 EER, <u>11.0 IEER</u> , 3.3 heating COP			
>5.4 to 11.25 tons	10.4 EER, <u>11.4 IEER</u> , <u>3.2 heating COP</u>			
->11.25 to 20 tons	9.3 EER, <u>9.0 IPLV10.4 IEER</u> , 3.2 heating			
<u>→=</u> ≥=_21	СОР			
Source Heat Pumps				
ipacities	11.2 EEP 4.2 heating COP			
o 5.4 tons	12.0 EER, 4.2 heating COP			
-11.25 tons	12.0 EER, 4.2 heating COP			
1 Water Source Heat Pumps nd Closed Loop All t ies<=11.25 tons	16.2 EER, 3.6 heating COP			
Ground Source Heat Pumps <=11.25 tons	13.4 EER, 3.1 heating COP			
Package Terminal Air Conditioners-*	12.5 (0.213 * Cap/1,000), EER			
Package Terminal Heat Pumps ^{_#}	12.3 - (0.213 * Cap/1,000), EER 3.2 - (0.026 * Cap/1,000), heating COP			
Single Package Vertical Air Condition	ers			
- <=5.4 tons	9.0 EER 8.0 EEP			
→ 3.4 to 11.25 tons → 11.25 to 20 tons	8.9 EEK <u>8.6 FEP</u>			
ingle Package Vertical Heat Pumps	0.0 EEK			
<=5.4 tons	9.0 EER, 3.0 heating COP			
->5.4 to 11.25 tons	8.9 EER, 3.0 heating COP			
\rightarrow 11.25 to 20 tons	8.6 EER, 2.9 heating COP			

Formatted	
Formatted Table	
Formatted	

HVAC Baseline T	able New Construction	_
Equipment Type	Baseline = ASHRAE Std. 90.1 - 2013	
Unitary HVAC/Split Systems and Single		
Package, Air Cooled		
	13 SEER	
	14 SEER	
->5.4 to 11.25 tons	11.0 EER, 12.7 IEER	
→11.25 to 20 tons	10.8 EER, 12.2 IEER	
-> 21 to 63 tons	9.8 EER, 11.4 IEER	
>63 Tons	9.5 EER, 11.0 IEER	
Air Cooled Heat Pump Systems, Split		
System and Single Package		
- <= 5.4 tons, split	14 SEER, 8.2 HSPF	
	14 SEEK, 8.0 HSPF	
->5.4 to 11.25 tons	10.8 EER, 11.0 IEER, 3.3 heating COP	
\rightarrow 11.25 to 20 tons	10.4 EEK, 11.4 IEEK, 3.2 heating COP	
>=21	9.3 EER, 10.4 IEER, 3.2 heating COP	
Water Source Heat Pumps (water		
to air, water loop)		
<=1.4 tons	12.2 EER, 4.3 heating COP	
>1.4 to 5.4 tons	13.0 EER 4.3 heating COP	
>5.4 to 11.25 tons	12.0 EER, 4.2 heating COD	
25.4 to 11.25 tons	15.0 EER, 4.5 heating COP	,
Ground Water Source Heat Pumps		•
<=11.25 tons	18.0 EER, 3.7 heating COP	
Ground Source Heat Pumps (brine		•
to air ground loop)		/
to un, ground toop)	14.1 EER, 3.2 heating COP	
<=11.25 tons		
Package Terminal Air		•
Conditioners- ^{#43}	14.0 - (0.300 * Cap/1,000), EER	•
Package Terminal Heat Pumps-		-
•	14.0 - (0.300 * Cap/1,000), EER	
•	3.7 – (0.052 * Cap/1,000), heating COP	
Single Package Vertical Air		•
Conditioners	10.0 EER	
-<=5.4 tons	10.0 FFR	
->5.4 to 11.25 tons	10.0 EER)
>11.25 to 20 tons	10.0 EEK	,
-711.23 10 20 10118		<u>ا</u> ـــــر /

 $\frac{43}{2}$ Cap means the rated cooling capacity of the product in Btu/h.

Formatted: Font: 12 pt, No underline
Formatted: Table Cells
Formatted: Table Cells, Left
Formatted: Font: 12 pt
Formatted: Font: 12 pt, No underline
Formatted: Table Cells
Formatted: Font: 12 pt
Formatted: Table Cells, Left
Formatted: Font: 12 pt
Formatted: Font: 12 pt, No underline
Formatted: Table Cells
Formatted: Font: 12 pt
Formatted: Table Cells, Left
Formatted: Font: 12 pt
Formatted: Font: 12 pt, No underline
Formatted: Table Cells
Formatted: Font: 12 pt
Formatted: Table Cells, Left
Formatted: Font: 12 pt
Formatted: Font: 12 pt, No underline
Formatted: Font: 12 pt
Formatted: Font: 12 pt, No underline
Formatted: Table Cells
Formatted: Font: 12 pt, No underline
Formatted: Font: 12 pt
Formatted: Table Cells, Left
Formatted: Font: 12 pt
Formatted: Font: 12 pt
Formatted: Font: 12 pt, No underline
Formatted: Table Cells
Formatted: Table Cells, Left
Formatted: Font: 12 pt
Formatted: Font: 12 pt
Formatted: Font: 12 pt

Equipment Type	Baseline = ASHRAE Std. 90.1 - 2013	
Single Package Vertical Heat		•
Pumps		-
-<=5.4 tons	10.0 EER, 3.0 heating COP	
->5.4 to 11.25 tons	10.0 EER, 3.0 heating COP	
->11.25 to 20 tons	10.0 EER, 3.0 heating COP	-

a Cap means the rated cooling capacity of the product in BtuH. If the unit's capacity is less than 7,000 BtuH, use 7,000 BtuH in the calculation. If the unit's capacity is greater than 15,000

BtuH, use 15,000 BtuH in the calculation

<u>EFLH Table</u>				
Facility Type	Heating EFLH _h	<u>Cooling EFLH_c</u>		
Assembly	<u>603</u>	<u>669</u>		
<u>Auto repair</u>	<u>1910</u>	<u>426</u>		
Dormitory	<u>465</u>	<u>800</u>		
<u>Hospital</u>	<u>3366</u>	<u>1424</u>		
<u>Light industrial</u>	<u>714</u>	<u>549</u>		
Lodging – Hotel	<u>1077</u>	<u>2918</u>		
<u>Lodging – Motel</u>	<u>619</u>	<u>1233</u>		
<u>Office – large</u>	<u>2034</u>	<u>720</u>		
<u>Office – small</u>	<u>431</u>	<u>955</u>		
Other	<u>681</u>	<u>736</u>		
Religious worship	<u>722</u>	<u>279</u>		
<u>Restaurant – fast</u> <u>food</u>	<u>813</u>	<u>645</u>		
<u>Restaurant – full</u> <u>service</u>	<u>821</u>	<u>574</u>		
<u>Retail – big box</u>	<u>191</u>	<u>1279</u>		
Retail – Grocery	<u>191</u>	<u>1279</u>		
<u>Retail – large</u>	<u>545</u>	<u>882</u>		
<u>Retail – large</u>	<u>2101</u>	<u>1068</u>		
<u>School –</u> <u>Community</u> <u>college</u>	<u>1431</u>	<u>846</u>		
<u>School –</u> postsecondary	<u>1191</u>	<u>1208</u>		
<u>School – primary</u>	<u>840</u>	<u>394</u>		
<u>School –</u> secondary	<u>901</u>	<u>466</u>		

-	Formatted: Font: 12 pt, No underline
7	Formatted: Table Cells
-	Formatted: Font: 12 pt
	Formatted: Table Cells, Left
	Formatted: Font: 12 pt
	Formatted: Font: 12 pt
	Formatted: Font: 12 pt
	Formatted: Table Cells, Left, Space After: 3 pt

Facility Type	Heating EFLH _h	<u>Cooling EFLH_c</u>
<u>Warehouse</u>	<u>452</u>	<u>400</u>

Multi-family EFLH by Vintage

Facility Type	<u>Prior to 1979</u>	<u>From 1979 to</u> <u>2006</u>	<u>From 2007</u> <u>through</u> <u>Present</u>
Low-rise, Cooling	<u>507</u>	<u>550</u>	<u>562</u>
Low-rise, Heating	<u>757</u>	<u>723</u>	<u>503</u>
High-rise, Cooling	<u>793</u>	<u>843</u>	<u>954</u>
High-rise, Heating	<u>526</u>	<u>395</u>	<u>219</u>

Sources:

- <u>EFLH of ASHRAE Standards 90.1;495 hours-2013, Energy Standard for Unitary</u> <u>HVAC is represented in the "Buildings Except Low Rise Residential Buildings;</u> <u>available at: https://www.ashrae.org/standards-research--technology/standards-guidelines.</u>
- +.2.C&I Unitary HVAC Load Shape Project Report", Table 0 2, Final Report. August 2011, v.1.1, p. 12, Table O-5. The CF reported here is a center point for NJ chosen between the CF for urban NY and for the Mid-Atlantic region. This report was published August 2, 2011 and was performed by KEMA for NEEP. in the PJM peak periods. Available at:

http://www.neep.org/sites/default/files/resources/NEEP_HVAC_Load_Shape_Re_port_Final_August2_0.pdf

3. New York State Joint Utilities, *New York Standard Approach for Estimating Energy* Savings from Energy Efficiency Programs, V6, April 2018. Appendix G – Equivalent Full-Load Hours (EFLH), For Heating and Cooling. Page 535-540. EFLH values for NYC due to proximity to NJ.

Formatted: English (U.S.)

Formatted: Heading 4, Space After: 6 pt, Don't keep with next

Formatted: Font: Not Bold, Not Italic

Formatted: Font: Italic

Formatted: Indent: Left: 0", Space Before: 3 pt, After: 3 pt

Fuel Use Economizers	•	Formatted: Page break before
	4	Formatted: Normal
Algorithms		
ElectricAlgorithms		
Energy Savings $(kWh/yr) = (AEU * 0.13)$	4	Formatted: Indent: First line: 0.25"
	+	Formatted: Indent: First line: 0.5"
	4	Formatted: Indent: First line: 0"
Definition of Variables		Formatted: Normal, Level 4, Keep with next
AEU _= Annual Electric Usage for an uncontrolled AC or refrigeration unit (kWh) =	4	Formatted: Indent: Left: 0.25", Space Before: 3 pt, After: 3 pt
(Input power in KW) * (annual run time)		
0.13= Approximate energy savings factor related to installation of fuel use		Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
Sources:	•	Formatted: Heading 4, Space Before: 12 pt, After: 6 pt
1 Approximate energy savings factor of 0.13 based on average % savings for test sites	4	Formatted: Indept: Left: 0"
and Validation Project for Intellidyne Energy Saving Controls; Intellidyne LLC & Brookhaven National Laboratories; 2006 (http://www.cleargreenpartners.com/attachments/File/NYSERDA_Report.pdf); available at: http://www.cleargreenpartners.com/attachments/File/NYSERDA_Report.pdf.		
Algorithms		
Energy Savings (kWh) = OTF * *SF * *Cap/Eff		
Demand Savings (kW) = Savings/Operating Hours		Formatted: Font: Bold, Font color: Black
Definition of Variables		
OTF = Operational Testing Factor		
SF = Approximate savings factor based on regional temperature bin data (assume 4576		
for equipment under 5.4 tons where a fixed damper is assumed for the baseline and 3318		
for larger equipment where a dry bulb economizer is assumed for the baseline). (Units		
for savings factor are in KWh x rated EEK per ton of cooling or KWh*EER/Ton)		
Cap = Capacity of connected cooling load (tons)		
New Jersey's Clean Energy ProgramPage 12'Protocols to Measure Resource Savings	Ð	

Eff = Cooling equipment energy efficiency ratio (EER)

Operating Hours = 4,438 = Approximate number of economizer operating hours

Dual Enthalpy Economizers

The following algorithm details savings for dual enthalpy economizers. They are to be used to determine electric energy savings between baseline standard units and the high efficiency units promoted in the program. The baseline condition is assumed to be a rooftop unit with fixed outside air (no economizer). The high efficiency units are equipped with sensors that monitor the enthalpy of outside air and return air and modulate the outside air damper to optimize energy performance.

Algorithms

Electric energy savings $(kWh/yr) = N * Tons * (\Delta kWh/ton)$

<u>Peak Demand Savings (kW) = 0^{44} kW</u>

Definition of Variables

N = Number of units

Tons= Rated capacity of the cooling system retrofitted with an economizer $\Delta kWh/ton$ = Stipulated per building type electricity energy savings per ton of
cooling system retrofitted with an economizer

Summary of Inputs

Dual Enthalpy Economizers

Component	Туре	Value	Source •
N	Variable		Application
Tons	Variable	Rated Capacity,	Application
		Tons	
$\Delta kWh/ton$	Fixed	See Table Below	<u>1</u>

Savings per Ton of Cooling System			
Building Type	Savings (ΔkWh/ton)		
Assembly	<u>27</u>		

⁴⁴ Economizer savings occur when outdoor air enthalpy is relatively low, and these conditions mostly exist outside of defined system peak demand periods, therefore, the seasonal peak demand savings for this measure are assumed to be negligible.

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

Forma	tted:	Font:	Italic	

Formatted: Left, Don't keep with next, Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto

Formatted: Heading 3, Left, Don't keep with next

Formatted: Normal

Formatted: English (U.S.)

Formatted: Font: Not Bold

Formatted: Normal

Formatted: Underline, (none)
Formatted: Normal, Level 4, Keep with next

Formatted: Table Caption

Formatted: Table Header, Left, Don't keep with next

Formatted Table

Formatted: Table Header, Left

Page 130

Building Type	Savings (ΔkWh/ton)
Big Box Retail	<u>152</u>
Fast Food Restaurant	<u>39</u>
Full Service Restaurant	<u>31</u>
Light Industrial	<u>25</u>
Primary School	<u>42</u>
Small Office	<u>186</u>
Small Retail	<u>95</u>
Religious	<u>6</u>
Warehouse	<u>2</u>
Other	<u>61</u>

New York State Joint Utilities, New York Standard Approach for Estimating
 Energy Savings from Energy Efficiency Programs, V6, April 2018. Appendix J –
 Commercial HVAC Unit Savings. P.565. Values for NYC due to proximity to NJ,
 the input values are based on data provided on the application form and stipulated savings values derived from DOE 2.2 simulations of a series of prototypical small commercial buildings.

Control II of Theorem control	Formatted: Heading 3, Left, Don't keep with
<u>Iccupancy Controlled Thermostats</u>	liext
<u>The program has received a large amount of custom electric applications for the</u>	
<u>istaliation of Occupancy Controlled Thermostats in noters, moters, and, most recently,</u>	
tondord prostice today is thermostate which are menually controlled by accuments to	
equilate temperature within a facility. An occupancy controlled thermostat is a thermostat	Formatted: Space Before: 6 pt, After: 6 pt
aired with a sensor and/or door detector to identify movement and determine if a room	
s occupied or unoccupied. If occupancy is sensed by the sensor, the thermostat goes into	
<u>n occupied mode (i.e., programmed setpoint).</u> If a pre-programmed time frame elapses	
<u>n unoccupied mode (e.g. setback setboint or off) until occupancy is sensed again. This</u>	
ype of thermostat is often used in hotels to conserve energy.	
The occupancy controlled thermostat reduces the consumption of electricity and/or gas	
y requiring less heating and/or cooling when a room or a facility is vacant or	
noccupied.	
<u>lgorithms</u>	
-	Formatted: Don't keep with next
$\frac{\text{Cooling Energy Savings (k w ll/yr) = (((1_c^* (H+3) + 3_c^* (108 - (H+3)))/108) - 1_c)^*}{(P_* Can_{he} * 12 * FFLH_/FFR_{he})}$	
<u>(re-eupip re-brenep</u>	
<u>Heating Energy Savings (kWh/yr) = $(T_{h} - ((T_{h} + (H+5) + S_{h} + (168 - (H+5)))/168)) *$</u>	
$(P_{\nu} * Can_{\nu} * 12 * EFLH_{\nu}/EER_{\nu})$	
	Formatted: Indent: Left: 0.25"
Heating Energy Savings (Therms/vr) = $(T_b - ((T_b * (H+5) + S_b * (168 - (H+5)))/168) *$	Formatted: Indent: Left: 0.25"
$\frac{\text{Heating Energy Savings (Therms/yr)} = (T_h - ((T_h * (H+5) + S_h * (168 - (H+5)))/168) *}{(P_h * Cap_h * EFLH_h/AFUE_h/100,000)}$	Formatted: Indent: Left: 0.25" Formatted: Font: Not Bold
$\frac{\text{Heating Energy Savings (Therms/yr)} = (T_h - ((T_h * (H+5) + S_h * (168 - (H+5)))/168) *}{(P_h * Cap_h * EFLH_h/AFUE_h/100,000)}$	Formatted: Indent: Left: 0.25" Formatted: Font: Not Bold
$\frac{\text{Heating Energy Savings (Therms/yr)} = (T_h - ((T_h * (H+5) + S_h * (168 - (H+5)))/168) *}{(P_h * Cap_h * EFLH_h/AFUE_h/100,000)}$	Formatted: Indent: Left: 0.25" Formatted: Font: Not Bold
$\frac{\text{Heating Energy Savings (Therms/yr)} = (T_h - ((T_h * (H+5) + S_h * (168 - (H+5)))/168) *}{(P_h * Cap_h * EFLH_h/AFUE_h/100,000)}$ $\frac{\text{Definition of Variables}}{T_h} = \text{Heating Season Facility Temp. (°F)}}$ $T_{\text{result}} = Cooling Season Facility Temp. (°F)$	Formatted: Indent: Left: 0.25" Formatted: Font: Not Bold
$\frac{\text{Heating Energy Savings (Therms/yr) = (T_h - ((T_h * (H+5) + S_h * (168 - (H+5)))/168) *}{(P_h * Cap_h * EFLH_h/AFUE_h/100,000)}$ $\frac{\text{Definition of Variables}}{T_h = \text{Heating Season Facility Temp. (°F)}}$ $\frac{T_c = \text{Cooling Season Facility Temp. (°F)}}{S_h = \text{Heating Season Setback Temp. (°F)}}$	Formatted: Indent: Left: 0.25" Formatted: Font: Not Bold
$\frac{\text{Heating Energy Savings (Therms/yr) = (T_h - ((T_h * (H+5) + S_h * (168 - (H+5)))/168) *}{(P_h * Cap_h * EFLH_h/AFUE_h/100,000)}$ $\frac{\text{Definition of Variables}}{T_h = \text{Heating Season Facility Temp. (°F)}}$ $\frac{T_c = \text{Cooling Season Facility Temp. (°F)}}{S_h = \text{Heating Season Setback Temp. (°F)}}$ $S_c = \text{Cooling Season Setup Temp. (°F)}$	Formatted: Indent: Left: 0.25" Formatted: Font: Not Bold
$\frac{\text{Heating Energy Savings (Therms/yr) = (T_h - ((T_h * (H+5) + S_h * (168 - (H+5)))/168) *}{(P_h * Cap_h * EFLH_h/AFUE_h/100,000)}$ $\frac{\text{Definition of Variables}}{T_h = \text{Heating Season Facility Temp. (°F)}}$ $\frac{T_c = \text{Cooling Season Facility Temp. (°F)}}{S_h = \text{Heating Season Setback Temp. (°F)}}$ $\frac{S_c = \text{Cooling Season Setup Temp. (°F)}}{H = \text{Weekly Occupied Hours}}$	Formatted: Indent: Left: 0.25" Formatted: Font: Not Bold
$\frac{\text{Heating Energy Savings (Therms/yr) = (T_h - ((T_h * (H+5) + S_h * (168 - (H+5)))/168) *}{(P_h * Cap_h * EFLH_h/AFUE_h/100,000)}$ $\frac{\text{Definition of Variables}}{T_h = \text{Heating Season Facility Temp. (°F)}}$ $\frac{T_c = \text{Cooling Season Facility Temp. (°F)}}{S_h = \text{Heating Season Setback Temp. (°F)}}$ $\frac{S_h = \text{Heating Season Setback Temp. (°F)}}{S_c = \text{Cooling Season Setup Temp. (°F)}}$ $\frac{H = \text{Weekly Occupied Hours}}{Cap_{hn}} = \text{Connected load capacity of heat pump/AC (Tons) - Provided on}$	Formatted: Indent: Left: 0.25" Formatted: Font: Not Bold
$\frac{\text{Heating Energy Savings (Therms/yr) = (T_h - ((T_h * (H+5) + S_h * (168 - (H+5)))/168) *}{(P_h * Cap_h * EFLH_h/AFUE_h/100,000)}$ $\frac{\text{Definition of Variables}}{T_h = \text{Heating Season Facility Temp. (°F)}}$ $\frac{T_c = \text{Cooling Season Facility Temp. (°F)}}{S_h = \text{Heating Season Setback Temp. (°F)}}$ $\frac{S_c = \text{Cooling Season Setup Temp. (°F)}}{H = \text{Weekly Occupied Hours}}$ $\frac{Cap_{hp} = \text{Connected load capacity of heat pump/AC (Tons) - Provided on opplication.}}$	Formatted: Indent: Left: 0.25" Formatted: Font: Not Bold
$\frac{\text{Heating Energy Savings (Therms/yr) = (T_h - ((T_h * (H+5) + S_h * (168 - (H+5)))/168) *}{(P_h * Cap_h * EFLH_h/AFUE_h/100,000)}$ $\frac{\text{Definition of Variables}}{T_h = \text{Heating Season Facility Temp. (°F)}}$ $\frac{T_c}{T_c} = \text{Cooling Season Facility Temp. (°F)}$ $\frac{S_h}{S_c} = \text{Heating Season Setback Temp. (°F)}$ $\frac{S_c}{S_c} = \text{Cooling Season Setup Temp. (°F)}$ $\frac{H}{H} = \text{Weekly Occupied Hours}$ $\frac{Cap_{hp}}{Cap_{hp}} = \text{Connected load capacity of heat pump/AC (Tons) - Provided on Application.}$	Formatted: Indent: Left: 0.25" Formatted: Font: Not Bold
$\frac{\text{Heating Energy Savings (Therms/yr) = (T_h - ((T_h * (H+5) + S_h * (168 - (H+5)))/168) *}{(P_h * Cap_h * EFLH_h/AFUE_h/100,000)}$ $\frac{\text{Definition of Variables}}{T_h = \text{Heating Season Facility Temp. (°F)}}$ $\frac{T_c = \text{Cooling Season Facility Temp. (°F)}}{S_h = \text{Heating Season Setback Temp. (°F)}}$ $\frac{S_c = \text{Cooling Season Setback Temp. (°F)}}{H = \text{Weekly Occupied Hours}}$ $\frac{Cap_{hp} = \text{Connected load capacity of heat pump/AC (Tons) - Provided on Application.}}{Cap_h = \text{Equivalent full load cooling hours}}$	Formatted: Indent: Left: 0.25" Formatted: Font: Not Bold
$\frac{\text{Heating Energy Savings (Therms/yr) = (T_h - ((T_h * (H+5) + S_h * (168 - (H+5)))/168) *}{(P_h * Cap_h * EFLH_h/AFUE_h/100,000)}$ $\frac{\text{Definition of Variables}}{T_h = \text{Heating Season Facility Temp. (°F)}}$ $\frac{T_c = \text{Cooling Season Facility Temp. (°F)}}{S_c = \text{Cooling Season Setback Temp. (°F)}}$ $H = \text{Weekly Occupied Hours}}$ $Cap_{hp} = \text{Connected load capacity of heat pump/AC (Tons) - Provided on Application.}}$ $\frac{Cap_h}{EFLH_c} = \text{Equivalent full load cooling hours}}$	Formatted: Indent: Left: 0.25" Formatted: Font: Not Bold
$\frac{\text{Heating Energy Savings (Therms/yr) = (T_h - ((T_h * (H+5) + S_h * (168 - (H+5)))/168) *}{(P_h * Cap_h * EFLH_h/AFUE_h/100,000)}$ $\frac{\text{Definition of Variables}}{T_h = \text{Heating Season Facility Temp. (°F)}}$ $\frac{T_c}{T_c} = \text{Cooling Season Facility Temp. (°F)}}{S_h = \text{Heating Season Setback Temp. (°F)}}$ $\frac{S_c}{S_c} = \text{Cooling Season Setup Temp. (°F)}}{H = \text{Weekly Occupied Hours}}$ $\frac{\text{Cap_hp}}{\text{Cap_hp}} = \text{Connected load capacity of heat pump/AC (Tons) - Provided on Application.}}$ $\frac{\text{EFLH}_c}{\text{EFLH}_b} = \text{Equivalent full load cooling hours}}$ $\frac{\text{EFLH}_h}{\text{EFLH}_h} = \text{Equivalent full load heating hours}}$	Formatted: Indent: Left: 0.25" Formatted: Font: Not Bold
$\frac{\text{Heating Energy Savings (Therms/yr) = (T_h - ((T_h * (H+5) + S_h * (168 - (H+5)))/168) *}{(P_h * Cap_h * EFLH_h/AFUE_h/100,000)}$ $\frac{\text{Definition of Variables}}{T_h = \text{Heating Season Facility Temp. (°F)}}$ $\frac{T_c}{T_c} = \text{Cooling Season Facility Temp. (°F)}}{S_h} = \text{Heating Season Setback Temp. (°F)}}$ $\frac{S_c}{S_c} = \text{Cooling Season Setback Temp. (°F)}}{H} = \text{Weekly Occupied Hours}}$ $\frac{Cap_{hp}}{Cap_{hp}} = \text{Connected load capacity of heat pump/AC (Tons) - Provided on Application.}}$ $\frac{EFLH_c}{EFLH_b} = \text{Equivalent full load cooling hours}}$ $\frac{EFLH_b}{EFLH_b} = \text{Equivalent full load heating hours}}$ $\frac{P_c}{P_c} = \text{Cooling season percent savings per degree setback}}$	Formatted: Indent: Left: 0.25" Formatted: Font: Not Bold
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Formatted: Indent: Left: 0.25" Formatted: Font: Not Bold

12	= Conversion factor from Tons to kBtu/hr to acquire consumption in kWh.
168	= Hours per week.
7	= Assumed weekly hours for setback/setup adjustment period (based on 1
	setback/setup per day, 7 days per week).

Summary of Inputs

Occupancy Controlled Thermostats				
Component	Type	<u>Value</u>	<u>Source</u>	
<u>T</u> <u>h</u>	<u>Variable</u>		<u>Application</u>	
<u>T</u> _c	Variable		Application	
<u>Sh</u>	Fixed	<u>T_h-5°</u>		
<u>S</u> _c	Fixed	$\underline{T_c}+5^{\circ}$		
H	<u>Variable</u>		Application; Default of 84 hrs/week	
<u>Cap_{hp}</u>	Variable		Application •	
<u>Caph</u>	Variable		Application •	
<u>EFLH_{c,h}</u>	Variable	See Table Below	<u>1</u>	
<u>Ph</u>	Fixed	<u>3%</u>	<u>2</u> •	
<u>P_c</u>	Fixed	<u>6%</u>	<u>2</u> •	
<u>AFUE_h</u>	<u>Variable</u>		Application •	
$\underline{\text{EER}}_{\text{hp}}$	Variable		Application •	
			•	

OTF	Fixed	1.0 when operational testing is	
		performed, 0.8 otherwise	
SF		4576 for equipment under 5.4	1
		tons, 3318 otherwise	
Cap	Variable		Application
Eff	Variable		Application
Operating Hours	Fixed	4,438	2

<u>EFLH Table</u>				
Facility Type	Heating EFLH _h	<u>Cooling EFLH_c</u>		
Assembly	<u>603</u>	<u>669</u>		
Auto repair	<u>1910</u>	<u>426</u>		
Dormitory	<u>465</u>	<u>800</u>		
<u>Hospital</u>	<u>3366</u>	<u>1424</u>		
Light industrial	<u>714</u>	<u>549</u>		
Lodging – Hotel	<u>1077</u>	<u>2918</u>		
Lodging – Motel	<u>619</u>	<u>1233</u>		
<u>Office – large</u>	<u>2034</u>	<u>720</u>		

Formatted: Table Cells
Formatted: Table Cells, Left
Formatted: Table Cells
Formatted: Table Cells
Formatted: Table Cells, Left
Formatted: Table Cells
Formatted: Table Cells
Formatted: Table Cells, Left
Formatted: Table Cells
Formatted: Table Cells
Formatted: Table Cells, Left
Formatted: Table Cells
Formatted: Table Cells
Formatted: Table Cells, Left
Formatted: Table Cells
Formatted: Table Cells
Formatted: Table Cells, Left
Formatted: Table Cells
Formatted: Table Caption

Facility Type	Heating EFLH _h	Cooling EFLH _c
<u>Office – small</u>	<u>431</u>	<u>955</u>
<u>Other</u>	<u>681</u>	<u>736</u>
Religious worship	<u>722</u>	<u>279</u>
<u>Restaurant – fast</u> <u>food</u>	<u>813</u>	<u>645</u>
<u>Restaurant – full</u> <u>service</u>	<u>821</u>	<u>574</u>
<u>Retail – big box</u>	<u>191</u>	<u>1279</u>
<u>Retail – Grocery</u>	<u>191</u>	<u>1279</u>
<u>Retail – large</u>	<u>545</u>	<u>882</u>
<u>Retail – large</u>	<u>2101</u>	<u>1068</u>
<u>School –</u> <u>Community</u> <u>college</u>	<u>1431</u>	<u>846</u>
<u>School –</u> postsecondary	<u>1191</u>	<u>1208</u>
<u>School – primary</u>	<u>840</u>	<u>394</u>
<u>School –</u> <u>secondary</u>	<u>901</u>	<u>466</u>
Warehouse	<u>452</u>	400

Multi-family EFLH by Vintage

Facility Type	<u>Prior to 1979</u>	<u>From 1979 to</u> <u>2006</u>	<u>From 2007</u> <u>through</u> <u>Present</u>
Low-rise, Cooling	<u>507</u>	<u>550</u>	<u>562</u>
Low-rise, Heating	<u>757</u>	<u>723</u>	<u>503</u>
High-rise, Cooling	<u>793</u>	<u>843</u>	<u>954</u>
High-rise, Heating	<u>526</u>	<u>395</u>	<u>219</u>

Sources:

- 1. DOE-2 Simulation Modeling
- 2. ClimateQuest Economizer Savings Calculator
- New York State Joint Utilities, New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs, V6, April 2018. Appendix G – Equivalent Full-Load Hours (EFLH), For Heating and Cooling. Page 535-540. EFLH values for NYC due to proximity to NJ.
- 2. ENERGY STAR Products website.

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: Heading 4, Space Before: 9 pt, After: 6 pt

Electric Chillers

The measurement of energy and demand savings for C&I chillers is based on algorithms with key variables (i.e., kW/ton, Coincidence Factor, Equivalent Full Load Hours) measured through existing end-use metering of a sample of facilities.	Formatted: Right: -0.13", Space Before: 6 pt, After: 6 pt
This measure applies to new construction, replacement of failed equipment, or end of useful life. The baseline unit is a code compliant unit with an efficiency as required by ASHRAE Std. $90.1 - 2013$, which is the current code adopted by the state of New Jersey.	
•	Formatted: Right: -0.13"
Algorithms	Formatted: Font: Not Bold
Algorithms	Formatted: Right: 0"
A	Formatted: (none)
For IPLV:	Formatted: Font: Italic
$\frac{\text{Demand}\text{Energy}}{\text{Energy}} \text{ Savings} = (\underline{kWh/yr}) = \underline{N*} \text{ Tons } \frac{X \text{ PDC } X^* \text{ EFLH } *}{X \text{ PDC } X^* \text{ EFLH } *} (IPLV_b - IPLV_q) \leftarrow$	Formatted: Indent: Left: 0.25", Hanging: 0.75", Right: -0.13"
EnergyPeak Demand Savings =(kW) = N * Tons X EFLH X PDC * (IPLV _b – IPLV _q)	Formatted: Indent: Left: 0", First line: 0.25", Right: -0.13"
For FLV:	Formatted: Font: Italic
$\frac{\text{Demand}\text{Energy}}{\text{Energy}} \text{Savings} = (\underline{kWh/yr}) = N^* \text{Tons} \frac{X \text{ PDC} X \text{ EFLH }^*}{X \text{ EFLH }^*} (FLV_b - FLV_q) \leftarrow$	Formatted: Indent: First line: 0.25"
EnergyPeak Demand Savings = (kW) = N * Tons X EFLH X PDC * $(FLV_b - FLV_q)$	Formatted: Indent: Left: 0", First line: 0.25", Right: -0.13"
Definition of Variables	Formatted: Normal, Right: -0.13"
- Definition of Venichler	Formatted: Right: 0"
N – Number of units	
Tons = Rated <u>capacity of coolling</u> equipment <u>cooling capacity</u> .	Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
EFLH = Equivalent Full Load Hours – This represents a measure of chillerenergy	Formatted: Indent: Left: 0.25", Space Before: 3 pt, After: 3 pt
design conditions from JCP&L measurement dataon-peak and off peak periods.	
PDC= Peak Duty Cycle: fraction of time the compressor runs during peak hours*	Formatted: Space Before: 3 pt, After: 3 pt
IPLV _b = Integrated Part Load Value of baseline equipment, kW/TonThe efficiency of the chiller under partial-load conditions.	Formatted: Indent: Left: 0.25", Space Before: 3 pt, After: 3 pt

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

 $IPLV_q$ ____ = Integrated Part Load Value of qualifying equipment, kW/Ton. -The efficiency of the chiller under partial-load conditions.

 FLV_b = Full Load Value of baseline equipment, kW/Ton. -The efficiency of the chiller under full-load conditions.

 FLV_q = Full Load Value of qualifying equipment, kW/Ton. The efficiency of the chiller under full-load conditions.

Summary of Inputs				
	<u>Electric C</u>	hiller Assumptions	5	
Electric Chillers				•
Component	Туре	Situation	Value	Source
Tons	VariableRated	All	Varies	From 🔸
	Capacity, Tons			Application
IPLV _b (kW/ton)	<u>Variable</u>	See table below	<u>Varies</u>	<u>1</u>
IPLV _q (kW/ton)	Variable	All	Varies	From 🔸
-				Application (per
				AHRI Std.
				550/590)
<u>FLV_b (kW/ton)</u>	<u>Variable</u>	See table below	<u>Varies</u>	<u>1</u>
<u>FLV_q (kW/ton)</u>	<u>Variable</u>	<u>All</u>	<u>Varies</u>	From
				Application (per
				AHRI Std.
				<u>550/590)</u>
PDC	Fixed	All	67%	Engineering
				Estimate
EFLH	FixedVariable	All	1,360 <u>See</u>	California 🔹
			<u>Table</u>	DEER2
			Below	

Formatted: Indent: Left: 0.25", Space Before: 3 pt, After: 3 pt

Formatted: Indent: Left: 0.25", Space Before: 3 pt, After: 3 pt

Formatted: Indent: Left: 0.25", Space Before: 3 pt, After: 3 pt

Formatted: Underline

Formatted: Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto

Formatted: Font: Times New Roman Bold, Condensed by 0.2 pt

Formatted: Table Header, Left, Don't keep with next

Formatted Table

Formatted: Table Cells, Space After: 1 pt, Don't keep with next

Formatted: Table Cells, Left, Space After: 1 pt, Don't keep with next

Formatted: Table Cells, Space After: 1 pt, Don't keep with next

Formatted: Table Cells, Space After: 1 pt, Don't keep with next

Formatted Table

Formatted: Table Cells, Left, Space After: 1 pt, Don't keep with next

Formatted: Table Cells, Space After: 1 pt, Don't keep with next

Formatted: Table Cells, Space After: 1 pt, Don't keep with next

Formatted Table

Formatted: Table Cells, Left, Space After: 1 pt, Don't keep with next

Formatted: Table Cells, Space After: 1 pt, Don't keep with next

Formatted: Table Cells, Space After: 1 pt, Don't keep with next

Formatted: Table Cells, Left, Space After: 1 pt, Don't keep with next

Formatted: Table Cells, Space After: 1 pt, Don't keep with next

	Electric Chillers -	Existin	g Buildi	ngs	
		ASHRAE 90.1 2007 *			
		Full		Full	
		Load	IPLV	Load	IPLV
Type	Capacity	COP	COP	kW/ton	kW/ton
Air Cooled	tons < 150	2.80	3.05	1.256	1.153
	<u>tons ≥ 150</u>	2.80	3.05	1.256	1.153
Water Cooled	tons < 75	4.45	5.20	0.790	0.676
Positive	$75 \le \text{tons} < 150$	4.4 5	5.20	0.790	0.676
Displacement	$150 \le \text{tons} < 300$	4.90	5.60	0.718	0.628
(rotary screw	$300 \le \text{tons} < 600$	5.50	6.15	0.639	0.572
and scroll)	<u>tons ≥ 600</u>	5.50	6.15	0.639	0.572
	tons < 150	5.00	5.25	0.703	0.670
Water Cooled	$150 \le \text{tons} < 300$	5.55	5.90	0.634	0.596
Contrifucel	$300 \le \text{tons} < 400$	6.10	6.40	0.576	0.549
Cellunugai	$400 \leq \text{tons} < 600$	6.10	6.40	0.576	0.549
	tons ≥ 600	6.10	6.40	0.576	0.549

a - The 90.1 2007 efficiencies were used in the 90.1 2013 capacity categories for consistency between tables. The 2007 water cooled reciprocating category was removed and the 90.1 2007 water cooled screw and scroll efficiencies were used in the appropriate 90.1 2013 water cooled positive displacement capacity categories (the water cooled reciprocating category was removed from ASHRAE 90.1 in 2010).

Electric Chillers – New Construction

		ASHRAE 90.1 2013 effective 1/1/2015 ^a			
		Pat	h A	Path B 🔸	
		Full		Full	
Туре	Capacity	Load kW/ton	IPLV kW/ton	Load kW/ton	IPLV kW/ton
		10.1	13.7	9.7	15.8
Air Cooled	tons < 150	1.188	0.876	1.237	0.759
All Cooled		10.1	14.0	9.7	16.1
	tons \geq 150	1.188	0.857	1.237	0.745
Water Cooled	tons < 75	0.750	0.600	0.780	0.500
Positive	$75 \le tons < 150$	0.720	0.560	0.750	0.490
Displacement	150 <u><</u> tons < 300	0.660	0.540	0.680	0.440
(rotary screw	$300 \le \text{tons} < 600$	0.610	0.520	0.625	0.410
and scroll)	$tons \ge 600$	0.560	0.500	0.585	0.380

Formatted: Table Caption, Don't keep with next

Formatted: Table Caption, Left, Don't keep with next

Formatted: Table Header, Left, Don't keep with next, Don't keep lines together

Formatted: Table Header, Left, Don't keep with next, Don't keep lines together

Formatted: Table Header, Left, Don't keep with next, Don't keep lines together

Formatted: Table Cells, Left, Space After: 1 pt, Don't keep with next, Don't keep lines together

Formatted: Table Cells, Space After: 1 pt, Don't keep with next, Don't keep lines together

Formatted: Table Cells, Space After: 1 pt, Don't keep with next, Don't keep lines together

Formatted: Table Cells, Left, Space After: 1 pt, Don't keep with next, Don't keep lines together

Formatted: Table Cells, Don't keep with next, Don't keep lines together

Formatted: Table Cells, Left, Space After: 1 pt, Don't keep with next, Don't keep lines together

Formatted: Table Cells, Space After: 1 pt, Don't keep with next, Don't keep lines together

Formatted: Table Cells, Space After: 1 pt, Don't keep with next, Don't keep lines together

Formatted: Table Cells, Left, Space After: 1 pt, Don't keep with next, Don't keep lines together

Formatted: Table Cells, Space After: 1 pt, Don't keep with next, Don't keep lines together

Formatted: Table Cells, Left, Space After: 1 pt, Don't keep with next, Don't keep lines together

Formatted: Table Cells, Don't keep with next, Don't keep lines together

Formatted: Table Cells, Space After: 1 pt, Don't keep with next, Don't keep lines together

Formatted: Table Cells, Left, Space After: 1 pt, Don't keep with next, Don't keep lines together

Formatted: Table Cells, Space After: 1 pt, Don't keep with next, Don't keep lines together Formatted

Formatted: Table Cells, Space After: 1 pt,

Don't keep with next, Don't keep lines together
Formatted

Formatted: Table Cells, Space After: 1 pt, Don't keep with next, Don't keep lines together

Formatted

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Page 138

	tons < 150	0.610	0.550	0.695	0.440		Formatted: Table Cells, Space After: 1 pt,
Water Cooled	$150 \le \text{tons} < 300$	0.610	0.550	0.635	0.400		Formatted, Table Cells, Left, Space After: 1
Centrifugal	$300 \le \text{tons} < 400$	0.560	0.520	0.595	0.390		pt, Don't keep with next, Don't keep lines
Centinugai	$400 \le \text{tons} < 600$	0.560	0.500	0.585	0.380	\backslash	together
	tons ≥ 600	0.560	0.500	0.585	0.380	Į/	Formatted: Table Cells, Space After: 1 pt, Don't keep with next, Don't keep lines together
a – Values in ital	lics are EERs.					$\left(\right)$	Formatted: Table Cells, Left, Space After: 1
	<u>EFLH Tab</u>	<u>le</u>				$\ $	together
Γ	Facility Type	<u>Coolin</u> EFLH	g				Formatted: Table Cells, Don't keep with next, Don't keep lines together
	Assembly	<u>669</u>	<u> </u>				Formatted: Table Cells, Space After: 1 pt, Don't keep with next, Don't keep lines together
	Auto repair	<u>426</u>					Formatted: Table Cells, Left, Space After: 1
	Dormitory	<u>800</u>					pt, Don't keep with next, Don't keep lines together
	<u>Hospital</u>	<u>1424</u>				1111	Formatted: Table Cells, Space After: 1 pt,
	<u>Light industrial</u>	<u>549</u>					Formatted, Table Cells, Left, Space After: 1
	Lodging – Hotel	<u>2918</u>					pt, Don't keep with next, Don't keep lines
	<u>Lodging – Motel</u>	<u>1233</u>					together
	<u>Office – large</u>	<u>720</u>					Formatted: Table Cells, Space After: 1 pt, Don't keep with next, Don't keep lines together
	<u>Office – small</u>	<u>955</u>					Formatted: Table Cells, Left, Space After: 1
	Other	<u>736</u>					pt, Don't keep with next, Don't keep lines
	Religious worship	<u>279</u>					Formatted: Don't keen with next
	<u>Restaurant – fast food</u>	<u>645</u>					Pointatted. Don't keep with heat
	<u>Restaurant – full</u>	574					
	service	<u>571</u>					
	<u>Retail – big box</u>	<u>1279</u>					
	Retail – Grocery	1279					

882

1068

<u>846</u>

1208

394

<u>466</u> 400

Multi-family EFLH by Vintage

<u>Retail – large</u> <u>Retail – large</u>

School – Community

<u>college</u> <u>School – postsecondary</u>

School - primary

School - secondary

Warehouse

Facility Type	<u>Prior to 1979</u>	<u>From 1979 to</u> <u>2006</u>	<u>From 2007</u> <u>through</u> <u>Present</u>
Low-rise, Cooling	<u>507</u>	<u>550</u>	<u>562</u>
High-rise, Cooling	<u>793</u>	<u>843</u>	<u>954</u>

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Page 139

Sources

- <u>1. ASHRAE Standards 90.1-2013. Energy Standard for Buildings Except Low Rise</u> <u>Residential Buildings. https://www.ashrae.org/standards-research--</u> technology/standards--guidelines.
- 2. New York State Joint Utilities, New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs, V6, April 2018. Appendix G – Equivalent Full-Load Hours (EFLH), For Heating and Cooling. Page 535-540. EFLH values for NYC due to proximity to NJ.

Formatted: Keep with next, Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline

Formatted: English (U.S.)

Formatted: Page break before

Variable Frequency Drives

The measurement This section provides algorithms and assumptions for reporting of energy and demand savings for C/I Variable Frequency Drive for (VFD applications is are for constant and variable air volume system) installations for HVAC systems including: supply air fans, return air fans, chilled water and condenser water pumps, hot water circulation pumps, water source heat pump circulation pumps, cooling tower fans, kitchen hood fans, and boiler feed water pumps, and boiler draft fans only... VFD applications for other than this useend uses should follow the custom path.

Formatted: Right: 0"

<u>Algorithms</u>

Algorithms

Energy Savings (kWh) = 0.746 * */yr) =	<u>N *</u> HP * *HRS * (ESF/ \/m _m		Formatted: Font: Italic
			Formatted: Indent: First line: 0.25"
Peak Demand Savings (kW) = 0.746 * *	<u>N *</u> HP * (DSF /n_{motor})		Formatted: Indent: First line: 0.25"
			Formatted: Font: Italic
Definitions of Variables		•	Formatted: Underline, (none)
			Formatted: Normal, Level 4, Keep with next
$\underline{N} = \underline{N}\underline{u}\underline{m}\underline{b}\underline{r}$ of motors controlle	ed by VFD(s) per applicatio	<u>n</u>	
HP = nameplate = Nameplate moto	or horsepower or manufactu	rer 🔸	Formatted: Space Before: 3 pt, After: 3 pt
spec.specification sheet per application			
The second secon	Formatted: Space Before: 3 pt, After: 3 pt		
DSF= Demand Savings Factor. T determining the ratio (kW per HP)	' he demand savings factor is	calculated by	
Summary of the power requirement for base conditions Inputs	line and VFD control at pea	<u>k</u>	Formatted: Heading 4, Right: 0", Tab stops: Not at 0.25"
<u></u>			Formatted: English (U.S.)
HRS = annual operating hours			
		•	Formatted: Normal
Variable Free	quency Drives		Formatted: Table Header, Right: 0", Tab stops: Not at 0.25"
Component Type	Value	Source 4	Formatted: Font: Not Italic
Matan IID Variable	Namanlata/Manufacturar	Application	Formatted: Table Cells, Right: 0", Tab stops:

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Page 141

		Spec. Sheet		
भ _{motor}	Variable	Nameplate/Manufacturer Spec. Sheet	Application	
ESF	Variable	See Table Below	Connecticut Light and PowerDerived value based on the following sources: 1, 2, 3	Formatted: Table Cells, Right: 0", Tab stops: Not at 0.25"
DSF	Variable	See Table Below	Connecticut Light and PowerDerived value based on the following sources: 1, 2, 3	Formatted: Table Cells, Right: 0", Tab stops: Not at 0.25"
HRS	Variable	>2,000	Application	

The ESF for the supply and return fans and circulating pumps are derived from a 2014 NEEP-funded study of 400 VFD installations in eight northeast states. The derived values are based on actual logged input power data and reflect average operating hours, load factors, and motor efficiencies for the sample. Savings factors representing cooling tower fans and boiler feed water pumps are not reflected in the NEEP report. Values representing these applications are taken from April 2018 New York TRM, Appendix K, and represent average values derived from DOE2.2 simulation of various building types and climate zones, supplemented with results from an earlier analysis of actual program data completed by NSTAR in 2010.

The DSF are derived from the same sources. The NEEP values reflect the actual average impact for the category occurring in the PJM defined peak demand period. The NY values are based on a similar but not identically defined peak period. In all cases the values are expressed in kW/HP rating of the controlled motor and reflect average load factors during the peak period and motor efficiencies for the sample.

VFD Savings Factors					
Application	ESF (kWh/Year-HP)	DSF (kW/HP)	<u>Source</u>		
Supply Air Fan	<u>2,033</u>	<u>0.286</u>	<u>1</u>		
Return Air Fan	<u>1,788</u>	<u>0.297</u>	<u>1</u>		
CHW or CW Pump	<u>1,633</u>	<u>0.185</u>	<u>1</u>		
HHW Pump	<u>1,548</u>	<u>0.096</u>	<u>1</u>		
WSHP Pump	<u>2,562</u>	<u>0.234</u>	<u>1</u>		
<u>CT Fan</u>	<u>290</u>	<u>-0.025</u>	<u>2, 3</u>		
Boiler Feedwater Pump	<u>1,588</u>	<u>0.498</u>	<u>2,3</u>		

Formatted: Font: Bold	
Formatted: Right: 0", Space Before: 6 After: 6 pt, Tab stops: Not at 0.25"	pt,
Formatted: Table Caption	

Formatted: Indent: Left: 0.5", Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline

	Component	Energy Savings Factor, ESF	Demand Savings Factor, DSF
	Airfoil/Backward Inclined Fans	0.475	0.448
	Forward Curved Fans	0.240	0.216
	Chilled Water Pumps	0.580	0.201
Sources	Cooling Tower Fans	0.580	0.000

Formatted: No underline

- 1. Cadmus, NEEP Variable Speed Drive Loadshape Project, August 2014; available at: http://www.neep.org/variable-speed-drive-loadshape-study-final-report.
- 2. New York State Joint Utilities, *New York Standard Approach for Estimating Energy* Savings from Energy Efficiency Programs, V6, April 2018. Appendix K – VFD savings factors derived from DOE2.2 simulations reflecting a range of building types and climate zones.
- 3. Chan, Tumin Formulation of Prescriptive Incentive for VFD, and Motors and VFD Impact Tables, NSTAR 2010.
Variable Speed Air Compressors with Variable Frequency Drives This measure applies to the installation of variable speed air compressors in retrofit installations where they replace fixed speed compressor with either inlet vane modulation, load no load, or variable displacement flow control. The measure also applies to "lost opportunity" installations including new construction, the expansion of existing facilites, or replacement of existing equipment at end of life. In all cases the baseline is assumed to be a fixed speed compressor with one of the flow control methods described above.

The measure applies to variable speed air compressor up to 75 HP. For larger installations, the implementation cost and energy savings varies significantly between installations and the deemed savings factors provided here are not applicable. Custom protocols should be applied to derive savings and incentive levels for installations larger than 75 HP.

<u>Algorithms</u>

The measurement of energy and demand savings for variable frequency drive (VFD) air compressors.

Algorithms

Energy Savings (kWh/yr) = HRS * (*(Maximum kW/HP Savings) *)*Motor HPSF * HP • * 0.746

<u>Peak</u> Demand Savings (kW) = <u>PDC * (*(Maximum kW/HP Savings) *)*Motor</u> <u>HPHP * CF * 0.746</u>

Maximum kW/HP Savings = Percent Energy Savings * (0.746 / EFF_b)

Definitions Definition of Variables

HRS____ = Annual compressor runtime (hours)-run time from application-, (hours/year).

PDC = Peak Duty Cycle: fraction of time the compressor runs during peak hours

EEF_b = Efficiency of the industry standard compressor at average load

0.746 = kW to HP conversion = Conversion factor = HP to kW

New Jersey's Clean Energy Program Protocols to Measure Resource Savings **Formatted:** Normal, Level 3, Space Before: 12 pt, After: 3 pt, Page break before, Keep with next

Formatted: English (U.S.)

Formatted: Don't keep lines together Formatted: Underline, (none) Formatted: Indent: First line: 0.25", Don't keep lines together Formatted: Right: 0", Space After: 10 pt, Line spacing: Multiple 1.15 li, Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto Formatted: Indent: First line: 0.25", Right: 0", Space After: 10 pt, Line spacing: Multiple 1.15 li, Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto Formatted: Underline, (none) Formatted: English (U.S.) Formatted: Indent: First line: 0.25", Right: 0", Space After: 10 pt, Line spacing: Multiple 1.15 li, Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto, Tab stops: Not at 0.25'

Formatted: Indent: Left: 0.25", Hanging: 0.75", Right: 0", Space After: 10 pt, Line spacing: Multiple 1.15 li, Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto, Tab stops: Not at 0.25"

Page 144

<u>SF</u> = Deemed Savings factor from savings factor table, kW/nameplate HP.

<u>HP</u> = Nameplate motor HP for variable speed air compressor, HP.

<u>CF</u> = Coincidence factor applicable to commercial compressed air installations

Summary of Inputs

Air Compressors with VFDs

Component	Туре	Value	Source
Motor_HP	Variable	Nameplate	Application
Maximum kW/HP	Fixed	0.274	Calculated
Savings			
PDC <u>SF</u>	Fixed	0. 865<u>186</u>	1
HRS	FixedVariable	49576,978 hours/year	2Application, default
			value from source 1
Percent Energy	Fixed	22% <u>1.05</u>	<u>31</u> •
SavingsCF			
EEF _b	Fixed	0.60	3

Sources:

<u>Aspen Systems Corporation, Impact Evaluation of 2014 RI Prescriptive Variable</u> Speed Drive Incentive Program Support for Industrial Air Compressors, June 20, 2005.

2. Xenergy, Assessment of the Market for Compressed Air Efficiency Systems. 2001.

3.1.ACEEE, Modeling and Simulation of Air Compressor Energy Use. 2005Installations, * National Grid, Prepared by KEMA, July 15, 2016. Formatted: Table Header, Right: 0", Tab stops: Not at 0.25" Formatted: Font: Not Italic Formatted: Table Cells, Right: 0", Tab stops: Not at 0.25" Formatted: Table Cells, Right: 0", Tab stops: Not at 0.25" Formatted: Font: Not Italic Formatted: Font: Not Italic Formatted: Table Cells, Right: 0", Tab stops: Not at 0.25" Formatted: Table Cells, Right: 0", Tab stops: Not at 0.25" Formatted: Font: Not Italic Formatted: (none) Formatted: English (U.S.) Formatted: Heading 4 Formatted: Font: Not Italic Formatted: Font: Not Italic Formatted: Sources, Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 +

Alignment: Left + Aligned at: 0" + Indent at:

0.25"

Formatted: Table Caption, Left

Formatted: Page break before

Kitchen Hoods with Variable Frequency Control utilize optical and temperature sensors at the hood inlet to monitor cooking activity. -Kitchen hood exhaust fans are throttled in response to real time ventilation requirements.- Energy savings result from fan power reduction during part load operation as well as a decrease in heating and cooling requirement of make-up air.

New and Retrofit Kitchen Hoods with Variable Frequency Drives

Algorithms		Formatted: Font: Not Bold
Electric Fan Savings (kWh) = Q/yr) = N * (HP * *LF * 0.746/FEFF) * RH * PR	-	Formatted: Indent: First line: 0.25"
Heating Savings (MMBtu/yr) = SF * CFM/SF * OF * FR * HDD * 24 * 1.08 / (HEF * 1,000,000)	F	Formatted: Indent: Left: 0.25"
Cooling Savings (kWh/yr) = SF * CFM/SF * OF * FR * CDD * 24 * 1.08 / (CEFF * 3 412)	4	Formatted: Indent: First line: 0.25"
Definition of Variables <u>N = Number</u>	•	Formatted: Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline
Definition of Variables		Formatted: Heading 4
	\sim	Formatted: Underline, (none)
Q=Quantity of Kitchen Hood Fan Motors		Formatted: Normal, Level 4, Keep with next
HP = Kitchen Hood Fan Motor HP		Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
		Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
LF = Existing Motor Loading Factor	4	Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
0.746 _= Conversion $\frac{\text{from factor}}{\text{from factor}}$ HP to kW	•	Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
F _{EFF} = Efficiency of Kitchen Hood Fan Motors (%)		Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
		Formatted: Subscript
RH= Kitchen Hood Fan Run Hours		Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
PR= Fan Motor Power Reduction resultant from VFD/Control Installation		Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
SF = Kitchen Square Footage	•	Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
CFM/SF = Code required ventilation rate per square foot for Commercial Kitchen spaces		Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

OF= V	entilation rate o		Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt		
$FR _= FI$	low Reduction r	ntrol Installation		Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt	
$HDD_{mod} = 2$	Modified Heatir	ng Degree Days based	on location and facility type		Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
$CDD_{mod} = 1$	Modified Coolir	ng Degree Days based	on location and facility type		Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
24 = Hours	per Day				Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
1.08 = Sens	sible heat factor	for air ((Btu/hr) / (CFN	/I * Deg F))		Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
$H_{EEE} = Effi$	ciency of Heatir	og System (AFUE %)			Formatted: Subscript
	ciency of ficuli				Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
$C_{EFF} = Effi$	ciency of Coolir		Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt		
3/112 - Co	nversion factor	from Btu to kWh (3/1	$2 \operatorname{Btu} - 1 \operatorname{kWh}$		Formatted: Subscript
5,412 - 00		nom Dia to k vin (3,41	$2 \operatorname{Dtu} = 1 \operatorname{KWH}$		Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
1,000,000 =	= Btu/MMBtu				Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
Summary of In	<u>puts</u>				
	-				Formatted: Keep with next
		Formatted: Table Caption, Left, Don't keep with next			
Component	Туре	Value	Source		Formatted: Table Header, Right: 0", Tab
<u>QN</u>	Variable	Quantity	Application		stops: Not at 0.25"
HP	Variable	Nameplate	Application	•	Not at 0.25"
LF	Fixed	0.9	Melink Analysis Sample ¹ Samp	$\frac{1}{10}$	Formatted: Table Cells, Right: 0", Tab stops:
FEFF	Variable	Based -on Motor	NEMA Premium Efficiency, TEF	E 1800	Not at 0.25"
		HP	RPM	$N \setminus J$	Formatted: Font: Not Italic

Formatted: Table Cells, Right: 0", Tab stops: Not at 0.25"

Variable

Based on Facility

TypeSee Table

Below

⁴⁵ To assist with development of this protocol, Melink Corporation provided several sample analyses

performed on typical facilities utilizing Intelli-Hood control systems. The analysis performed is used

nationwide by Melink to develop energy savings and financial reports related to installation of these

operating hours for typical campus, lodging, restaurant and supermarket facility types.

systems for interested building owners. Melink's analysis is mirrored in this protocol and includes several

of the assumed values utilized here, including an average 0.9 load factor on hood fan motors, as well as

RH

Facility Specific Value Table2

Formatted: Font: Not Italic

Formatted: Table Cells, Right: 0", Tab stops: Not at 0.25" Formatted: Font: Not Italic, Subscript

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted: Table Cells, Right: 0", Tab stops: Not at 0.25"

	PR	Variable	See Table	Facility Specific Value Table	Formatted: Font: Not Italic
			Below Based on		Formatted: Table Cells, Right: 0", Tab stops:
			Facility Type		Not at 0.25"
	SF	Variable	Kitchen Square	Application •	Formatted: Font: Not Italic
			Footage		Formatted: Table Cells, Right: 0", Tab stops:
I	CFM / SF	Fixed	0.7	ASHRAE 62.1 2013 Table 6.51	Not at 0.25"
İ	OF	Fixed	1.4	Estimated Typical Kitchen	Formatted: Font: Not Italic
				Design ² Design ⁴⁶	Formatted: Table Cells, Right: 0", Tab stops: Not at 0.25"
	FR	Variable	Based on Facility	Facility Specific Value Table2	Formatted: Font: Not Italic
			Туре		Formatted: Table Cells, Right: 0", Tab stops:
I	HDD _{mod}	Variable	See Table Below	Heating Degree Day Table 34	Not at 0.25"
	CDD _{mod}	Variable	See Table Below	Cooling Degree Day Table	Formatted: Font: Not Italic
Ì	H _{EFE}	Fixed	0.8	8.1F ³ EstimatedEstimated Heating System	Formatted: Table Cells, Right: 0", Tab stops:
				Efficiency ³ Efficiency ⁴⁷	Not at 0.25"
	C	Fired	2.00	Estimated Cooling System Efficience ⁴	Formatted: Font: Not Italic
	CEFF	гіхец	5.00	Efficiency ⁴⁸	Formatted: Table Cells, Right: 0", Tab stops: Not at 0.25"

Facility-Specific Values <mark>Table⁵Table</mark>

Facility Type	Run Hours	Power Reduction (PR)	Flow Reduction (FR)
Campus	5250	0.568	0.295
Lodging	8736	0.618	0.330
Restaurant	5824	0.552	0.295
Supermarket	5824	0.597	0.320
Other	5250	0.584	0.310

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted: Font: Not Italic Formatted: Font: Not Italic

Formatted: Font: Not Italic Formatted: Table Caption Formatted: Centered

Not at 0.25'

Not at 0.25'

Not at 0.25"

Formatted: Table Cells, Right: 0", Tab stops:

Formatted: Table Cells, Right: 0", Tab stops:

Formatted: Table Cells, Right: 0", Tab stops:

Formatted: Font: Not Italic, Subscript

Formatted: Font: Not Italic, Subscript

⁴⁶ Oversize factor of 1.4 is a best estimate based on past experience, assessments conducted at facilities with commercial food service equipment and approximations based on Melink sample analyses, which lead to average commercial kitchen ventilation rate of 1 CFM/SF (0.7 * 1.4). While exact ventilation rate is dependent on installed equipment and other factors, this figure is meant to represent average ventilation across potential retrofit and new installation projects.

⁴⁷ A typical heating system efficiency of 80% AFUE is assumed based on estimates of average facility size, heating system age, and past and present code requirements, as well as assumptions indicated in Melink sample analyses. This figure is meant to represent average heating system efficiency across potential retrofit and new installation projects.

⁴⁸ A typical cooling system efficiency of 3.00 COP (10.24 EER, 1.17 kW/Ton) is assumed based on estimates of average facility size, cooling system age, and past and present code requirements, as well as assumptions indicated in Melink sample analyses. This figure is meant to represent average cooling system efficiency across potential retrofit and new installation projects.

Formatted: Table Caption, Space Before: 12 pt

Modified Heating Degree Days <mark>Table⁶Table</mark>

	Heating Energy	Degree Day	Atlantic City	Newark	Philadelphia	Monticello	Formatted: Centered
Building Type	Density (kBtu/sf)	Adjustment Factor	(HDD)	(HDD)	(HDD)	(HDD)	
Education	29.5	0.55	2792	2783	2655	3886 /	
Food Sales	35.6	0.66	3369	3359	3204	4689	
Food Service	39.0	0.73	3691	3680	3510	5137	
Health Care	53.6	1.00	5073	5057	4824	7060	
Lodging	15.0	0.28	1420	1415	1350	1976	
Retail	29.3	0.55	2773	2764	2637	3859	
Office	28.1	0.52	2660	2651	2529	3701	
Public Assembly	33.8	0.63	3199	3189	3042	4452	
Public Order/Safety	24.1	0.45	2281	2274	2169	3174	
Religious Worship	29.1	0.54	2754	2745	2619	3833	
Service	47.8	0.89	4524	4510	4302	6296]
Warehouse/Storage	20.2	0.38	1912	1906	1818	2661]

Formatted: Table Caption, Space Before: 12 pt

Modified Cooling Degree Days Table						
Building Type	Degree Day Adjustment Factor	Atlantic City (CDD)	Newark (CDD)	Philadelphia (CDD)	Monticello (CDD)	
Education	0.55	824	893	806	625	
Food Sales	0.66	989	1071	967	750	
Food Service	0.73	1094	1185	1069	830	
Health Care	1.00	1499	1623	1465	1137	
Lodging	0.28	420	454	410	318	
Retail	0.55	824	893	806	625	
Office	0.52	779	844	762	591	
Public Assembly	0.63	944	1022	923	716	
Public Order/Safety	0.45	675	730	659	512	
Religious Worship	0.54	809	876	791	614	
Service	0.89	1334	1444	1304	1012	
Warehouse/Storage	0.38	570	617	557	432	

Madified Cooling Degree Dave Table⁷Table

Formatted: Centered

Sources:

- 1. To assist with development of this protocol, Melink Corporation provided several sample analyses performed on typical facilities utilizing Intelli Hood control systems. The analysis performed is used nationwide by Melink to develop energy savings and financial reports related to installation of these systems for interested building owners. Melink's analysis is mirrored in this protocol and includes several of the assumed values utilized here, including an average 0.9 load factor on hood fan motors, as well as operating hours for typical campus, lodging, restaurant and supermarket facility types.
- 2. Oversize factor of 1.4 is a best estimate based on past experience, assessments conducted at facilities with commercial food service equipment and approximations based on Melink sample analyses, which lead to average commercial kitchen ventilation rate of 1 CFM/SF (0.7 * 1.4). While exact ventilation rate is dependent on installed equipment and other factors, this figure is meant to represent average ventilation across potential retrofit and new installation projects.
- A typical heating system efficiency of 80% AFUE is assumed based on estimates of average facility size, heating system age, and past and present code requirements, as well as assumptions indicated in Melink sample analyses. This figure is meant to represent average heating system efficiency across potential retrofit and new installation projects.
- 4. A typical cooling system efficiency of 3.00 COP (10.24 EER, 1.17 kW/Ton) is assumed based on estimates of average facility size, cooling system age, and past and present code requirements, as well as assumptions indicated in Melink sample analyses. This figure is meant to represent average cooling system efficiency across potential retrofit and new installation projects.

Formatted: English (U.S.)

Formatted: Heading 4, Space After: 6 pt

- Image: https://www.ashrae.org/standards-research--technology/standards--guidelines, Table

 6.5.
- 5.2. Facility Specific Values table constructed based on consolidation of Melink sample analysis data. -Facility run hours were averaged across all like sample analyses.- Fan power and flow reductions were calculated utilizing fan power profiles included in each sample analysis.
 - 6. KEMA, Smartstart Program Protocol Review. 2009.
- 3. KEMA, June 2009, New Jersey's Clean Energy Program Smartstart Program Protocol <u>Review; available at:</u> <u>http://www.njcleanenergy.com/files/file/Library/HVAC%20Evaluation%20Report%2</u> <u>0-%20Final%20June%2011%202009.pdf.</u>
- 7.4. Modified Cooling Degree Days table utilizes Degree Day Adjustment factors from Heating Degree Days table and cooling degree days for each of the four representative cities as indicated by degreedays.net.

Commercial Refrigeration Measures

For Aluminum Night Curtains, Door Heater Controls, Electric Defrost Controls, Evaporator Fan Controls, and Novelty Cooler Shutoff, see applicable protocols for the commercial Direct Install program. **Formatted:** Sources, Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0" + Indent at: 0.25"

Formatted: Sources, No bullets or numbering

For-Energy Efficient <u>Glass</u> Doors for <u>on Vertical</u> Open Refrigerated Cases :	•	Formatted: Heading 3, Space After: 6 pt, Page break before
This measure applies to retrofitting vertical, open, refrigerated display cases with high efficiency glass doors that have either no anti-sweat heaters ("zero energy doors"), or very low energy anti- sweat heaters. The deemed savings factors are derived from the results of a controlled test designed to measure the impact of this measure. The results of the test were presented at the 2010 International Refrigeration and Air Conditioning conference.		
Algorithms	•	Formatted: Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline
Energy Savings (kWh/yr): Δ kWh = ESF × CL		Formatted: Heading 4 Formatted: No underline
Peak Algorithms	•	Formatted: Space Before: 6 pt, After: 3 pt
Demand Savings <u>+ (kW):</u> ΔkW = (HG × EF × CL) / (EER × 1000)ΔkWh / Hours	4	Formatted: Indent: First line: 0.25"
Annual Heating Energy Savings: <u>ATherms = HSF * CL</u>		
$\frac{\text{Definition of Variables}}{\Delta kWh} = Gross customer annual kWh savings for the measure}$	•	Formatted: Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline
$\Delta kW \times Usage$		Formatted: Heading 4
Definitions of Variables		
$\frac{\Delta kW = gross}{(kW)} = Gross}$ customer connected load kW savings for the measure		Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
HG = Loss of cold air or heat gain for refrigerated cases with no cover (Btu/hr ft opening)		
EF = Efficiency Factor, fraction of heat gain prevented by case door		
ESF = Stipulated annual electric savings per linear foot of case HSF = Stipulated annual heating savings factor per linear foot of case CL =	•	Formatted: Indent: First line: 0.25", Space
application)		belore. 5 pt, Alter. 5 pt
EER = Compressor efficiency (Btu/hr watt)		
$\frac{1000 = \text{Conversion from watts to kW (W/kW).}}{1000 = \text{Conversion from watts to kW (W/kW).}}$		
$\Delta kWh = gross customer annual kWh savings for the measure (kWh)$		

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

Page 152

Usage = hours per year

<u>Hours</u> = Hours per year that case is in operation, use 8,760 unless otherwise indicated.

Summary of Inputs

<u>Glass Doors -</u> Commercial Refrigeration

Formatted: Table Caption, Left

Component	Туре	Value		Source +	Formatted: Table Header, Left	
HG	Fixed	760	PG&E s	study by ENCON	Formatted Table	
			Mechan	ical & Nuclear		
			Enginee	ering, 1992		
EF	Fixed	0.85	PG&E s	study by ENCON		
			Mechan	ical & Nuclear		
			Enginee	ering, 1992	_	
ESF	Fixed			Derived from the		
		<u>395 kWh/year-foc</u>	<u>ot</u>	<u>Tollowing sources:</u>		
LICE	T . 1	10 5 551 / 6		1,2,3,4,3	_	
<u>HSF</u>	<u>Fixed</u>	10.5 Therms/year-fo	<u>oot</u>	Derived from the		
				<u>1 2 2 4 5</u>		
CI	Variable.			<u>1,2,3,4,3</u> Debate Application or		
CL	variable			Manufacturer Data		
Harra	Trine 4	9.760 Defeet			Formatted Table	
Hours	Hours Fixed 8,760 Default 3					
A				_	Formatted: No underline	
Sources					Formatted: Space After: 10 pt, Line spacing: Multiple 1.15 li	
1. Energy Use of Do	pored and Op	en Vertical Refrigerated D	oisplay, B	rian Fricke and	Formatted: English (U.S.)	
Bryan Becker, Ur	niversity of M	issouri – Kansas City, 201	0; preser	nted at the 2010		
International Ref	rigeration and	Air Conditioning Conference	ence, Scho	ool of Mechanical		
Engineering, Pure	lue University	y, Paper #1154; available a	<u>at:</u>			
http://docs.lib.pu	<u>due.edu/cgi/v</u>	viewcontent.cgi?article=21	53&cont	<u>ext=iracc</u>		
http://docs.lib.pu	http://docs.lib.purdue.edu/iracc/1154					
2. Refrigeration COP of 2.2 used in derivation of savings factors – Kuiken et al, Focus						
on Energy Evaluation, Business Program: Deemed Savings Manual V 1.0, KEMA,						
<u>March 22, 2010.</u>						
<u>3. HVAC COP of 3.2 used in derivation of savings factors – ASHRAE Standards 90.1-</u>						
<u>2007 and 2013, E</u>	<u>nergy Standa</u>	<u>rd for Buildings Except Lo</u>	<u>ow Rise R</u>	<u>Pesidential</u>		
<i>Buildings</i> . nups://www.asnrae.org/standards-researchtechnology/standards						
guideinnes, Table 0.8.1A.						
<u>4. Gas boiler efficiency of 80% used in derivation of savings factors – ASHRAE</u>						
<u>Standards 90.1-20</u>	<u>007 and 2013.</u>	<u>Energy Standard for Buil</u>	<u>dings Ex</u>	<u>cept Low Rise</u>		

<u>Residential Buildings.</u> https://www.ashrae.org/standards-research-technology/standards--guidelines, Table 6.8.1F.

5. DOE Typical Meteorological Year (TMY3) data for Trenton, Newark, and Atlantic <u>City.</u>

<u>Aluminum Night Covers</u>

This measure is applicable to existing open-type refrigerated display cases where considerable heat is lost through an opening that is directly exposed to ambient air. These retractable aluminum woven fabric covers provide a barrier between the contents of the case and the outside environment. They are employed during non-business hours to significantly reduce heat loss from these cases when contents need not be visible.

Savings approximations are based on the report, "Effects of the Low Emissivity Shields on performance and Power use of a refrigerated display case," by Southern California Edison, August 8, 1997. Southern California Edison (SCE) conducted this test at its stateof-the-art Refrigeration Technology and Test Center (RTTC), located in Irwindale, CA. The RTTC's sophisticated instrumentation and data acquisition system provided detailed tracking of the refrigeration system's critical temperature and pressure points during the test period. These readings were then utilized to quantify various heat transfer and power related parameters within the refrigeration cycle. The results of SCE's test focused on three typical scenarios found mostly in supermarkets: low, medium and high temperature cases.

Algorithms

Energy Savings (kWh/yr) = W * H * F

Definition of Variables

- W = Width of protected opening in ft.
- <u>H</u> = Hours per year covers are in place
- <u>F</u> = Savings factor based on case temperature

Summary of Inputs

Aluminum	Night	Covers -	Commercial	Refrigeration
Alummum	Tugut .	COVERS -	Commercial	Kelliger aufon

Component	Type	Value	Source
W	Variable		<u>Application</u>
<u>H</u>	<u>Variable</u>		Application
<u>F</u>	<u>Variable</u>	Low temperature (-35F to -5F) $F = 0.1 \text{ kW/ft}$	<u>1</u>
		Medium temperature (0F to 30F) $F = 0.06 \text{ kW/ft}$	
		High temperature (35F to 55F) $F = 0.04 \text{ kW/ft}$	

Sources

 Southern California Edison (SCE), "Effects of the Low Emissivity Shields on performance and Power use of a refrigerated display case," August 8, 1997. **Formatted:** Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline

Formatted: English (U.S.)

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

Formatted: Heading 3, None, Space Before: 0 pt, After: 6 pt, Page break before, Don't keep with next

Formatted: Allow hanging punctuation, Font Alignment: Auto

Formatted: Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto

Formatted: English (U.S.)

Formatted: Underline, (none)

Formatted: Heading 4

Formatted: Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline

Formatted: Heading 4

Page 155

Walk-in Cooler/Freezer Evaporator Fan Control

This measure is applicable to existing walk-in coolers and freezers that have evaporator fans which run continuously. The measure adds a control system feature to automatically shut off evaporator fans when the cooler's thermostat is not calling for cooling. The measurement of energy savings for this measure is based on algorithms with key variables provided by manufacturer data or prescribed herein. These savings take into account evaporator fan shut off and associated savings as a result of less heat being introduced into the walk-in, as well as the savings from the compressor, which is now being controlled through electronic temperature control.

Several case studies have been performed that verify the accuracy of these savings. The algorithms below are based on field-tested approximations of energy savings realized through installation of National Resource Management Inc. (NRM)'s Cooltrol® energy management system.⁴⁹

Algorithms

Gross Energy Savings (kWh/yr) = kWh Savings_{FF} + kWh Savings_{RH} + kWh Savings_{FC}

<u>kWh SavingsEF = ((Amps_{EF} * Volts_{EF} * (Phase_{EF}))/1000) * 0.55 * 8,760</u> * 35.52%

 $kWh SavingsRH = kWh Savings_{FF} * 0.28 * 1.6$

 $\frac{kWh \ SavingsEC = (((Amps_{CP} * Volts_{CP} * (Phase_{CP})^{1/2})/1000) * 0.85 * ((35\% * WH) + ((55\% * NWH)) * 5\%) + (((Amps_{EF} * Volts_{EF} * (Phase_{EF})^{1/2})/1000) * 0.55 * 8,760 * (15\% * NWH)) * 5\%) + (((Amps_{EF} * Volts_{EF} * (Phase_{EF})^{1/2})/1000) * 0.55 * 8,760 * (15\% * NWH)) * 5\%) + (((Amps_{EF} * Volts_{EF} * (Phase_{EF})^{1/2})/1000) * 0.55 * 8,760 * (15\% * NWH)) * 5\%) + (((Amps_{EF} * Volts_{EF} * (Phase_{EF})^{1/2})/1000) * 0.55 * 8,760 * (15\% * NWH)) * 5\%) + (((Amps_{EF} * Volts_{EF} * (Phase_{EF})^{1/2})/1000) * 0.55 * 8,760 * (15\% * NWH)) * 5\%) + (((Amps_{EF} * Volts_{EF} * (Phase_{EF})^{1/2})/1000) * 0.55 * 8,760 * (15\% * NWH)) * 5\%) + (((Amps_{EF} * Volts_{EF} * (Phase_{EF})^{1/2})/1000) * 0.55 * 8,760 * (15\% * NWH)) * 5\%) + (((Amps_{EF} * Volts_{EF} * (Phase_{EF})^{1/2})/1000) * 0.55 * 8,760 * (15\% * NWH)) * 5\%) + (((Amps_{EF} * Volts_{EF} * (Phase_{EF})^{1/2})/1000) * 0.55 * 8,760 * (15\% * NWH)) * 5\%) + (((Amps_{EF} * (Phase_{EF})^{1/2})/1000) * 0.55 * 8,760 * (15\% * NWH)) * 5\%) + (((Amps_{EF} * (Phase_{EF})^{1/2})/1000) * 0.55 * 8,760 * (15\% * NWH)) * 5\%) + (((Amps_{EF} * (Phase_{EF})^{1/2})/1000) * 0.55 * 8,760 * (15\% * NWH)) * 5\%) + (((Amps_{EF} * (Phase_{EF})^{1/2})/1000) * 0.55 * 8,760 * (15\% * NWH)) * (15\% * NWH)) * (15\% * NWH)) * (15\% * NWH) * (15\% * NWH)) * (15\% * NWH) *$ 35.52% * 5%)

Gross kW Savings = $((Amps_{FF} * Volts_{FF} * (Phase_{FF})^{1/2})/1000) * 0.55 * D$

Definition of Variables

<u>kWh Savings_{EF}</u>	= Savings due to Evaporator Fan being off
<u>kWh Savings_{RH}</u>	= Savings due to reduced heat from Evaporator Fans
<u>kWh Savings_{EC}</u>	= Savings due to the electronic controls on compressor and
evaporator	
Amps _{EF}	= Nameplate Amps of Evaporator Fan
<u>Volts_{EF}</u>	= Nameplate Volts of Evaporator Fan
Phase _{EF}	= Phase of Evaporator Fan
0.55	<u>= Evaporator Fan Motor power factor</u>
8,760	= Annual Operating Hours

⁴⁹ Several case studies related to NRM's Cooltrol system can be found at:

http://www.nrminc.com/national resource management case studies cooltrol cooler control systems.ht ml.

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: Heading 3, None, Space Before: 0 pt, After: 0 pt, Don't keep with next

Formatted: Space Before: 6 pt, After: 6 pt

Formatted: Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline F

Formatted: (none)
Formatted: Level 4, Keep with next
Formatted: Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline
Formatted: Indent: First line: 0.25"
Formatted: Indent: First line: 0.25"
Formatted: Indent: First line: 0.25"
Formatted: Indent: Left: 0.25"
Tormateour Indenti Eerti 0125

Formatted: Heading 4

35.52%	= Percent of time Evaporator Fan is turned off
0.28	= Conversion from kW to tons (Refrigeration)
<u>1.6</u>	= Efficiency of typical refrigeration system in kW/ton [3]
<u>Amps_{CP}</u>	= Nameplate Amps of Compressor
<u>Volts_{CP}</u>	= Nameplate Volts of Compressor
Phase _{CP}	= Phase of Compressor
0.85	= Compressor power factor.
<u>35%</u>	= Compressor duty cycle during winter months
WH	= Compressor hours during winter months
<u>55%</u>	= Compressor duty cycle during non-winter months
NWH	= Compressor hours during non-winter months (6,565)
<u>5%</u>	= Reduced run time of Compressor and Evaporator due to
	electronic controls
D	= Diversity Factor

Summary of Inputs

	Evaporator Fan	Control - Commercial Refrigeration	<u>on</u>
Component	<u>Type</u>	<u>Value</u>	Source
<u>Amps_{EF}</u>	<u>Variable</u>	Manufacturer data	Application
<u>Volts_{EF}</u>	<u>Variable</u>	Manufacturer data	Application
Phase _{EF}	<u>Variable</u>	Manufacturer data	Application
<u>0.55</u>	<u>Variable</u>	<u>Default</u>	<u>Estimate</u>
<u>8,760</u>	<u>Variable</u>	<u>Default</u>	Estimate
<u>35.52%</u>	Variable	<u>Default</u>	Estimate ⁵⁰
<u>0.28</u>	Variable	Conversion	
<u>1.6</u>	<u>Variable</u>	<u>Default</u>	Estimate, 1
<u>Amps_{CP}</u>	<u>Variable</u>	Manufacturer data	Application
<u>Volts_{CP}</u>	Variable	Manufacturer data	Application
Phase _{CP}	Variable	Manufacturer data	Application
<u>0.85</u>	Variable	<u>Default</u>	Estimate
<u>35%</u>	Variable	<u>Default</u>	Estimate

⁵⁰ This value is an estimate by NRM based on hundreds of downloads of hours of use data from the electronic controller. It is an 'average' savings number and has been validated through several Third Party Impact Evaluation Studies including study performed by HEC, "Analysis of Walk-in Cooler Air Economizers," p. 22, Table 9, October 10, 2000 for National Grid.

Component	<u>Type</u>	Value	Source
<u>WH</u>	<u>Variable</u>	<u>2,195 - Default</u>	Estimate
<u>55%</u>	<u>Variable</u>	<u>Default</u>	Estimate
<u>NWH</u>	<u>Variable</u>	<u>6,565 - Default</u>	Estimate
<u>5%</u>	<u>Variable</u>	<u>Default</u>	2
<u>D</u>	<u>Variable</u>	<u>0.228</u>	<u>3</u>

Sources

- <u>1. Select Energy Services, Inc. Cooler Control Measure Impact Spreadsheet User's</u> Manual. 2004.
- 2. This percentage has been collaborated by several utility sponsored 3rd Party studies including study conducted by Select Energy Services for NSTAR, March 9, 2004.
- 3. Based on the report "Savings from Walk-In Cooler Air Economizers and Evaporator Fan Controls," HEC, June 28, 1996.

Formatted: No underline, (none)

Formatted: Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline

Formatted: English (U.S.)

Formatted: Sources, Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0" + Indent at: 0.25"

Formatted: Font: Not Italic

<u>Cooler and Freezer Door Heater Control</u> <u>This measure is applicable to existing walk-in coolers and freezers that have continuously</u> <u>operating electric heaters on the doors to prevent condensation formation. This measure</u> <u>adds a control system feature to shut off the door heaters when the humidity level is low</u> <u>enough such that condensation will not occur if the heaters are off. This is performed by</u> measuring the ambient humidity and temperature of the store, calculating the dewpoint,		Formatted: Heading 3, None, Space Before: 0 pt, After: 6 pt, Page break before, Don't keep with next Formatted: Space Before: 6 pt, After: 6 pt
and using PWM (pulse width modulation) to control the anti-sweat heaters based on specific algorithms for freezer doors. The measurement of energy savings for this measure is based on algorithms with key variables provided by manufacturer data or prescribed herein. Several case studies have been performed that verify the accuracy of these savings. The algorithms below are based on field-tested approximations of energy savings realized through installation of National Resource Management Inc. (NRM)'s Cooltrol® energy management system. ⁵¹		
Low Temperature (Freezer) Door Heater Control	\succ	Formatted: Font: Bold, Italic, No underline Formatted: Space Before: 18 pt
Algorithms		Formatted: Heading 4
Energy Savings (kWh/yr) = (kW _{DH} * 8,760) – ((40% * kW _{DH} * 4,000) + (65% * <u>kW_{DH} * 4,760))</u> Peak Demand Savings (kW) = kW _{DH} * 46% * 75%		
Definition of Variables		Formatted: Heading 4
 <u>kW_{DH} = Total demand (kW) of the freezer door heaters, based on nameplate volts</u> <u>and amps.</u> <u>8,760 = Annual run hours of Freezer Door Heater before controls.</u> <u>40% = Percent of total run power of door heaters with controls providing</u> maximum reduction 		Formatted: Space Before: 3 pt, After: 3 pt
4,000 = Number of hours door heaters run at 40% power.		Formatted: Space Before: 3 pt, After: 3 pt
<u>65% = Percent of total run power of door heaters with controls providing</u> <u>minimum reduction</u>		
4,760 = Number of hours door heaters run at 65% power.		Formatted: Space Before: 3 pt, After: 3 pt
46% = Freezer Door Heater off time		
75% = Adjustment factor to account for diversity and coincidence at peak demand		

⁵¹ Several case studies related to NRM's Cooltrol system can be found at: http://www.nrminc.com/national_resource_management_case_studies_cooltrol_cooler_control_systems.ht

<u>ml</u>

Medium Temne	rature (Cooler) D	oor Heater Control			
Algorithms			•	Formatte	d: Heading 4
Eporgy Savi	nce(kWh/wr) - (k)	W* \$ 760) (600/ * hW* 3 760)			
Energy Savi	$\frac{11gs(KWII/yI) - (K}{K}$	WDH + 8,7007 - (00% + KWDH + 3,7007)			
Peak Demar	nd Savings (kW) =	<u>kW_{DH} * 74% * 75%</u>			
Definition of Va	ariables		4	Formatte	d: Heading 4
<u>kW_{DH} =</u>	Total demand (kW	y) of the cooler door heaters, based on namepla	te volts	Formatte	d: Space Before: 3 pt, After: 3 pt
<u>and amp</u> 8 760 –	<u>S.</u> Annual run hours d	of Coolar Door Haster before controls			
$\frac{8,700}{60\%} = P$	Percent of total run	power of door heaters with controls providing			
minimur	n reduction				
<u>3,760 = </u>	Number of hours d	oor heaters run at 60% power.	-	Formatte	d: Space Before: 3 pt, After: 3 pt
$\frac{74\%}{-7} = 0$	Cooler Door Heater	<u>off time</u>			
$\frac{75\%}{100} = A$	<u>Adjustment factor to</u>	b account for diversity and coincidence at peak	<u>demand</u>		
Summary of Inp	Door Heater Co	ontrols - Commercial Refrigeration			
Component	Type	Value	Sourc	<u>e</u>	
<u>kW_{DH}</u>	<u>Variable</u>	Manufacturer data	Applicat	<u>tion</u>	
<u>8,760</u>	<u>Variable</u>	Default	<u>Estima</u>	<u>te</u>	
<u>40%</u>	<u>Variable</u>	<u>Default</u>	Estimate	<u>e, 1</u>	
<u>4,000</u>	<u>Variable</u>	Default	<u>Estima</u>	<u>te</u>	
<u>65%</u>	<u>Variable</u>	Default	Estimate	<u>e, 2</u>	
<u>4,760</u>	<u>Variable</u>	<u>Default</u>	Estima	<u>ite</u>	
<u>46%</u>	<u>Variable</u>	<u>Default</u>	Estimate	<u>e, 2</u>	
<u>75%</u>	<u>Variable</u>	Default	Estimate	<u>e, 1</u>	
<u>60%</u>	Variable	Default	<u>Estima</u>	te	
<u>3,760</u>	<u>Variable</u>	Default	<u>Estima</u>	<u>te</u>	
<u>74%</u>	<u>Variable</u>	Default	Estimate	<u>e, 2</u>	
Sources				Formatte	d: English (U.S.)
<u>1. Estimated by</u>	y NRM based on th	heir experience of monitoring the equipment at	various	Formatte Numbered	d: Space Before: 3 pt, After: 3 pt, + Level: 1 + Numbering Style: 1, 2,
2. This value is	s an estimate by Na	ational Resource Management based on hundre	eds of	3, + Sta at: 0" + Iu	rt at: 1 + Alignment: Left + Aligned ndent at: 0.25"
downloads	of hours of use data	from Door Heater controllers. This supported	by 3 rd	Formatte	d: Font: 12 pt
Party Analy Impact Spre	sis conducted by S adsheet Users' Ma	elect Energy for NSTAR, "Cooler Control Meanual," P.5, March 9, 2004.	asure	Formatte Before: 3 between La between A	d: Indent: Left: 0.25", Space pt, After: 3 pt, Adjust space atin and Asian text, Adjust space sian text and numbers

<u>Electric Defrost</u>	t <u>Control</u>			Formatted: Heading 3, None, Space Before: 0 pt, After: 0 pt, Don't keep with next
This measure is	applicable to exist	ing evaporator fans with a traditional electr	ric defrost	Formatted: Space Before: 6 pt, After: 6 pt
mechanism. Thi	s control system ov	verrides defrost of evaporator fans when ur	nnecessary,	
reducing annual	energy consumpti	on. The estimates for savings take into account	ount savings	
from reduced de	efrosts as well as th	e reduction in heat gain from the defrost pr	rocess.	
Indonandant Ta	ting was parforma	d by Intertal Tecting Service on a Wells in	Franzer that	Formatted: Space Before: 12 pt, After: 12
was retrofitted y	with Smart Electric	Defrost canability A baseline of 28 electr	ic defrosts	
per week were e	established as the b	aseline for a two week period without the S	Smart	
Electric Defrost	capability. With S	mart Electric Defrost capability an average	e skip rate of	
43.64% was obs	served for the follo	wing two week period.		
Algorithms			4	Formatted: Heading 4
Gross Energ	y Savings (kWh/yr	r) = kWh Savings _{Defrost} + kWh Savings _{RH}		
<u>kWh Saving</u>	$s_{Defrost} = KW_{Defrost} *$	0.667 * 4 * 365 * 35%		
<u>kWh Saving</u>	s _{RH} = kWh Savings	<u>Defrost</u> * 0.28 * 1.6	4	Formatted: Indent: First line: 0.25", Space Before: 6 pt, After: 6 pt
Definition of Va	ariables		4	Formatted: Heading 4
<u>kWh Saving</u>	s _{Defrost} = Savings du	ue to reduction of defrosts		
<u>kWh Saving</u>	s _{RH} = Savings du	ue to reduction in refrigeration load		
KW _{Defrost}	= Nameplate	e Load of Electric Defrost		
<u>0.667</u>	= Average L	ength of Electric Defrost in hours		
4	= Average N	Sumber of Electric Defrosts per day		
365	= Conversio	n factor = Days per Year		
<u>35%</u>	= Average N	Number of Defrosts that will be eliminated	<u>in year</u>	
0.28	= Conversio	n factor = kW to tons (Refrigeration)		
1.6	= Efficiency	of typical refrigeration system in kW/ton		
Summery of Ing				
Summary Of III	Electric Defrost (Controls - Commercial Refrigeration		
Component	Туре	Value	Source	1
kW _{DH}	Variable	Manufacturer data	Application	
0.667	Variable	Default	Estimate	

Sources

<u>4</u>

<u>35%</u>

1.6

<u>1. Select Energy Services, Inc. Cooler Control Measure Impact Spreadsheet User's</u> <u>Manual. 2004.</u>

<u>Default</u>

Default

Default

Formatted: List Paragraph, Space Before: 6 pt, Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.25" + Indent at: 0.5"

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

<u>Variable</u>

Variable

Variable

Page 161

Estimate

Estimate

1

Novelty Cooler Shutoff

This measure is applicable to existing reach-in novelty coolers which run continuously. The measure adds a control system feature to automatically shut off novelty coolers based on pre-set store operating hours. Based on programmed hours, the control mechanism shuts off the cooler at end of business, and begins operation on reduced cycles. Regular operation begins the following day an hour before start of business. The measurement of energy savings for this measure is based on algorithms with key variables provided by manufacturer data or prescribed herein.

Several case studies have been performed that verify the accuracy of these savings. The algorithms below are based on field-tested approximations of energy savings realized through installation of National Resource Management Inc. (NRM)'s Cooltrol® energy management system.⁵²

<u>Algorithms</u>

Energy Savings (kWh/yr) = (((Amps_{NC} * Volts_{NC} * (Phase_{NC})^{1/2})/1000) * 0.85) * ((0.45 * ((CH - 1) * 91)) + (0.5 * ((CH - 1) * 274)))

Definition of Variables

Amps _{NC}	= Nameplate Amps of Novelty Cooler	

<u>Volts_{NC} = Nameplate Volts of Novelty Cooler</u>

<u>Phase_{NC} = Phase of Novelty Cooler</u>

0.85 = Novelty Cooler power factor

0.45 = Duty cycle during winter month nights

CH = Closed Store hours

91 = Number of days in winter months

0.5 = Duty cycle during non-winter month nights [3]

274 = Number of days in non-winter months

Summary of Inputs

Novelty Cooler - Commercial Refrigeration

<u>Component</u>	<u>Type</u>	Value	Source
<u>Amps_{NC}</u>	<u>Variable</u>	Manufacturer data	<u>Application</u>
<u>Volts_{NC}</u>	<u>Variable</u>	Manufacturer data	Application
Phase _{NC}	Variable	Manufacturer data	Application

⁵² Several case studies related to NRM's Cooltrol system can be found at:

http://www.nrminc.com/national_resource_management_case_studies_cooltrol_cooler_control_systems.ht ml.

New Jersey's Clean Energy Program Protocols to Measure Resource Savings **Formatted:** Heading 3, None, Space Before: 0 pt, After: 0 pt, Page break before, Don't keep with next

Formatted: Space Before: 6 pt, After: 6 pt, Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline

Formatted: Heading 4, Space Before: 6 pt

Formatted: Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline

Component	<u>Type</u>	Value	<u>Source</u>
<u>0.85</u>	Variable	<u>Default</u>	Estimate, 1
<u>0.45</u>	Variable	<u>Default</u>	Estimate, 2
<u>CH</u>	Variable	<u>Default</u>	Estimate
<u>91</u>	Variable	<u>Default</u>	<u>Estimate</u>
<u>0.5</u>	Variable	<u>Default</u>	<u>Estimate</u>
<u>274</u>	Variable	<u>Default</u>	Estimate

Sources

<u>1. Estimated by NRM based on their experience of monitoring the equipment at various</u> <u>sites.</u>

<u>2.</u> Duty Cycles are consistent with third-party study done by Select Energy for NSTAR
 <u>"Cooler Control Measure Impact Spreadsheet Users Manual," p. 5, March 9, 2004.</u>

Formatted: Indent: Left: 0.5", Space Before: 3 pt, After: 3 pt, Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto

.

Formatted: Sources, Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0" + Indent at: 0.25"

Formatted: Sources, No bullets or numbering

Food Service Measures Protocols

Energy efficient electric or natural gas cooking equipment of the following listed types utilized in commercial food service applications which have performance rated in accordance with the listed ASTM standards:

- Electric and gas combination oven/steamer ASTM F2861
- Gas convection ovens ASTM F1496
- Gas conveyor ovens ASTM F1817
- Gas rack ovens ASTM F2093
- Electric and gas small vat fryers ASTM F1361
- Electric and gas large vat fryers ASTM F2144
- Electric and gas steamers ASTM F1484
- Electric and gas griddles ASTM F1275
- Hot food holding cabinets -CEE Tier II
- <u>Commercial dishwashers ENERGY STARRefrigerators, Freezers –</u> <u>ENERGY STAR</u>
- Ice Machines ARI Standard 810

Electric and Gas Combination Oven/Steamer

<u>The measurement of energy savings for this measure is based on algorithms with key</u> variables provided by manufacturer data or prescribed herein.

<u>Algorithms</u>

Energy Savings (kWh/yr or Therms/yr) = $D^*(E_p + E_{ic} + E_{is} + E_{cc} + E_{cs})$

Peak Demand Savings (kW) = kWh Savings/(D*H)

<u>Preheat Savings[†]: $E_p = P^*(PE_b - PE_q)$ </u>

Convection Mode Idle Savings[†]: $\underline{E}_{ic} = (\underline{I}_{cb} - \underline{I}_{cq})^*((\underline{H} - (\underline{P}^*\underline{P}_t)) - (\underline{I}_{cb}/\underline{PC}_{cb} - \underline{I}_{cq})^*(\underline{I}_{cd} - \underline{I}_{cq})^*(\underline{I}_{cd} - \underline{I}_{cd})^*(\underline{I}_{cb} - \underline{I}_{cd})^*(\underline{I}_{cd}

Steam Mode Idle Savings[†]: $\underline{E}_{is} = (I_{sb} - I_{sq})^*((H - (P^*P_t)) - (I_{sb}/PC_{sb} - I_{sq})^*(I_{sb})^*S_t$

<u>Convection Mode Cooking Savings: $E_{cc} = Lbs^*(1-S_t)^*Heat_c^*(1/Eff_{cb} - 1/Eff_{ca})/C$ </u>

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

Formatted: Heading 4
Formatted: Indent: First line: 0.25"
Formatted: Indent: First line: 0.25"
Formatted: Indent: Left: 0.25"
Formatted: Indent: First line: 0.25"

Formatted: Indent: First line: 0.25"

Formatted: Tab stops: 1.03", Left

Page 164

<u>Steam Mode Cooking Savings: $E_{cs} = Lbs*S_t*Heat_s*(1/Eff_{sb} - 1/Eff_{sq})/C</u></u>$

 \pm – For gas equipment, convert these intermediate values to therms by dividing the result by 100,000 Btu/therm

Definition of Variables

(See tables of values below for more information)⁵³

- <u>C</u> = Conversion Factor from Btu to kWh or Therms
- D = Operating Days per Year
- Effcb = Baseline Equipment Convection Mode Cooking Efficiency
- <u>Effcq = Qualifying Equipment Convection Mode Cooking Efficiency</u>
- Effsb = Baseline Equipment Steam Mode Cooking Efficiency
- Effsq = Qualifying Equipment Steam Mode Cooking Efficiency
- <u>H</u> = Daily Operating Hours
- <u>Heatc</u> = Convection Mode Heat to Food
- <u>Heats</u> = Steam Mode Heat to Food
- <u>Icb = Baseline Equipment Convection Mode Idle Energy Rate</u>
- Icq = Qualifying Equipment Convection Mode Idle Energy Rate
- Isb = Baseline Equipment Steam Mode Idle Energy Rate
- Isq = Qualifying Equipment Steam Mode Idle Energy Rate
- Lbs = Total Daily Food Production
- P = Number of Preheats per Day
- <u>PCcb</u> = Baseline Equipment Convection Mode Production Capacity
- <u>PCcq</u> = Qualifying Equipment Convection Mode Production Capacity
- <u>PCsb</u> = Baseline Equipment Steam Mode Production Capacity
- <u>PCsq</u> = Qualifying Equipment Steam Mode Production Capacity
- <u>PEb = Baseline Equipment Preheat Energy</u>
- <u>PEq = Qualifying Equipment Preheat Energy</u>
- <u>Pt = Preheat Duration</u>
- <u>St</u> = Percentage of Time in Steam Mode

Formatted: Indent: First line: 0.25"

⁵³ Savings algorithm, baseline values, assumed values and lifetimes developed from information on the Food Service Technology Center program's website, www.fishnick.com, by Fisher-Nickel, Inc. and funded by California utility customers and administered by Pacific Gas and Electric Company under the auspices of the California Public Utility Commission. Values for Tables 1 and 2 from PG&E Work Paper PGECOFST100, "Commercial Combination Ovens/Steam –Electric and Gas," Revision 6, 2016.

Summary of Inputs

Table 1: Electric Combination Oven/Steamers						
Variable	Baseline			Qualifying		
variable	<15 Pans	15-28 Pans	>28 Pans	<15 Pans	15-28 Pans	>28 Pans
D - Operating Days per Year	Table 3	Table 3	Table 3	Table 3	Table 3	Table 3
P - Number of Preheats per Day	1	1	1	1	1	1
PE _b & PE _q - Preheat Energy (kWh)	3.00	3.75	5.63	1.50	2.00	3.00
I _{cb} & I _{cq} - Convection Mode Idle Energy Rate (kW)	3.00	3.75	5.25	Application	Application	Application
H - Operating Hours per Day	Table 3	Table 3	Table 3	Table 3	Table 3	Table 3
P _t - Preheat Duration (hrs)	0.25	0.25	0.25	0.25	0.25	0.25
PC _{cb} & PC _{cq} - Convection Mode Prod. Capacity (lbs/hr)	80	100	275	100	125	325
Lbs - Total Daily Food Production (lbs)	200	250	400	200	250	400
St - Percentage of Time in Steam Mode	50%	50%	50%	50%	50%	50%
I_{sb} & I_{sq} - Steam Mode Idle Energy Rate (kW)	10.0	12.5	18.0	Application	Application	Application
PC _{sb} & PC _{sq} - Steam Mode Prod. Capacity (lbs/hr)	100	150	350	120	200	400
Heat _c - Convection Heat to Food (Btu/lb)	250	250	250	250	250	250
Eff _{cb} & Eff _{cq} - Convection Mode Cooking Efficiency	65%	65%	65%	Application	Application	Application
C - Btu/kWh	3,412	3,412	3,412	3,412	3,412	3,412
Heats - Steam Heat to Food (Btu/lb)	105	105	105	105	105	105
Eff _{sb} & Eff _{sq} - Steam Mode Cooking Efficiency	40%	40%	40%	Application	Application	Application

Table 2: Gas Combination Oven/Steamers						
Variable	Baseline			Qualifying		
variable	<15 Pans	15-28 Pans	>28 Pans	<15 Pans	15-28 Pans	>28 Pans
D - Operating Days per Year	Table 3	Table 3	Table 3	Table 3	Table 3	Table 3
P - Number of Preheats per Day	1	1	1	1	1	1
PE _b & PE _q - Preheat Energy (Btu)	18,000	22,000	32,000	13,000	16,000	24,000
I _{cb} & I _{cq} - Convection Mode Idle Energy Rate (Btu/h)	15,000	20,000	30,000	Application	Application	Application
H - Operating Hours per Day	Table 3	Table 3	Table 3	Table 3	Table 3	Table 3
P _t - Preheat Duration (h)	0.25	0.25	0.25	0.25	0.25	0.25
PC _{cb} & PC _{cq} - Convection Mode Prod. Capacity (lbs/h)	80	100	275	100	125	325
Lbs - Total Daily Food Production (lbs)	200	250	400	200	250	400
St - Percentage of Time in Steam Mode	50%	50%	50%	50%	50%	50%
I_{sb} & I_{sq} - Steam Mode Idle Energy Rate (kW)	45,000	60,000	80,000	Application	Application	Application
PC _{sb} & PC _{sq} - Steam Mode Prod. Capacity (lbs/h)	100	150	350	120	200	400
Heat _c - Convection Heat to Food (Btu/lb)	250	250	250	250	250	250
Eff _{cb} & Eff _{cq} - Convection Mode Cooking Efficiency	35%	35%	35%	Application	Application	Application
C - Btu/Therm	100,000	100,000	100,000	100,000	100,000	100,000
Heat _s - Steam Heat to Food (Btu/lb)	105	105	105	105	105	105
Eff _{sb} & Eff _{sq} - Steam Mode Cooking Efficiency	20%	20%	20%	Application	Application	Application

Table 3: Operating Days/Hours by Building Type			
Building Type	Days/Year	Hours/Day	
Education - Primary School	180	8	
Education - Secondary School	210	11	
Education - Community College	237	16	
Education - University	192	16	
Grocery	364	16	
Medical - Hospital	364	24	
Medical - Clinic	351	12	
Lodging Hotel (Guest Rooms)	229	5	
Lodging Motel	364	24	
Manufacturing - Light Industrial	330	13	
Office - Large	234	12	
Office - Small	234	12	
Restaurant - Sit-Down	364	12	
Restaurant - Fast-Food	364	17	
Retail - 3-Story Large	355	12	
Retail - Single-Story Large	364	12	
Retail - Small	364	11	
Storage Conditioned	330	13	
Storage Heated or Unconditioned	330	13	
Warehouse	325	12	
Average = Miscellaneous	303	14	

<u>Electric and Gas Convection Ovens, Gas Conveyor and Rack Ovens, Steamers, Fryers,</u> <u>and Griddles</u>

The measurement of energy savings for these measures are based on algorithms with key variables provided by manufacturer data or prescribed herein.

Algorithms

Energy Savings (kWh/yr or Therms/yr) = $D * (E_p + E_i + E_c)$

<u>Peak</u> Demand Savings (kW) = kWh Savings / (D * H)

<u>Preheat Savings[†]: $E_p = P * (PE_b - PE_q)$ </u>

Idle Savings[†]: $\underline{E}_i = (\underline{I}_b - \underline{I}_q) * ((\underline{H} - (\underline{P} * \underline{P}_t)) - (\underline{I}_b / \underline{P} \underline{C}_b - \underline{I}_q / \underline{P} \underline{C}_q) * \underline{L} \underline{b} \underline{s})$

Cooking Savings: $E_c = Lbs * Heat * (1/Eff_b - 1/Eff_q) / C$

 \pm – For gas equipment, convert these intermediate values to therms by dividing the result by 100,000 Btu/therm

Definition of Variables

(See tables of values below for more information)⁵⁴

- D = Operating Days per Year
- <u>P</u> = Number of Preheats per Day
- <u>PE_b = Baseline Equipment Preheat Energy</u>
- <u>PE_q = Qualifying Equipment Preheat Energy</u>
- <u>Ib</u> = Baseline Equipment Idle Energy Rate
- <u>I_q = Qualifying Equipment Idle Energy Rate</u>
- H = Daily Operating Hours
- $\underline{P_t}$ = Preheat Duration

<u>PC_b = Baseline Equipment Production Capacity</u>

- <u>PC_q = Qualifying Equipment Production Capacity</u>
- Lbs = Total Daily Food Production

Heat = Heat to Food

- <u>Eff_b = Baseline Equipment Convection Mode Cooking Efficiency</u>
- <u>Eff_q = Qualifying Equipment Convection Mode Cooking Efficiency</u>

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

Formatted: Underline

Formatted: Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto

Formatted: Underline

Formatted: Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto

	Formatted:	Indent:	First line:	0.25"
Ϊ	Formatted:	Indent:	First line:	0.25"
Y	Formatted	Indent	First line:	0.25"

Formatted: Indent: First line: 0.25"

⁵⁴ Savings algorithm, baseline values, assumed values and lifetimes developed from information on the Food Service Technology Center program's website, www.fishnick.com, by Fisher-Nickel, Inc. and funded by California utility customers and administered by Pacific Gas and Electric Company under the auspices of the California Public Utility Commission. Values for Tables 1 and 2 from PG&E Work Paper PGECOFST100, "Commercial Combination Ovens/Steam –Electric and Gas," Revision 6, 2016.

<u>C</u> = Conversion Factor from Btu to kWh or Therms

Summary of Inputs

Table 1: Electric Convection Ovens				
Variable	Baseline		Qualifying	
Variable	Full Size	Half Size	Full Size	Half Size
D - Operating Days per Year	Table 11	Table 11	Table 11	Table 11
P - Number of Preheats per Day	1	1	1	1
PE _b & PE _q - Preheat Energy (kWh)	1.50	1.00	1.00	0.90
I _b & I _q - Idle Energy Rate (kW)	2.00	1.50	Application	Application
H - Operating Hours per Day	Table 11	Table 11	Table 11	Table 11
P _t - Preheat Duration (hrs)	0.25	0.25	0.25	0.25
PC _b & PC _q - Production Capacity (lbs/hr)	70	45	82	53
Lbs - Total Daily Food Production (lbs)	100	100	100	100
Heat - Heat to Food (Btu/b)	250	250	250	250
Eff _b & Eff _q - Heavy Load Cooking Efficiency	65%	65%	Application	Application
C - Btu/kWh	3,412	3,412	3,412	3,412

Source: PGECOFST101 R6, "Commercial Convection Oven - Electric and Gas," 2016.

Table 2: Gas Convection Ovens				
Variable	Baseline		Qualifying	
Variable	Full Size	Half Size	Full Size	Half Size
D - Operating Days per Year	Table 11	Table 11	Table 11	Table 11
P - Number of Preheats per Day	1	1	1	1
PE _b & PE _q - Preheat Energy (Btu)	19,000	13,000	11,000	7,500
I _b & I _q - Idle Energy Rate (Btu/h)	18,000	12,000	Application	Application
H - Operating Hours per Day	Table 11	Table 11	Table 11	Table 11
P _t - Preheat Duration (hrs)	0.25	0.25	0.25	0.25
PC _b & PC _q - Production Capacity (lbs/hr)	70	45	83	55
Lbs - Total Daily Food Production (lbs)	100	100	100	100
Heat - Heat to Food (Btu/lb)	250	250	250	250
Eff _b & Eff _q - Heavy Load Cooking Efficiency	30%	30%	Application	Application
C - Btu/Therm	100,000	100,000	100,000	100,000

Source: PGECOFST101 R6, "Commercial Convection Oven – Electric and Gas," 2016.

Table 3: Gas Conveyor Ovens			
Variable	Baseline	Qualifying	
D - Operating Days per Year	Table 11	Table 11	
P - Number of Preheats per Day	1	1	
PE _b & PE _q - Preheat Energy (Btu)	35,000	18,000	
I _b & I _q - Idle Energy Rate (Btu/hr)	70,000	Application	
H - Operating Hours per Day	Table 11	Table 11	
P _t - Preheat Duration (hrs)	0.25	0.25	
PC _b & PC _q - Production Capacity (lbs/hr)	114	167	
Lbs - Total Daily Food Production (lbs)	190	190	
Heat - Heat to Food (Btu/lb)	250	250	
Eff _b & Eff _q - Heavy Load Cooking Efficiency	20%	Application	
C - Btu/Therm	100,000	100,000	

Source: PGECOFST117 R5,	"Commercial	Conveyor	Oven-	Gas,'	2014.

Table 4	Table 4: Gas Rack Ovens				
Variable	Base	Baseline		Qualifying	
Variable	Double Rack	Single Rack	Double Rack	Single Rack	
D - Operating Days per Year	Table 11	Table 11	Table 5	Table 5	
P - Number of Preheats per Day	1	1	1	1	
PE _b & PE _q - Preheat Energy (Btu)	100,000	50,000	85,000	44,000	
I _b & I _q - Idle Energy Rate (Btu/h)	65,000	43,000	Application	Application	
H - Operating Hours per Day	Table 11	Table 11	Table 5	Table 5	
P _t - Preheat Duration (hrs)	0.33	0.33	0.33	0.33	
PC _b & PC _q - Production Capacity (lbs/hr)	250	130	280	140	
Lbs - Total Daily Food Production (lbs)	1200	600	1200	600	
Heat - Heat to Food (Btu/lb)	235	235	235	235	
Eff _b & Eff _q - Heavy Load Cooking Efficiency	30%	30%	Application	Application	
C - Btu/Therm	100,000	100,000	100,000	100,000	

Source: PGECOFST109, "Commercial Rack Oven-Gas," 2016.

Table 5: Electric Steamers				
Variable	Baseline	Qualifying		
D - Operating Days per Year	Table 11	Table 11		
P - Number of Preheats per Day	1	1		
PE _b & PE _q - Preheat Energy (kWh)	1.50	1.50		
I _b & I _q - Idle Energy Rate (kW)	0.167 x No. of Pans	Application		
H - Operating Hours per Day	Table 11	Table 11		
P _t - Preheat Duration (hrs)	0.25	0.25		
PC _b & PC _q - Production Capacity (lbs/hr)	11.7 x No. of Pans	14.7 x No. of Pans		
Lbs - Total Daily Food Production (lbs)	100	100		
Heat - Heat to Food (Btu/lb)	105	105		
Eff _b & Eff _q - Heavy Load Cooking Efficiency	26%	Application		
C - Btu/kWh	3,412	3,412		

Source: PGECOFST104 R6, "Commercial Steam Cooker - Electric and Gas," 2016.

Table 6: Gas Steamers				
Variable	Baseline	Qualifying		
D - Operating Days per Year	Table 11	Table 11		
P - Number of Preheats per Day	1	1		
PE _b & PE _q - Preheat Energy (Btu)	20,000	9,000		
I _b & I _q - Idle Energy Rate (Btu/h)	2,500 x No. of Pans	Application		
H - Operating Hours per Day	Table 11	Table 11		
P _t - Preheat Duration (hrs)	0.25	0.25		
PC _b & PC _q - Production Capacity (lbs/hr)	23.3 x No. of Pans	20.8 x No. of Pans		
Lbs - Total Daily Food Production (lbs)	100	100		
Heat - Heat to Food (Btu/lb)	105	105		
Eff _b & Eff _q - Heavy Load Cooking Efficiency	15%	Application		
C - Btu/Therm	100.000	100.000		

Source: PGECOFST104 R6, "Commercial Steam Cooker – Electric and Gas," 2016.

Table 7: Electric Fryers				
Variable	Baseline	Qualifying		
D - Operating Days per Year	Table 11	Table 11		
P - Number of Preheats per Day	1	1		
PE _b & PE _q - Preheat Energy (kWh)	2.40	1.90		
$I_b \& I_q$ - Idle Energy Rate (kW)	1.2	Application		
H - Operating Hours per Day	Table 11	Table 11		
P _t - Preheat Duration (hrs)	0.25	0.25		
PC _b & PC _q - Production Capacity (lbs/hr)	71	71		
Lbs - Total Daily Food Production (lbs)	150	150		
Heat - Heat to Food (Btu/lb)	570	570		
Eff _b & Eff _q - Heavy Load Cooking Efficiency	75%	Application		
C - Btu/kWh	3,412	3,412		

Source: PGECOFST102 R6, "Commercial Fryer – Electric and Gas," 2016.

Table 8: Gas Fryers				
Variable	Baseline	Qualifying		
D - Operating Days per Year	Table 11	Table 11		
P - Number of Preheats per Day	1	1		
PE _b & PE _q - Preheat Energy (Btu)	18,500	16,000		
I _b & I _q - Idle Energy Rate (Btu/h)	17,000	Application		
H - Operating Hours per Day	Table 11	Table 11		
P _t - Preheat Duration (hrs)	0.25	0.25		
PC _b & PC _q - Production Capacity (lbs/hr)	75	75		
Lbs - Total Daily Food Production (lbs)	150	150		
Heat - Heat to Food (Btu/lb)	570	570		
Eff _b & Eff _q - Heavy Load Cooking Efficiency	35%	Application		
C - Btu/Therm	100,000	100,000		

Source: PGECOFST102 R6, "Commercial Fryer – Electric and Gas," 2016.

Table 9: Electric Griddles				
Variable	Baseline	Qualifying		
D - Operating Days per Year	Table 11	Table 11		
P - Number of Preheats per Day	1	1		
PE _b & PE _q - Preheat Energy (kWh)	1.3 x Griddle Width (ft)	0.7 x Griddle Width (ft)		
$I_b \& I_q$ - Idle Energy Rate (kW)	0.8 x Griddle Width (ft)	Application		
H - Operating Hours per Day	Table 11	Table 11		
Pt - Preheat Duration (hrs)	0.25	0.25		
PC _b & PC _q - Production Capacity (lbs/hr)	11.7 x Griddle Width (ft)	13.3 x Griddle Width (ft)		
Lbs - Total Daily Food Production (lbs)	100	100		
Heat - Heat to Food (Btu/lb)	475	475		
Eff _b & Eff _q - Heavy Load Cooking Efficiency	60%	Application		
C - Btu/kWh	3,412	3,412		

Source: PGECOFST103 R7, "Commercial Griddle – Electric and Gas," 2016.

Table 10	: Gas Griddles	
Variable	Baseline	Qualifying
D - Operating Days per Year	Table 11	Table 11
P - Number of Preheats per Day	1	1
PE _b & PE _q - Preheat Energy (Btu)	7,000 x Griddle Width (ft)	5,000 x Griddle Width (ft)
I _b & I _q - Idle Energy Rate (Btu/h)	7,000 x Griddle Width (ft)	Application
H - Operating Hours per Day	Table 11	Table 11
P _t - Preheat Duration (hrs)	0.25	0.25
PC _b & PC _q - Production Capacity (lbs/hr)	8.3 x Griddle Width (ft)	15 x Griddle Width (ft)
Lbs - Total Daily Food Production (lbs)	100	100
Heat - Heat to Food (Btu/lb)	475	475
Eff _b & Eff _q - Heavy Load Cooking Efficiency	30%	Application
C - Btu/Therm	100,000	100,000

Source: PGECOFST103 R7, "Commercial Griddle – Electric and Gas," 2016.

Table 11: Operating Days/Ho	ours by Buil	ding Type
Building Type	Days/Year	Hours/Day
Education - Primary School	180	8
Education - Secondary School	210	11
Education - Community College	237	16
Education - University	192	16
Grocery	364	16
Medical - Hospital	364	24
Medical - Clinic	351	12
Lodging Hotel (Guest Rooms)	229	5
Lodging Motel	364	24
Manufacturing - Light Industrial	330	13
Office - Large	234	12
Office - Small	234	12
Restaurant - Sit-Down	364	12
Restaurant - Fast-Food	364	17
Retail - 3-Story Large	355	12
Retail - Single-Story Large	364	12
Retail - Small	364	11
Storage Conditioned	330	13
Storage Heated or Unconditioned	330	13
Warehouse	325	12
Average = Miscellaneous	303	14

Insulated Food Holding Cabinets

<u>The measurement of energy savings for this measure is based on algorithms with key</u> variables provided by manufacturer data or prescribed herein.

<u>Algorithms</u>

Energy Savings $(kWh/yr) = D * H * (I_b - I_q)$

<u>Peak Demand Savings (kW) = $I_b - I_q$ </u>

Definition of Variables

(See tables of values below for more information)⁵⁵

<u>D</u> = Operating Days per Year

<u>H = Daily Operating Hours</u></u>

 I_{b} = Baseline Equipment Idle Energy Rate

 I_q = Qualifying Equipment Idle Energy Rate

Summary of Inputs

Table 1:	Insulated	Food Hol	ding Cabine	ts		
Variable		Baseline			Qualifying	
Variable	Full Size	3/4 Size	1/2 Size	Full Size	3/4 Size	1/2 Size
D - Operating Days per Year	Table 2	Table 2	Table 2	Table 2	Table 2	Table 2
I _b & I _q - Idle Energy Rate (kW)	1.00	0.69	0.38	Application	Application	Application
H - Operating Hours per Day	Table 2	Table 2	Table 2	Table 2	Table 2	Table 2

Source: PGECOFST105 R5, "Insulated Holding Cabinet - Electric," 2016.

Formatted: Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto

Formatted: Underline

Formatted: Underline

Formatted: Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto

⁵⁵ Savings algorithm, baseline values, assumed values and lifetimes developed from information on the Food Service Technology Center program's website, www.fishnick.com, by Fisher-Nickel, Inc. and funded by California utility customers and administered by Pacific Gas and Electric Company under the auspices of the California Public Utility Commission.

Table 2: Operating Days/Ho	urs by Build	ling Type
Building Type	Days/Year	Hours/Day
Education - Primary School	180	8
Education - Secondary School	210	11
Education - Community College	237	16
Education - University	192	16
Grocery	364	16
Medical - Hospital	364	24
Medical - Clinic	351	12
Lodging Hotel (Guest Rooms)	229	5
Lodging Motel	364	24
Manufacturing - Light Industrial	330	13
Office - Large	234	12
Office - Small	234	12
Restaurant - Sit-Down	364	12
Restaurant - Fast-Food	364	17
Retail - 3-Story Large	355	12
Retail - Single-Story Large	364	12
Retail - Small	364	11
Storage Conditioned	330	13
Storage Heated or Unconditioned	330	13
Warehouse	325	12
Average = Miscellaneous	303	14

Commercial Dishwashers

This measure is applicable to replacement of existing dishwashers with energy efficient under counter, door type, single-rack and multi-rack conveyor machines testing in accordance with NSF/ANSI 3-2007, ASTM F1696, and ASTM F1920 standards. The measurement of energy savings for this measure is based on algorithms with key variables provided by manufacturer data or prescribed herein.

<u>Algorithms</u>

Energy Savings (kWh/yr or Therms/yr) = $E_{Build} + E_{Boost} + E_{Idle}$

Peak Demand Savings (kW) = kWh Savings/8760

<u>Note: Depending on water heating system configuration (e.g. gas building water heater</u> <u>with electric booster water heater), annual energy savings may be reported in both therms</u> <u>and kWh.</u>

Definition of Variables

EER	Fixed	9.0	Average based on custom
			applications for the NJCEP
			C&I Program in 2010
Usage	Fixed	8,760	365 days/year, 24
			hours/day

(See tables below for more information)⁵⁶

 $\underline{E_{Build}}$ = Annual Building Water Heater Energy Savings, in kWh or Therms (from tables below)

 \underline{E}_{Boost} = Annual Booster Water Heater Energy Savings, in kWh or Therms (from tables below)

 $\underline{E_{\text{Idle}}}$ = Annual Dishwasher Idle Energy Savings, in kWh (from tables below) 8760 = Hours per Year

Summary of Inputs

⁵⁶ Savings algorithm, baseline values, assumed values and lifetimes developed from information on the Food Service Technology Center program's website, www.fishnick.com, by Fisher-Nickel, Inc. and funded by California utility customers and administered by Pacific Gas and Electric Company under the auspices of the California Public Utility Commission and from the Savings Calculator for ENERGY STAR Qualified Commercial Kitchen Equipment.

Formatted: Heading 4

Formatted: Indent: First line: 0.25"

Formatted: Heading 4

	Table	1: Low Temperat	ure Dishwasher S	Savings	
Dichwachar	Electric Building	Gas Building	Electric Booster	Gas Booster	Idle Energy
Tumo	Water Heater	Water Heater	Water Heater	Water Heater	Savings
Type	Savings (kWh)	Savings (Therms)	Savings (kWh)	Savings (Therms)	(kWh)
Under	1 012	56.0	0	0.0	0
Counter	1,215	30.2	0	0.0	0
Door Type	12,135	562.1	0	0.0	0
Single Tank	11 28/	527.3	0	0.0	0
Conveyor	11,564	527.5	0	0.0	0
Multi Tank	17.465	800.0	0	0.0	0
Conveyor	17,405	009.0	0	0.0	0

	Table 2:	High Temperatu	re Dishwasher	<u>Savings</u>	
Dichwachar	Electric Building	Gas Building	Electric Booster	Gas Booster	Idle Energy
Turne	Water Heater	Water Heater	Water Heater	Water Heater	Savings
Type	Savings (kWh)	Savings (Therms)	Savings (kWh)	Savings (Therms)	(kWh)
Under Counter	4,754	220.2	2,717	110.1	0
Door Type	8,875	411.1	5,071	205.5	198
Single Tank Conveyor	11,126	515.3	6,358	257.7	1,752
Multi Tank Conveyor	21,734	1,006.7	12,419	503.3	0

Formatted: Font: Italic

Formatted: Normal, Space Before: 6 pt, After: 6 pt

Formatted: Heading 3, Page break before

Formatted: Heading 4

Formatted: Heading 4

Before: 3 pt, After: 3 pt

Formatted: Indent: First line: 0.25"

Formatted: Indent: First line: 0.25"

Formatted: Indent: First line: 0.25", Space

Commercial Refrigerators and Freezers

This measure is applicable to replacement of existing commercial grade refrigerators and freezers with energy efficient glass and solid door units complying with ANSI/ASHRAE Standard 72-2005, Method of Testing Commercial Refrigerators and Freezers. -The measurement of energy savings for this measure is based on algorithms with key variables provided by manufacturer data or prescribed herein.

Algorithms

Annual

<u>Algorithms</u>

Energy Savings $(kWh/yr) = D * (E_b - E_q)$

<u>Peak</u> Demand Savings (kW) = kWh Savings/ (D * H)

Definition of Variables

(See tables below for more information)⁵⁷

D_= Operating Days per Year (assume 365)

H_= Daily Operating Hours (assume 24)

 E_b = Daily kWh Consumption of Baseline Equipment (from Table 1 below)

E_q = Daily kWh Consumption of Qualifying Equipment (from Application)

Table 1: Baseline l	Equipment Daily kWh Consumption
Proposed Equipment Type	kWh Consumption ($V = Unit$ Volume in ft ³)
Glass Door Freezer	0.75V + 4.1
Glass Door Refrigerator	0.12V + 3.34
Solid Door Freezer	0.4V + 1.38
Solid Door Refrigerator	0.1V + 2.04

Summary of Inputs

Table 1: Baseline I	Equipment Daily kWh Consumption
Proposed Equipment Type	<i>kWh Consumption</i> ($V = Unit Volume in ft3$)
Glass Door Freezer	0.75V + 4.1
Glass Door Refrigerator	0.12V + 3.34
Solid Door Freezer	0.4V + 1.38
Solid Door Refrigerator	0.1V + 2.04

⁵⁷ Savings algorithm, baseline values, assumed values and lifetimes developed from information on the Food Service Technology Center program's website, www.fishnick.com, by Fisher-Nickel, Inc. and funded by California utility customers and administered by Pacific Gas and Electric Company under the auspices of the California Public Utility Commission.

Sources:

Savings algorithm, baseline values, assumed values and lifetimes developed from information on the Food Service Technology Center program's website, <u>www.fishnick.com</u>, by Fisher-Nickel, Inc. and funded by California utility customers and administered by Pacific Gas and Electric Company under the auspices of the California Public Utility Commission.

Commercial Ice Machines

This measure is applicable to replacement of existing ice makers with energy efficient, air-cooled ice machines tested in accordance with ARI Standard 810. The measurement of energy savings for this measure is based on algorithms with key variables provided by manufacturer data or preseribed herein.

Algorithms

Annual Energy Savings (kWh) = $D * DC * (IHR/100) * (E_b - E_q)$

Demand Savings (kW) = kWh Savings / (D * 24 * DC)

Definition of Variables

D = Operating Days per Year (assume 365)

DC = Duty Cycle, defined as Ice Harvest Rate/Actual Daily Ice Production (assume 75%)

IHR = Proposed Equipment Ice Harvest Rate in lbs/day (from Application)

- $E_b = kWh$ Consumption of Baseline Equipment in kWh/100 lbs (from Table 1 below)
- $E_q = kWh$ Consumption of Qualifying Equipment in kWh/100 lbs (from Application)

24 = Hours per Day

Table 1: B	Saseline Energy Consumption
Ice Harvest Rate (lbs/day)	Baseline Energy Consumption (kWh/100 lbs)
0-100	18.0
101-200	16.0
201-300	11.0
301-400	8.5
401-500	7.6
501-1000	6.9
1001-1500	6.4
1501	6.1

Sources:

Savings algorithm, baseline values, assumed values and lifetimes developed from information on the Food Service Technology Center program's website,

New Jersey's Clean Energy Program Protocols to Measure Resource Savings **Formatted:** Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline

Formatted: No underline

Formatted: Heading 3, Space After: 0 pt, Line spacing: single

Formatted: Space Before: 6 pt, After: 6 pt, Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline

Formatted: Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline

Formatted: Keep with next, Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline

Formatted: No underline

Page 178

<u>www.fishnick.com</u>, by Fisher Nickel, Inc. and funded by California utility customers and administered by Pacific Gas and Electric Company under the auspices of the California Public Utility Commission.

Commercial Dishwashers

This measure is applicable to replacement of existing dishwashers with energy efficient under counter, door type, single rack and multi-rack conveyor machines testing in accordance with NSF/ANSI 3-2007, ASTM F1696, and ASTM F1920 standards. The measurement of energy savings for this measure is based on algorithms with key variables provided by manufacturer data or prescribed herein.

Algorithms

Annual-Energy Savings (kWh-or Therms) = $E_{Build} + E_{Boost} + E_{Idle}/yr$) = D * DC * (IHR/100) * ($E_b - E_a$)

Peak Demand Savings (kW) = kWh Savings / (D * 24 * DC)

Definition of Variables

Demand Savings (kW) = kWh Savings/8760

<u>Note</u>: Depending on water heating system configuration (e.g. gas building water heater with electric booster water heater), annual energy savings may be reported in both therms and kWh.

Definition of Variables

 E_{Build} = Annual Building Water Heater Energy Savings, in kWh or Therms (from tables below)

 $E_{\text{Boost}} = \text{Annual Booster Water Heater Energy Savings, in kWh or Therms(See tables below for more information)^{58}$

D = Operating Days per Year (assume 365)

<u>DC</u> = Duty Cycle, defined as Ice Harvest Rate/Actual Daily Ice Production (assume 75%)

<u>IHR</u> = Proposed Equipment Ice Harvest Rate in lbs/day (from Application)

 $\underline{E_{b}} = kWh \ Consumption \ of \ Baseline \ Equipment \ in \ kWh/100 \ lbs} \ (from \ tables \ Table 1 \ below)$

Formatted: Indent: First line: 0.25"
Formatted: Not Superscript/ Subscript

Asian text and numbers, Font Alignment: Auto Formatted: Indent: First line: 0.25"

Formatted: Heading 4

Formatted: Heading 4

Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt

Page 179

⁵⁸ Savings algorithm, baseline values, assumed values and lifetimes developed from information on the Food Service Technology Center program's website, www.fishnick.com, by Fisher-Nickel, Inc. and funded by California utility customers and administered by Pacific Gas and Electric Company under the auspices of the California Public Utility Commission.
$E_{\text{Idle}} = \text{Annual Dishwasher Idle Energy Savings}, E_{q} = kWh Consumption of$ Qualifying Equipment in kWh/100 lbs (from tables belowApplication)

8760-24 = Hours per <u>YearDay</u>

	Table 1: Low Temperature Dishwasher Savings						
Dishwashar	Electric Building	Gas Building	Electric Booster	Gas Booster	Idle Energy		
Tama	Water Heater	Water Heater	Water Heater	Water Heater	Savings		
Type	Savings (kWh)	Savings (Therms)	Savings (kWh)	Savings (Therms)	(kWh)		
Under Counter	1,213	56.2	0	0.0	0		
Door Type	12,135	562.1	0	0.0	0		
Single Tank Conveyor	11,384	527.3	0	0.0	0		
Multi Tank Conveyor	17,465	809.0	0	0.0	0		

Table 2: High Temperature Dishwasher Savings						
Dishwasher	Electric Building	Gas Building	Electric Booster	Gas Booster	Idle Energy	
Туре	Savings (kWh)	Savings (Therms)	Savings (kWh)	Savings (Therms)	(kWh)	
Under Counter	4,754	220.2	2,717	110.1	0	
Door Type	8,875	411.1	5,071	205.5	198	
Single Tank Conveyor	11,126	515.3	6,358	257.7	1,752	
Multi Tank Conveyor	21,734	1,006.7	12,419	503.3	0	

Summary of Inputs

Table 1: Baseline Energy Consumption				
Ice Harvest Rate (lbs/day)	Baseline Energy Consumption (kWh/100 lbs)			
0-100	18.0			
101-200	16.0			
201-300	11.0			
301-400	8.5			
401-500	7.6			
501-1000	6.9			
1001-1500	6.4			
1501	6.1			

Sources:

Savings algorithm, baseline values, assumed values and lifetimes developed from information on the Food Service Technology Center program's website, <u>www.fishniek.com</u>, by Fisher-Nickel, Inc. and funded by California utility customers and administered by Pacific Gas and Electric Company under the auspices of the California Public Utility Commission and from the *Savings Calculator for ENERGY STAR Qualified Commercial Kitchen Equipment*.

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: Indent: Left: 0.5", Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline

Formatted: No underline

Formatted: Not Superscript/ Subscript

C&I Construction Gas Protocols		
For-The following measures installed as part of the Direct Install program, different baselines will be utilized to estimate savings as defined furtherare outlined in the Direct Installthis section of these Protocols.		
The following fuel conversions will be used to calculate energy savings for propane and oil equipment for all eligible C&I programs including C&I Construction, Direct Install, and Pay for Performance.		
$\frac{1}{1}$ therm of gas = 1.087 gal of propane = 0.721 gal of #2 oil		
1 therm = 100,000 Btu 1 gal of propane = 92,000 Btu 1 gal of #2 oil = 138,700 Btu	Formatted: Normal Space Before: 6 nt	
: Gas Chillers, Gas Fired Dessicants, Water Heating Equipment, Space Heating Equipment, and Fuel Use Economizers.	After: 6 pt	
Gas Chillers	Formatted: Heading 3	
The measurement of energy savings for C&I gas fired chillers and chiller heaters is based on algorithms with key variables (i.e., Equivalent Full Load Hours, Vacuum Boiler Efficiency, Input Rating, Coincidence Factor) provided by manufacturer data or measured through existing end use metering of a sample of facilitiescaptured on the application form or from manufacturer's data sheets and collaborative/utility studies. For certain fixed components, studies and surveys developed by the utilities in the State or based on a review of manufacturer's data, other utilities, regulatory commissions or consultants' reports will be used to update the values for future filings.	Formatted: Space Before: 6 pt, After: 6 p	νt
Algorithms	Formatted: Underline	
	Formatted: Underline, (none)	
Algorithms	Formatted: Indent: First line: 0.25"	
A	Formatted: Underline	
Winter Gas Savings (<u>MMBtu/yr)</u> = (VBE _q – BE _b)/VBE _q X^* IR $X = FLH^* = EFLH_c$	Formatted: Normal, Level 4, Keep with new	xt
	Formatted: (none)	
$\frac{\text{Electric DemandEnergy}}{\text{EEU}} \text{ Savings } \frac{(kWh/yr)}{r} = \text{Tons } \frac{X^*}{r} (kW/\text{Ton}_b - kW/\text{Ton}_{gc}) \frac{X CF^*}{r} + \frac{1}{r}$	Formatted: Indent: First line: 0.25"	
	Formatted: Indent: First line: 0.25"	
Electric Energy Savings = Tons X (kW/Ton _b kW/Ton _{ge}) X EFLH	Formatted: Font: Italic	
Summer Gas Usage (MMBtu/yr) = MMBtu Output Capacity / COP X EFLH* EFLH _c +	Formatted: Indent: First line: 0.25"	

Net Energy Savin Summer Gas Usage	/ Savings = Electric<u>(kWh/yr)</u> = Energy Savings + Winter Gas Savings – Jsage				Formatted: Indent: First line: 0.25"
Peak Demand Sav	vings (kW) = Tons *	(kW/Tonb – kW/Tongc) * C	<u>)F</u>		
Definition of Terms					
VBE_q = Vac	uum Boiler Efficienc	у		•	Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
BE _b = Effic	ciency of the baseline	gas boiler		•	Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
IR= Inpu	tt Rating = Therms<u>M</u>	MBtu/hour		•	Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
Tons= The_ accept	rated capacity of the ed by the program.	chiller (in tons) at site desi	gn conditions	•	Formatted: Indent: Left: 0.25", Hanging: 0.75", Space Before: 3 pt, After: 3 pt
kW/Tonb _= The Verification Sum	baseline efficiency for mary table below.	or electric chillers, as show	n in the Gas Chiller	•	Formatted: Indent: Left: 0.25", Space Before: 3 pt, After: 3 pt
kW/Tongc = Paras	sitic electrical require	ment for gas chiller.		•	Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
COP = Efficiency	of the gas chiller				Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
MMBtu Output Capacity = Cooling Capacity of gas chiller in MMBtu.			•	Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt	
CF = Coincidence is on during elect	e FactorThis value r ric system peak.	represents the percentage o	f the total load that	-	Formatted: Indent: Left: 0.25", Space Before: 3 pt, After: 3 pt
EFLH<u>E</u>FLH_c = E by <u>cooling</u> seasor	quivalent Full Load F 1.	HoursThis represents a m	easure of chiller use		Formatted: Indent: Left: 0.25", Space Before: 3 pt, After: 3 pt
					Formatted: Heading 3
Gas Chillers				•	
Summary of Inputs	Gas	Chillers		4	Formatted: Table Caption, Left, Don't keep
Component	Туре	Value	Source	•	with next Formatted: Table Header. Left

Correction Table Hand		Source	value	rype	Component
Formatted: Table Head		Rebate Application		Variable	VBE
Formatted: Table Cells		Rebute Application.		variable	V DLq
i officiella rubic cens	l l	or Manufacturer			
		Data			
		Data			

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

İ

Component	Туре	Value	Source •	Formatted: Table Header, Left
BEb	Fixed	75%	ASHRAE 90.1-	Formatted: Table Cells
		80% Et	2013 Table 6.8.1 ←	Formatted: Table Cells
			6	
			Assumes a	Formatted: Table Cells
			baseline hot water	
			boiler with rated	
			input >300 MBh	
			and $\leq 2,500$ MBh.	
IR	Variable		Rebate Application	Formatted: Table Cells
			or Manufacturer	
			Data	
Tons	Variable <u>Rated</u>		Rebate Application	Formatted: Table Cells
	Capacity, Tons			
MMBtu	Variable		Rebate Application	Formatted: Table Cells
kW/Tonb	Fixed	<100 tones	Collaborative	Formatted: Table Cells
		1.25 kW/ton	agreement and C/I	
			baseline study	
		100 to < 150 tons		Formatted: Font: Not Bold
		0.703 kW/ton	Assumes new	
			electric chiller	
		150 to <300 tons:	cooled unit for	Formatted: Font: Not Bold
		0.634 kW/Ton	chillers less than	
			100 tons; water	
		300 tons or more:	cooled for chillers	Formatted: Font: Not Bold
		0.577 kW/ton	greater than 100	
			tons	
kW/Tongc	Variable		Manufacturer Data	Formatted: Table Cells
СОР	Variable		Manufacturer Data	Formatted: Table Cells
CF	Fixed	67%	Engineering •	Formatted: Table Cells
			estimate	
EFLHEFLH _G	FixedVariable	1,360See Table Below	JCP&L Measured	Formatted: Subscript
			data ³⁹ 2	Formatted: Table Cells

Variable data will be captured on the application form or from manufacturer's data sheets and collaborative/utility studies.

⁵⁹ Results reflect metered use from 1995 – 1999.

For certain fixed components, studies and surveys developed by the utilities in the State or based on a review of manufacturer's data, other utilities, regulatory commissions or consultants' reports will be used to update the values for future filings. Formatted: Space Before: 6 pt, After: 6 pt

<u>EFLH_c Table</u>				
Facility Type	<u>Cooling</u> <u>EFLH_c</u>			
Assembly	<u>669</u>			
Auto repair	<u>426</u>			
<u>Dormitory</u>	<u>800</u>			
<u>Hospital</u>	<u>1424</u>			
Light industrial	<u>549</u>			
Lodging – Hotel	<u>2918</u>			
Lodging – Motel	<u>1233</u>			
<u>Office – large</u>	<u>720</u>			
<u>Office – small</u>	<u>955</u>			
Other	<u>736</u>			
Religious worship	<u>279</u>			
<u>Restaurant – fast food</u>	<u>645</u>			
Restaurant - full service	<u>574</u>			
<u>Retail – big box</u>	<u>1279</u>			
<u>Retail – grocery</u>	<u>1279</u>			
<u>Retail – large</u>	<u>882</u>			
<u>Retail – large</u>	<u>1068</u>			
<u>School – community</u> <u>college</u>	<u>846</u>			
School – postsecondary	<u>1208</u>			
<u>School – primary</u>	<u>394</u>			
School – secondary	<u>466</u>			
Warehouse	<u>400</u>			

Multi-family EFLH by Vintage

Facility Type	<u>Prior to 1979</u>	<u>From 1979 to</u> <u>2006</u>	<u>From 2007</u> <u>through</u> <u>Present</u>
Low-rise, Cooling	<u>507</u>	<u>550</u>	<u>562</u>
Low-rise, Heating	<u>757</u>	<u>723</u>	<u>503</u>
High-rise, Cooling	<u>793</u>	<u>843</u>	<u>954</u>
High-rise, Heating	<u>526</u>	<u>395</u>	<u>219</u>

Sources

- <u>1. ASHRAE Standards 90.1-2013, Energy Standard for Buildings Except Low Rise</u> <u>Residential Buildings</u>; available at: https://www.ashrae.org/standards-research-technology/standards--guidelines. Table 6.8.1 – 6
- 2. New York State Joint Utilities, New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs, V6, April 2018. Appendix G – Equivalent Full-Load Hours (EFLH), For Heating and Cooling. Page 535-540. EFLH values for NYC due to proximity to NJ.

	Gas Fired DesiccantsDessicants		Formatted: Page break before
	Gas-fired desiccant systems employ a desiccant wheel (a rotating disk filled with a dry desiccant such as silica gel, titanium gel, or dry lithium chloride) which adsorbs outside air moisture, reducing the air's latent heat content This air is then conditioned by the building's cooling system, before being delivered to the occupied space By reducing the relative humidity of the air, the operating temperature of the building can be increased, as comfort levels are maintained at higher temperatures when air moisture content is decreased Electric savings are realized from a reduction in the required cooling load as a result of decreased humidity.	•	Formatted: Space Before: 6 pt, After: 6 pt
	In order to maintain the usefulness of the desiccant (to keep it dry) hot air must be passed through the desiccant that has been used to remove moisture from the outside air To supply this hot air, a gas-fired heater is employed to heat "regeneration" air, which picks up moisture from the saturated desiccant and exhausts it to the outside As a result, in addition to electric benefits, these systems will also incur a natural gas penalty	-	Formatted: Space Before: 6 pt, After: 6 pt
	Electric savings and natural gas consumption will vary significantly from system to system depending on regional temperature and humidity, facility type, occupancy, site processes, desiccant system design parameters, ventilation requirements and cooling load and system specificationsDue to the multitude of site and equipment specific factors, along with the relative infrequency of these systems, gas-fired desiccant systems will be treated on a case-by-case basis.		Formatted: Font color: Auto
	<u>Gas Booster Water Heaters</u>		Formatted: Heading 3, Left, Don't keep with next
	C&I gas booster water heaters are substitutes for electric water heaters The measurement of energy savings is based on engineering algorithms with key variables (i.e., Input Rating Coincidence Factor, Equivalent Full Load Hours) provided by manufacturer data or measured through existing end-use metering of a sample of facilities.		
ĺ	Algorithms	4	Formatted: Space After: 3 pt
	Energy Savings (kWh/yr) = IR * EFF/3,412 * EFLH Peak Demand Savings (kW) = IR X EFF/3,412 X CF		
	Energy Savings (kWh) = IR X [*] EFF/3,412 X EFLH * CF	4	Formatted: Indent: First line: 0.25"
	Gas Usage Increase (MMBtu/yr) = IR X* EFLH	4	Formatted: Indent: First line: 0.25"

Net Energy Savings (<u>kWh/yr</u>) = Electric Energy Savings – Gas Usage Increase/<u>3,412</u>

Formatted: Indent: First line: 0.25"

Formatted: Table Caption

next

Formatted: Heading 3, Left, Don't keep with

Definition of Variables (Calculated in MMBtu)

Definition of Variables	•	Formatted: Underline, (none)
		Formatted: Normal, Level 4, Keep with next
IR= Input Rating in BtuhMMBtu/hr	•	Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
EFF= Efficiency	-	Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
CF= Coincidence Factor	•	Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
EFLH _= Equivalent Full Load Hours	•	Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
The 3412 used in the denominator is used to convert Btus to kWh.	-	Formatted: Indent: First line: 0.25", Space Before: 6 pt, After: 6 pt

Summary of Inputs

Gas Booster Water Heaters

Gas Booster Water Heaters

Component	Туре	Value	Source Formatted: Table Header, Left
IR	Variable		Application Form-or Formatted: Table Cells Manufacturer Data
CF	Fixed	30%	Summit Blue NJ Formatted: Table Cells Market Assessment
EFLH	Fixed	1,000	PSE&G Formatted: Table Cells
EF<u>EFF</u>	Variable		Application Form or Formatted: Table Cells Manufacturer Data

Stand Alone Storage Water Heaters		
This prescriptive measure targets solely the use of smaller scale domestic is intended for stand alone storage water heaters (50 gallons or less per unit)installed in all commercial facilities. Larger gasThe savings algorithms are based on installed equipment specifications and data from the Commercial Building Energy Consumption Survey (CBECS).		
Baseline efficiencies are set by current and previous equipment performance standards. I New Jersey ASHRAE 90.1 defines the commercial energy code requirements. For new buildings, ASHRAE 90.1-2013 standards apply, and for existing buildings, ASHRAE 90.1-2007 standards are assumed.	<u>n</u>	
Note, that forstand alone storage water heaters are treated under the custom measure path		Formatted: Normal, Space Before: 6 pt, After: 6 pt
standards are defined in terms of thermal efficiency. Equipment below this input capacity is rated in terms of energy savings for C&I gas water heaters is based on algorithms with key variables (i.e., energy factor) provided by manufacturer data. Energy factor is determined on a 24 hour basis and includes standby or storage loss effects, while thermal efficiency does not. Therefore, if the equipment is large enough to be rated in terms of thermal efficiency, a percent standby loss factor must be included in the calculation as shown in the algorithms.		
	4	Formatted: Normal
Algorithms		Formatted: Font: Not Bold
Algorithms Gas Algorithms	•	Formatted: Font: Not Bold Formatted: Normal
$\frac{\text{Algorithms}}{\text{Gas}}$ $\frac{\text{Algorithms}}{\text{Fuel Savings} = ((EFF_q - (MMBtu/yr) = ((1 - (EFF_p) + / EFF_q) \times EFF_q) \times Energy}$		Formatted: Font: Not Bold Formatted: Normal Formatted: Indent: Left: 0.25"
Algorithms Gas Algorithms <u>Fuel</u> Savings = ((EFF _q - (MMBtu/yr) = ((1 - (EFF _b)+ / EFF _q) \times + SLF ⁶⁰) * Energy Use Density \times (* Area) / 1000 kBtu/MMBtu		Formatted: Font: Not Bold Formatted: Normal Formatted: Indent: Left: 0.25" Formatted: Font: 12 pt, Subscript
Algorithms Gas Algorithms Fuel Savings = ((EFF_q - (MMBtu/yr) = ((1 - (EFF_p)//EFF_q) X + SLF^{60}) * Energy Use Density X (* Area) / 1000 kBtu/MMBtu where, SLF = (SL_p - SL_q) / Cap_q		Formatted: Font: Not Bold Formatted: Normal Formatted: Indent: Left: 0.25" Formatted: Font: 12 pt, Subscript
Algorithms Gas Algorithms Fuel Savings = ((EFF_q - (MMBtu/yr) = ((1 - (EFF_p) + / EFF_q) + SLF^{60}) * Energy Use Density X (* Area) / 1000 kBtu/MMBtu where, SLF = (SL_p - SL_q) / Cap_q Definition of Variables		Formatted: Font: Not Bold Formatted: Normal Formatted: Indent: Left: 0.25" Formatted: Font: 12 pt, Subscript Formatted: English (U.S.)
Algorithms Gas Algorithms Fuel Savings = ((EFFq - (MMBtu/yr) = ((1 - (EFFp) + / EFFq) + SLF ⁶⁰) * Energy Use Density + (* Area) - / 1000 kBtu/MMBtu where, SLF = (SLp - SLq) / Capq Definition of Variables EFFq _= Efficiency of the qualifying energy efficient-water heater.		Formatted: Font: Not Bold Formatted: Normal Formatted: Indent: Left: 0.25" Formatted: Font: 12 pt, Subscript Formatted: English (U.S.) Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
Algorithms Gas Algorithms Fuel Savings = ((EFFq - (MMBtu/yr) = ((1 - (EFFp)//EFFq) X+SLF ⁶⁰) * Energy Use Density X (* Area) / 1000 kBtu/MMBtu where, SLF = (SL_b - SL_q) / Cap_q Definition of Variables EFFq _= Efficiency of the qualifying energy efficient-water heater. EFFb _= Efficiency of the baseline water heater-, commercial grade.		Formatted: Font: Not Bold Formatted: Normal Formatted: Indent: Left: 0.25" Formatted: Font: 12 pt, Subscript Formatted: Font: 12 pt, Subscript Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt

⁶⁰ Standby losses only apply if the stand alone storage water heater is rated for more than 75 kBtu/hr

 EF_b = Energy Factor of the baseline water heater, commercial grade.

Energy Use Density = Annual baseline water heater energy use per square foot of commercial space served (MMBtu/sq.ft./yr)

Area _= Square feet of building area served by the water heater

<u>SLF</u> = Standby loss factor for savings of qualifying water heater over baseline

 $SL_{b \text{ or } g}$ = Standby losses in kBtu/hr of the baseline and qualifying storage water heater respectively. The baseline standby losses is calculated assuming the baseline water heater has the same input capacity rating as the qualifying unit's input capacity using ASHRAE equipment performance standards. The qualifying unit's standby losses are available on the AHRI certificate provided with the application.

 $Cap_q = Rated$ input capacity of the qualifying water heater

Summary of Inputs

Stand Alone Storage Water Heaters Heater Assumptions

				_
Component	Туре	Value	Source	•
EFF_q	Variable		Application	•
EFF _b	Fixed	<50 gal or <75,000 BtuH: EF	From ASHRAE	
		> 50 gal or >75,000 BtuH: TE	90.1 2007	
		EF = Energy Factor		
		TE = Thermal Efficiency		
Energy Use	Variable	See Table Below	4	
Density				
Fluid Capacity	Variable		Application	

Format	ted: Indent:	: First line:	0.25", Space
Before:	3 pt, After:	3 pt	

Formatted: Table Caption, Left, Don't keep with next

- **Formatted:** Table Header, Left, Don't keep with next
- Formatted Table
- Formatted: Table Header, Left
- Formatted: Table Cells

	<u>EFF</u> _b	<u>Variable</u>	See Table Below	<u>1, 2</u>
	<u>EF</u> b	<u>Variable</u>	See Table Below	<u>1, 2</u>
Energ	y Use Density	<u>Variable</u>	See Table Below	<u>3</u>
	<u>Area</u>	Variable		Application
	$\underline{\operatorname{Cap}}_q$	<u>Variable</u>		Application
	$\underline{SL}_{\underline{b}}$	Variable	See Table Below	<u>1 & Application</u>
	\underline{SL}_q	<u>Variable</u>		Application

Efficiency of Baseline Stand Alone Storage Water Heaters-Existing Buildings

ASHRAE 90.1-2007				
Equipment	Size Category	Subcategory or Rating	D. C. B. B. B. B.	
Type	(mpur)	Condition	Performance Required	
Gas Storage Water Heaters	<u>≤ 75,000 BtuH</u>	≥20 gal	0.62 0.0019V EF	

Formatted: Table Caption, Left, No page break before

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

Gas Storage Water Heaters	> 75,000 BtuH	<4,000 (BtuH)/gal	80% Et (Q/800 + 110 √V) SL, BtuH
Gas Instantaneous Water Heaters	>50,000 BtuH and <200,000 BtuH	≥4,000 (BtuH)/gal and <2 gal	0.62 0.0019V EF
Gas Instantaneous Water Heaters	<u>≥200,000 BtuH</u> ^b	≥4,000 (BtuH)⁄gal and <10 gal	80% Ε ⊧
Gas Instantaneous Water Heaters	<u>≥200,000 BtuH</u>	≥4,000 (BtuH)/gal and ≥10 gal	80% Et (Q/800 + 110 √V) SL, BtuH

	ASHRAE 90.1-2007 and 2013 ^a				
<u>Equipment</u> <u>Type</u>	<u>Size</u> <u>Category</u> <u>(Input)</u>	Existing Building Baseline Efficiency (ASHRAE 90.1- <u>2007)</u>	<u>New Building Baseline</u> <u>Efficiency (ASHRAE 90.1-</u> <u>2013)</u>		
Gas Storage Water Heaters	<u>≤75</u> <u>kBtu/hr</u>	$EF = 0.62 - 0.0019 \times V$	$EF = 0.67 - 0.0005 \times V$		
Gas Storage Water Heaters	<u>>75</u> <u>kBtu/hr</u>	$\frac{\text{TE} = 0.80}{\text{SL} = (\text{Cap}_{g} / 0.8 + 110 \times \sqrt{\text{V}})} / \frac{1000}{1000}$	$\frac{\text{TE} = 0.80}{\text{SL} = (\text{Cap}_{a} / 0.799 + 16.6 \times \sqrt{\text{V}}) / 1000}$		

a <u>Energy_EF is energy factor (EF) and TE is thermal efficiency-(Et) are minimum</u> requirements, while standby loss (SL) is maximum BtuH based on a 70°F temperature difference between stored water and ambient requirements. In the EF equation, V_v is the volume of the installed storage water heater, and Cap_a is the rated volume in gallons. In the SL equation, V is the rated volume in gallons and Q is the nameplate input rate in BtuH.

Formatted: Font: 10 pt Formatted: Font: 10 pt Formatted: Font: 10 pt Formatted: Font: 10 pt Formatted: Font: 10 pt

Formatted: Font: Not Bold

b Instantaneous water heaters with input rates below 200,000 BtuH must comply with these requirements if the water heater is designed to heat water to temperatures of 180°F or higher.

of the proposed storage

Water-Heaters New Construction

ASHRAE 90.1-2013 (most current requirement as of February 2016)			
Equipment Type	Size Category (Input)	Subcategory or Rating Condition	Performance Required [*]
Gas Storage Water Heaters	<u>≤ 75,000 BtuH</u>	≥20 gal	0.67 - 0.0005V EF
Gas Storage Water Heaters	> 75,000 BtuH	<4,000 (BtuH)/gal	80% Et (Q/799 + 16.6 √V) SL, BtuH
Gas Instantaneous Water Heaters	>50,000 BtuH and <200,000 BtuH	≥4,000 (BtuH)/gal and <2 gal	0.62 0.0005V EF

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

Gas Instantaneous Water Heaters	<u>≥200,000 BtuH</u> ^ь	≥4,000 (BtuH)/gal and <10 gal	80% E ₊
Gas Instantaneous Water Heaters	<u>≥200,000 BtuH</u>	≥4 ,000 (BtuH)/gal and ≥10 gal	80% Et (Q/799 + 16.6 √V) SL, BtuH

a Energy factor (EF) and thermal efficiency (Et) are minimum requirements, while standby loss (SL) is maximum BtuH based on a 70°F temperature difference between stored water and ambient requirements. In the EF equation, V is the rated volume in gallons. In the SL equation, V is the rated volume in gallons and Q is the nameplate input rate in BtuH.

b Instantaneous water heaters with input rates below 200,000 BtuH must comply with these requirements if the water heater is designed to heat water to temperatures of 180°F or higher.

Formatted:	Font:	10	pt	
				-

Formatted: Font: 10 pt

Formatted: Font: Bold

.

Formatted: Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto

Energy Use Density Look-up Table				
Building Type	Energy Use Density (kBtu/SF/yr)			
Education	<u>7.0</u>			
Food sales	<u>4.4</u>			
Food service	<u>39.2</u>			
Health care	<u>23.7</u>			
<u>Inpatient</u>	<u>34.3</u>			
Outpatient	<u>3.9</u>			
Lodging	<u>26.5</u>			
Retail (other than mall)	<u>2.5</u>			
Enclosed and strip malls	<u>14.1</u>			
Office	<u>4.8</u>			
Public assembly	<u>2.1</u>			
Public order and safety	<u>21.4</u>			
Religious worship	<u>0.9</u>			
Service	<u>15</u>			
Warehouse and storage	<u>2.9</u>			
Other	<u>2.3</u>			

Example: If a water heater of 150 kBtu/hr input capacity and 100 gallons storage capacity is installed in an existing building, the baseline standby losses would be calculated as SL = $(150 \text{ kBtu/hr} / 0.8 + 110 \times \sqrt{100}) / 1000 = 1.29 \text{ kBtu/hr}$. If the proposed equipment's standby losses were rated for 1.0 kBtu/hr, the standby loss factor for savings would be SLF = (1.29 - 1.0) / 150 = 0.0019.

In the above example, if the unit was rated for 96% thermal efficiency, and installed in an office building space of 10,000 ft², the annual energy savings would be $((1 - 0.8/0.96) + 0.0019) \times 4.8 \times 10000 / 1000 = 8.1 \text{ MMBtus/yr}$

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: Table Caption

	Building Type	Energy Use Density (kBtu/SF/yr)
	Education	5.2
	Food Sales	3.2
	Food Service	40.0
	Health Care	28.9
	- Inpatient	39.4
	- Outpatient	3.5
	Lodging	29.2
	Retail (Other Than Mall)	1.0
	Office	1.6
	Public Assembly	0.9
	Public Order and Safety	15.1
	Religious Worship	0.9
	Service	0.9
	Warehouse and Storage	0.7
Sources	Other	1.7

Sources:

- 3. ASHRAE Standards 90.1-2007, *Energy Standard for Buildings Except Low Rise* <u>Residential Buildings</u>; available at: https://www.ashrae.org/standards-research-technology/standards--guidelines.
- 4. ASHRAE Standards 90.1-2013, Energy Standard for Buildings Except Low Rise Residential Buildings; available at: https://www.ashrae.org/standards-research-technology/standards--guidelines.
- 4.5. Energy Information Administration, Commercial Building Energy Consumption Survey. 2003. Data, 2012; available at: https://www.eia.gov/consumption/commercial/data/2012/c&e/cfm/e7.cfm.

Instantaneous Gas Water Heaters

This prescriptive measure is intended for instantaneous water heaters installed in commercial facilities. This measure assumes that the baseline water heater is either a code stand alone storage water heater, or a code instantaneous water heater. The savings algorithms are based on installed equipment specifications and data from the Commercial Building Energy Consumption Survey (CBECS).

Baseline efficiencies are set by current and previous equipment performance standards. In New Jersey ASHRAE 90.1 defines the commercial energy code requirements. For new buildings, ASHRAE 90.1-2013 standards apply, and for existing buildings, ASHRAE 90.1-2007 standards are assumed.

If the qualifying instantaneous water heater is greater than 200 kBtu/hr and replacing a stand alone storage water heater, use a baseline storage water heater efficiency greater than 75 kBtu/hr. Similarly, if the qualifying instantaneous water heater is less than 200 kBtu/hr, and replacing a stand alone storage water heater, use an efficiency for equipment less than 75 kBtu/hr.

New Jersey's Clean Energy Program Protocols to Measure Resource Savings **Formatted:** Sources, No bullets or numbering

Note, that for stand alone storage tank water heaters rated above 75 kBtu/hr, and instantaneous water heaters above 200 kBtu/hr, equipment standards are defined in terms of thermal efficiency. Equipment below these levels is rated in terms of energy factor. Energy factor is determined on a 24 hour basis and includes standby or storage loss effects, while thermal efficiency does not. Therefore, if the equipment is large enough to be rated in terms of thermal efficiency, a percent standby loss factor must be included in the calculation as shown in the algorithms.

<u>Algorithms</u>

<u>Fuel Savings (MMBtu/yr) = ((1 – (EFF_b / EFF_q) + SLF⁶¹) * Energy Use Density *</u> <u>Area</u>

Where,

 $\underline{SLF} = 0.775 \times \underline{Cap_q}^{\underline{-0.778}}$

Definition of Variables

 $EFF_q = Efficiency$ of the qualifying instantaneous water heater.

 $EFF_b = Efficiency of the baseline water heater, commercial grade.$

 $EF_b = Efficiency of the baseline water heater, commercial grade.$

<u>SLF</u> = Standby loss factor of the baseline water heater fuel usage. This was calculated from standby loss and input capacity data for commercial water heaters exported from the AHRI database.

Energy Use Density = Annual baseline water heater energy use per square foot of commercial space served (MMBtu/sq.ft./yr)

<u>Area = Square feet of building area served by the water heater</u>

 $Cap_q = Rated$ input capacity of the qualifying water heater

Summary of Inputs

<u>Water</u>

Heater Assumptions				
Component	Source			
$\overline{\mathrm{EFF}_q}$	<u>Variable</u>		Application	
$\overline{\mathrm{EFF}}_{b}$	<u>Variable</u>	See Table Below	<u>1, 2</u>	
		If storage water heater < 75		
		kBtu/Hhr or instantaneous water		

 $\frac{^{61}}{\text{than 75 kBtu/hr}}$ stand alone storage water heater rated for more than 75 kBtu/hr

Component	Type	Value	Source
		heater < 200 kBtu/hr: EF	
		Otherwise TE.	
		<u>EF = Energy Factor</u>	
		<u>TE = Thermal Efficiency</u>	
$\underline{\mathrm{EF}}_{b}$	<u>Variable</u>	See Table Below	<u>1, 2</u>
<u>Energy Use</u> <u>Density</u>	<u>Variable</u>	See Table Below	<u>3</u>
Area	<u>Variable</u>		Application

Efficiency of Baseline Water Heaters

	ASHRAE 90.1-2007 and 2013 ^a					
<u>Equipment Type</u>	Size Category (Input)	Existing Building Baseline Efficiency (ASHRAE 90.1-2007)	<u>New Building Baseline</u> <u>Efficiency (ASHRAE 90.1-</u> <u>2013)</u>			
Gas Storage Water Heaters ⁶²	<u>≤ 75 kBtu/hr</u>	<u>EF = 0.54</u>	<u>EF = 0.65</u>			
Gas Storage Water <u>Heaters</u>	<u>> 75 kBtu/hr</u>	TE = 0.80	<u>TE = 0.80</u>			
Gas Instantaneous Water Heaters ⁶³	< 200 kBtu/hr	<u>EF = 0.62</u>	<u>EF = 0.62</u>			
Gas Instantaneous Water Heaters	\geq 200 kBtu/hr	<u>TE = 0.80</u>	<u>TE = 0.80</u>			

<u>a – EF means energy factor and TE means thermal efficiency</u>

Energy Use Density Look-up Table

	Energy Use Density
Building Type	<u>(kBtu/SF/yr)</u>
Education	<u>7.0</u>
Food sales	<u>4.4</u>
Food service	<u>39.2</u>
Health care	<u>23.7</u>
<u>Inpatient</u>	<u>34.3</u>
<u>Outpatient</u>	<u>3.9</u>
Lodging	<u>26.5</u>

 $\frac{62}{10}$ Note, for qualifying instantaneous water heaters less than 200kBtu/hr, the storage water heater tank size is assumed to be 40 gallons.

⁶³ For instantaneous water heaters rated for less than 200 kBtu/hr, the tank size is assumed to be 1 gallon.

Retail (other than mall)	<u>2.5</u>
Enclosed and strip malls	<u>14.1</u>
Office	<u>4.8</u>
Public assembly	<u>2.1</u>
Public order and safety	<u>21.4</u>
Religious worship	<u>0.9</u>
<u>Service</u>	<u>15</u>
Warehouse and storage	<u>2.9</u>
Other	<u>2.3</u>

Sources

- 1. ASHRAE Standards 90.1-2007, *Energy Standard for Buildings Except Low Rise* <u>Residential Buildings</u>; available at: https://www.ashrae.org/standards-research-technology/standards--guidelines.
- 2. ASHRAE Standards 90.1-2013, Energy Standard for Buildings Except Low Rise Residential Buildings; available at: https://www.ashrae.org/standards-research-technology/standards--guidelines.
- 3. Energy Information Administration, *Commercial Building Energy Consumption* Survey Data, 2012; available at: https://www.eia.gov/consumption/commercial/data/2012/c&e/cfm/e7.cfm.

Summary of Inputs

Prescriptive Boilers				
Component	Туре	Value	Source	•
<u>Cap_{in}</u>	<u>Variable</u>		<u>Application</u>	
<u>EFLH_h</u>	Fixed	See Table Below	<u>1</u>	
<u>Eff_b</u>	<u>Variable</u>	See Table Below	<u>2</u>	
$\underline{\mathrm{Eff}}_{\mathrm{q}}$	<u>Variable</u>		Application	

Formatted: Table Caption, Left, Don't keep with next

Formatted: Table Header, Left

<u>EFLH_b Table</u>				
Facility Type	Heating EFLH			
Assembly	<u>603</u>			
Auto repair	<u>1910</u>			
Dormitory	<u>465</u>			
<u>Hospital</u>	<u>3366</u>			
Light industrial	<u>714</u>			
Lodging – Hotel	<u>1077</u>			
Lodging – Motel	<u>619</u>			
<u>Office – large</u>	<u>2034</u>			
<u>Office – small</u>	<u>431</u>			
<u>Other</u>	<u>681</u>			
Religious worship	<u>722</u>			
<u>Restaurant – fast</u> <u>food</u>	<u>813</u>			
<u>Restaurant – full</u> <u>service</u>	<u>821</u>			
<u>Retail – big box</u>	<u>191</u>			
Retail – Grocery	<u>191</u>			
Retail – large	<u>545</u>			
<u>Retail – large</u>	<u>2101</u>			
<u>School –</u> <u>Community</u> <u>college</u>	<u>1431</u>			
<u>School –</u> postsecondary	<u>1191</u>			
<u>School – primary</u>	<u>840</u>			
<u>School –</u> <u>secondary</u>	<u>901</u>			
Warehouse	<u>452</u>			

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

Multi-family EFLH by Vintage					
Facility Type	<u>Prior to 1979</u>	<u>From 1979 to</u> <u>2006</u>	From 2007 through Present		
Low-rise, Heating	<u>757</u>	723	<u>503</u>		
High-rise, Heating	<u>526</u>	<u>395</u>	<u>219</u>		

Baseline Boiler Efficiencies (Eff_b)

OF	Fixed	0.8	
HR _B	Variable		Application
HC _{fuel}	Fixed	100,000 Btu/Therm	
Eff _B	Variable	See Table Below	2
Eff _Q	Variable		Application
AT	Variable	See Table Below	1
HDDmod	Fixed	See Table Below	1

Adjusted Heating Degree Days by Building Type

Building Type	Heating Energy Density (kBtu/sf)	Degree Day Adjustment Factor	Atlantic City (HDD)	Newark (HDD)	Philadelphia (HDD)	Monticello (HDD)
Education	29.5	0.55	2792	2783	2655	3886
Food Sales	35.6	0.66	3369	3359	3204	4689
Food Service	39.0	0.73	3691	3680	3510	5137
Health Care	53.6	1.00	5073	5057	4824	7060
Lodging	15.0	0.28	1420	1415	1350	1976
Retail	29.3	0.55	2773	2764	2637	3859
Office	28.1	0.52	2660	2651	2529	3701
Public Assembly	33.8	0.63	3199	3189	3042	4452
Public Order/Safety	24.1	0.45	2281	2274	2169	3174
Religious Worship	29.1	0.54	2754	2745	2619	3833
Service	47.8	0.89	4524	4510	4302	6296
Warehouse/Storage	20.2	0.38	1912	1906	1818	2661

<u>Boiler Type</u>	<u>Size Category</u> (kBtu input)		<u>Standard 90.1-2013</u>
Hot Water – Gas fired	<u>< 300</u>		82% AFUE
	<u>> 300 and <</u>		<u>80% Et</u>
	<u>2,500</u>		<u>82% Ec</u>
Hot Water – Oil fired	<u>< 300</u>	<u>84% AFUE</u>	
	<u>> 300 and <</u>	<u>82% Et</u>	
	<u>2,500</u>	<u>84% Ec</u>	
<u>Steam – Gas fired</u>	<u>< 300</u>	<u>80% AFUE</u>	
Steam - Gas fired, all except	<u>> 300 and <</u>	<u>79% Et</u>	
<u>natural draft</u>	2,500		
Steam – Gas fired, all except	> 2,500		<u>79% Ec</u>
Steam – Gas fired, natural draft	> 300 and <		<u>77% Et</u>

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

Page 200

Formatted: Table Caption

Boiler Type	<u>Size Category</u> (<u>kBtu input)</u>		Standard 90.1-2013
<u>Steam – Gas fired, natural draft</u>	<u>>2,500</u>		<u>77% Ec</u>
<u>Steam – Oil fired</u>	<u>< 300</u>	<u>82% AFUE</u>	
	<u>> 300 and <</u>	<u>81% Et</u>	
	2.500	81% Ec	

Heating-Degree Days and Outdoor Design Temperature by Zone

Weather Station	HDD	Outdoor Design Temperature (F)
Atlantic City	5073	13
Newark	5057	14
Philadelphia, PA	4824	15
Monticello, NY	7060	8

Baseline Boiler Efficiencies (Eff_b)

Boiler Type	Size Category (<mark>MBh input)</mark>	Existing Buildings Standard 90.1-2007	New Construction Standard 90.1-2013
Hot Water	< 300	80% AFUE	82% AFUE
Hot Water	\geq 300 and \leq 2,500	75% Et	80% Et
Hot Water	<u>> 2,500</u>	80% Ec	82% Ec
Steam	< 300	75% AFUE	80% AFUE
Steam, all except natural draft	\geq 300 and \leq 2,500	75% Et	79% Et
Steam, all except natural draft	<u>> 2,500</u>	80%-Ес	79% Et
Steam, natural draft	\geq 300 and \leq 2,500	75% Et	77% Et
Steam, natural draft	<u>> 2,500</u>	80%-Ес	77% Et

Sources:

KEMA, Smartstart Program Protocol Review. 2009.
 ASHRAE 90.1 2007

- Infrared Heaters, New York State Joint Utilities, New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs, V6, April 2018.
 Appendix G – Equivalent Full-Load Hours (EFLH), For Heating and Cooling. Page 535-540. EFLH values for NYC due to proximity to NJ.
- 2. ASHRAE Standards 90.1-2013. Energy Standard for Buildings Except Low Rise Residential Buildings; available at: https://www.ashrae.org/standards-research-technology/standards--guidelines.

Formatted: Heading 4, Space After: 6 pt

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: Indent: Left: 0.25" Formatted: Font: Not Bold

<u>Prescriptive</u> Furnaces and Direct Install Boilers	•	Formatted: Heading 3, Page break before
The methodology outlined below shall be adopted for estimating savings for installation of qualifying furnaces and infrared heaters as well as Direct Install boilers in order to accommodate resizing.		Formatted: Space Before: 6 pt, After: 6 pt
	4	Formatted: Right: -0.13"
Algorithms		Formatted: Font: Not Bold
$\begin{array}{l} \hline Gas \ Savings \ (Therms) \\ = & \left[\frac{OF \times HDD_{mod} \times 24 \times ((CAPY_{B.out} \times EffAFUE_q) - (CAPY_{Q.out} \times AFUEEff_b \times HO_{Q.out} \times AFUEEff_b \times AFUEEff_b \times AFUEEff_q \times ICF \right] \end{array}$	€₽))]	-
This measure applies to new construction, replacement of failed equipment, or end of useful life. The baseline unit is a code compliant unit with an efficiency as required by ASHRAE Std. $90.1 - 2013$, which is the current code adopted by the state of New Jersey Algorithms Evel Savings (MMBtu/wr) = Cap. * EEL H. * ((Eff./Eff.) 1) / 1000 kBtu/MMBtu	-	
$\underline{\Gamma}_{\text{rec}} \text{ savings} (\text{wivibu/yi}) = \underline{Cap_{in}} + \underline{Er}_{\text{e}} \underline{\Gamma}_{h} + ((\underline{En}_{g}/\underline{En}_{b})^{-1}) / 1000 \text{ kBu/wiwibu}$	4	Formatted: Normal
Definition of Variables		Formatted: English (U.S.)
OF = Oversize factor of standard furnace/boiler/heater (OF=0.8)		
$CAPY_{B.out} = 1$ otal output capacity of the baseline furnace/boiler/heater(s) in Btu/hour EffAFUE ₀ = Efficiency of qualifying furnace/boiler/heater(s) (AFUE %)		
$\frac{\text{CAPY}_{\text{Q,out}} = \text{Total output}\underline{\text{Cap}_{in}} = \text{Input}}{\text{furnace/boiler/heater(s)unit in kBtu/hr}}$		
<u>EFLH_h = The Equivalent Full Load Hours of operation for the average unit during the heating season in $\frac{Btu/hour}{hours}$</u>	24	Formatted: Indent: Left: 0.25", Space Before: 3 pt, After: 3 pt
$\frac{\text{Eff}_{B} = \text{Eff}_{b}}{\text{Eff}_{q}} = \text{Furnace Baseline Efficiency}}$ $\frac{\text{Eff}_{q}}{\text{Solution}} = \text{Furnace Proposed Efficiency-of baseline furnace/boiler/heater(s) (AFUF)}$ $\frac{\text{Solution}}{\text{Solution}} = \text{Furnace Proposed Efficiency-of baseline furnace/boiler/heater(s)}}$	ç	Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt
ICF = Infrared Compensation Factor (ICF = 0.8 for IR Heaters, 1.0 for Furnaces/Boilers)	2	
HDD _{mod} = HDD by zone and building type		
24 = Hours/Day		
New Jersey's Clean Energy Program Page 20 Protocols to Measure Resource Savings	2	

$\Delta T = design temperature difference$

HC_{fuel}-1000 = Conversion from Btu to Therms of gas (100,000 Btu/Therm)kBtu to MMBtu

IR Heaters, Summary of Inputs

Fixed

Fixed

Fixed

Component

<u>Cap</u>_{in}

EFLH_h

θF

HCfuel

Prescri

<u>escriptive</u> F	urnaces and Boilers		4	(Formatted: Table Caption, Left, Don't keep with next
Туре	Value	Source	•	(Formatted: Table Header, Left
	0.8			\sim	Formatted Table
	100,000 Btu/Therm				
Variable		Application			

1

Eff_q	Variable		Application			
<u>Eff</u> _b	<u>Fixed</u>	See Table Below	<u>2</u>			

See Table Below

Formatted: Table Cells Formatted Table

Formatted: Indent: First line: 0.25", Space

Formatted: Indent: First line: 0.25"

Before: 3 pt, After: 3 pt

<u>EFLH_h Table</u>			
Facility Type	Heating EFLH		
<u>Assembly</u>	<u>603</u>		
<u>Auto repair</u>	<u>1910</u>		
<u>Dormitory</u>	<u>465</u>		
<u>Hospital</u>	<u>3366</u>		
Light industrial	<u>714</u>		
Lodging – Hotel	<u>1077</u>		
Lodging – Motel	<u>619</u>		
<u>Office – large</u>	<u>2034</u>		
<u>Office – small</u>	<u>431</u>		
Other	<u>681</u>		
Religious worship	<u>722</u>		
<u>Restaurant – fast</u> <u>food</u>	<u>813</u>		
<u>Restaurant – full</u> <u>service</u>	<u>821</u>		
<u>Retail – big box</u>	<u>191</u>		
Retail – Grocery	<u>191</u>		
Retail – large	<u>545</u>		
<u>Retail – large</u>	<u>2101</u>		

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

Facility Type	Heating EFLH
<u>School –</u> <u>Community</u> <u>college</u>	<u>1431</u>
<u>School –</u> postsecondary	<u>1191</u>
<u>School – primary</u>	<u>840</u>
<u>School –</u> secondary	<u>901</u>
Warehouse	<u>452</u>

Multi-family EFLH by Vintage

Facility Type	<u>Prior to 1979</u>	<u>From 1979 to</u> <u>2006</u>	<u>From 2007</u> <u>through</u> <u>Present</u>
Low-rise, Heating	<u>757</u>	<u>723</u>	<u>503</u>
High-rise, Heating	<u>526</u>	<u>395</u>	<u>219</u>

Baseline Furnace Efficiencies (Eff_b)

<u>Furnace Type</u>	<u>Size Category</u> (<u>kBtu input)</u>	<u>Standard 90.1-2013</u>
Gas Fired	<u>< 225</u>	<u>78% AFUE</u>
	<u>≥ 225</u>	<u>80% Ec</u>
Oil Fired	<u>< 225</u>	<u>78% AFUE</u>
	<u>≥225</u>	<u>81% Et</u>

Sources

 New York State Joint Utilities, New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs, V6, April 2018. Appendix G – Equivalent Full-Load Hours (EFLH), For Heating and Cooling. Page 535-540. EFLH values for NYC due to proximity to NJ.

2. ASHRAE Standards 90.1-2013, *Energy Standard for Buildings Except Low Rise* <u>Residential Buildings</u>; available at: https://www.ashrae.org/standards-research-technology/standards--guidelines.

Infrared Heaters

This measures outlines the deemed savings for the installation of a gas-fired low intensity infrared heating system in place of unit heater, furnace, or other standard efficiency equipment. The deemed savings are based on a Massachusetts Impact Evaluation Study.

Summary of Assumptions

<u>Variable</u>	Value	Source
Deemed Savings	<u>12.0 MBtu/yr</u>	<u>1</u>

Sources Eff.	Fixed	Furnaces: 78%	EPACT Standard
		Boilers: 80% ^a	for furnaces and
		Infrared: 78%	boilers
CAPY B/Q, Out	Variable		Application
AT	Variable	See Table Below	1
HDD _{mod}	Fixed	See Table Below	1

a 80% efficiency used for Direct Install protocols only. SmartStart gas boiler efficiencies referenced in Boiler Baseline Efficiency table.

Sources:

1. KEMA, Smartstart Program Protocol Review. 2009.

2. <u>http://www.spaceray.com/1_space_ray_faqs.php</u>

Formatted: No underline

Adjusted Heating Degree Days by Building Type

Building Type	Heating Energy Density (kBtu/sf)	Degree Day Adjustment Factor	Atlantic City (HDD)	Newark (HDD)	Philadelphia (HDD)	Monticello (HDD)
Education	29.5	0.55	2792	2783	2655	3886
Food Sales	35.6	0.66	3369	3359	3204	4689
Food Service	39.0	0.73	3691	3680	3510	5137
Health Care	53.6	1.00	5073	5057	4824	7060
Lodging	15.0	0.28	1420	1415	1350	1976
Retail	29.3	0.55	2773	2764	2637	3859
Office	28.1	0.52	2660	2651	2529	3701
Public Assembly	33.8	0.63	3199	3189	3042	4452
Public Order/Safety	24.1	0.45	2281	2274	2169	3174
Religious Worship	29.1	0.54	2754	2745	2619	3833
Service	47.8	0.89	4524	4510	4302	6296
Warehouse/Storage	20.2	0.38	1912	1906	1818	2661

Heating Degree Days and Outdoor Design Temperature by Zone

Weather Station	HDD	Outdoor Design Temperature (F)					
Atlantic City	5073	13					
Newark	5057	14					
Philadelphia, PA	4824	15					
Monticello, NY	7060	8					

Baseline Boiler Efficiencies (Eff.)

Size Category (M	lBh input)		Steam		
Min	Max	Hot Water			
0	300	80%AFUE	75% AFUE		
300	2500	75% Et	75% Et		
2500	4000	80% Ec	76% Et		
Baseline ASHRAE 90.1 2007					

Sources:

1. KEMA, Smartstart Program Protocol Review. 2009.

2. http://www.spaceray.com/1_space ray_faqs.php

Formatted: Table Caption

Formatted: No underline

 KEMA, Impact Evaluation of 2011 Prescriptive Gas Measures; prepared for Massachusetts Energy Efficiency Program Administrators and Massachusetts Energy Efficiency Advisory Council, 2013, pp. 1–5.

<u>Electronic</u> Fuel Use Economizers

Algorithms

Fuel Savings (MMBtu) = (AFU * 0.13)

AFU = Annual Fuel Usage for an uncontrolled (gas, oil, propane) HVAC unit (MMBtu or gallons) = (Input power in MMBtu or gallons) * (annual run time)

0.13 = Approximate energy savings factor related to installation of fuel use economizers¹.

Sources_:

+. Approximate energy savings factor of 0.13 based on average % savings for test sites represented in Table 2 (page 3) of NYSERDA Study: A Technology Demonstration and Validation Project for Intellidyne Energy Saving Controls; Intellidyne LLC & Brookhaven National Laboratories; 2006 (http://www.cleargreenpartners.com/attachments/File/NYSERDA_Report.pdf)(http://www.w.cleargreenpartners.com/attachments/File/NYSERDA_Report.pdf)

Formatted: Normal

Formatted: Font: Not Bold

Formatted: Font: Not Bold, Underline, (none)

Formatted: Normal, Level 4, Keep with next

Formatted: Normal

Formatted: Font: Bold

Formatted: No underline

Distributed Energy Resource (DER)

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

Combined Heat & Power Program

Protocols

The measurement of energy and demand savings for Combined Heat and Power (CHP)/fuel cell) systems is based primarily on the characteristics of the individual systems subject to the general principles set out below. -The majority of the inputs used to estimate energy and demand impacts of CHP/fuel cell_systems will be drawn from individual project applications. Eligible systems include: powered by non-renewable or renewable fuel sources, gas internal combustion engine, gas combustion turbine, microturbine, and fuel cells with heat recovery.

CHP/fuel cell The NJ Protocol is to follow the National Renewable Energy Laboratory's Combined Heat and Power, The Uniform Methods Project: Methods for Determining Energy-Efficiency Savings for Specific Measures [1]. The product should be all of the below outputs, as applicable:

- a. Annual energy input to the generator, HHV basis (MMBtu/yr)
- b. Annual electricity generated, net of all parasitic loads (kWh/yr)
- c. Annual fossil fuel energy savings from heat recovery (MMBtu/yr)
- d. Annual electric energy savings from heat recovery, including absorption chiller sourced savings if chiller installation is included as part of the system installation (kWh/yr)
- e. Annual overall CHP fuel conversion efficiency, HHV basis (%)
- f. Annual electric conversion efficiency, net of parasitics, HHV basis (%)

<u>CHP</u> systems typically use fossil fuels to generate electricity that displaces electric generation from other sources. Therefore, the electricity generated from a CHP/fuel cell system should not be reported as either electric energy savings or renewable energy generation. -Alternatively, electric generation and capacity from CHP/fuel cell systems should be reported as Distributed Generation (DG) separate from energy savings and renewable energy generation. -However, any waste heat recaptured and utilized should be reported as energy savings as₇ discussed below.

Distributed Generation

Electric Net Electricity Generation (MWh) = Estimated annual and lifetime electric generation in MWh provided on the project application, as adjusted during the project review and approval process.

<u>Peak Electric Demand (kW) = Electric demand reduction delivered by the CHP system</u> provided on the project application, as adjusted during the project review and approval process.

Formatted: Space Before: 6 pt, After: 6 pt

Formatted: Space Before: 6 pt, After: 6 pt

Formatted: Font: Not Bold

Formatted: Space Before: 6 pt, After: 3 pt

	Electric Demand (kW) = Electric capacity of the CHP/fuel cell system in kWT otal Fuel	•		Formatted: Space Before: 6 pt, After: 3 pt
	Consumption or Fuel Consumed by Prime Mover (MMBtu @HHV) = Total heating			
l	value of used by CHP system provided on the project application, as adjusted during the			
I	project review and approval process.			
	Energy Savings <u>Impact</u>			
	Gas Energy Savings <u>+ or Fuel Offset (MMBtu @HHV):</u> Gas savings should be reported	•	<	Formatted: Font: Not Bold
	on a consistent basis by all applicants as the reduction in fuel related to the recapture of			Formatted: Space Before: 6 pt, After: 6 pt
	thermal energy (e.g., reduction in boiler gas associated with the recapture of waste heat			
I	from the CTTF engine of turbine, of a rule cent with heat recovery.)			
				Formatted: Font: Not Bold
ļ	Electric Energy Savingst or Offset Chiller Electricity Use (MWh): Electric energy	\geq	<	Formatted: Space Before: 6 pt, After: 6 pt
	CHP system is used to drive an absorption chiller that would displace electricity			
	previously consumed for cooling.			
I	Emission Reductions			
l	For many CHP/ fuel cell applications there can be substantial emission benefits due to the	•		Formatted: Space Berore: 6 pt, After: 6 pt
I	average emission rate of electric generation units on the margin of the grid. However,			
1	CHP engines and turbines produce emissions, which should be offset against the			
	displaced emissions from the electricity that would have been generated by the grid. ⁶⁴			
	The New Jersey Department of Environmental Protection (DEP) has provided the BPU	+		Formatted: Space Before: 6 pt, After: 6 pt
	with emission Electric and natural gas emissions factors that are presented in the			
	Introduction section of the Protocols and are used to calculate the emission savings from			
l	calculate the base emission factors which the CHP system emission factors would be			
	compared toThe emissions from the CHP system would be subtracted from the base			
	emissions to determine the net emission changes as follows:			
	CHP Emissions Eastern Production Associated with PIM Crid	+		Formatted: Heading 3, Left
	<u>CHI</u> Linussions Factors<u>Reaucion</u> Associatea wan FJM Orta			
	CO ₂ —1015 lbs per MWh			
	NO _x 0.95 lbs per MWh			
	SO ₂ 2.21 lbs per MWh			
	CHP Emissions Reduction (ER) Formulas			

⁶⁴ Summit Blue, Draft Energy Efficiency Marka Clean Energy Program, Book HI, Page 196, May 26, 2006

(Assuming that the u	seful thermal output will displace natural gas)	•	Formatted: Left
CO2eAlgorithms			
<u>CO</u> 2 ER (lbs) =	$[\frac{1015 * Electrical Output}{CO_{2emission}} * Net Electricity Generation (MWh) + Useful Thermal OutputGas Energy Savings (MMBtu) * CO2 EF_{NG}] - [CHP CO_2 EF_f * Total Fuel Consumption (MMBtu)]$	•	Formatted: Indent: Hanging: 1.25"
$NO_x ER (lbs) =$	$\label{eq:model} \begin{array}{l} [\underline{0.95 * Electrical \ Output}\underline{NO}_{xemission} * Net \ Electricity \ Generation} \\ (MWh) + \underline{Useful \ Thermal \ Output}\underline{Gas \ Energy \ Savings} \\ (MMBtu) * \\ NOx \ EF_{NG}] - [CHP \ NO_X \ EF_f * \underline{Total} \ Fuel \ Consumption} \\ (MMBtu)] \end{array}$	4	Formatted: Indent: Hanging: 1.25"
$SO_2 ER (lbs) =$	$\label{eq:2.21} \begin{array}{l} * \underline{\text{Electrical Output}}\underline{\text{SO}}_{2emission} & * \underline{\text{Net Electricity Generation}}\\ (MWh) + \underline{\text{Useful Thermal Output}}\underline{\text{Gas Energy Savings}} & (MMBtu) & \\ & \underline{\text{SO2 EF}}_{NG} \\ - [\underline{\text{CHP SO}}_2 \\ \underline{\text{EF}}_{f} & \underline{\text{Total}} \\ \\ \hline{\text{Fuel Consumption}} & (MMBtu)] \end{array}$	4	Formatted: Indent: Hanging: 1.25"
Note:			
$\frac{\text{Definition of Variabl}}{\text{CO}_{2\text{emission}}} = \frac{1}{2}$ $\frac{\text{Protocols}}{\text{NO}_{\text{Xemission}}} = \frac{1}{2}$ $\frac{\text{Protocols}}{\text{SO}_{2\text{emission}}} = \frac{1}{2}$ $\frac{\text{Protocols}}{\text{Protocols}}$	es See emmisions tables summarized in Introduction section of See emmisions tables summarized in Introduction section of See emmisions tables summarized in Introduction section of		
$\begin{array}{c} + \text{EF}_{\text{NG}} \text{ values a} \\ \hline \text{CO2 EF}_{\text{NG}} = \\ \hline \text{NOX EF}_{\text{NG}} = \\ \hline \text{SO2 EF}_{\text{NG}} = . \end{array}$	associated with boiler fuel displacement <u>:</u> 115 lb/MMBtu 0.12 lbs/MMBtu 0006 lb/MMBtu	•	Formatted: Normal, Indent: First line: 0.25", Space Before: 6 pt, After: 3 pt, Add space between paragraphs of the same style, Line spacing: Multiple 1.15 li, No bullets or numbering
$\frac{CO2 EF_{NG} = 1}{\frac{Protocols}{NOX EF_{NG} = 1}}$ $\frac{Protocols}{SO2 EF_{NG} = 2}$ $\frac{Protocols}{Protocols}$	See emmisions tables summarized in Introduction section of See emmisions tables summarized in Introduction section of See emmisions tables summarized in Introduction section of		
2. CHP EF _f (lb/4 system, which wi and emission con	MWh)-MMBtu) = Emission factor of fuel type used in the CHP ll vary with different projects based on the types of prime movers trol devices used.		Formatted: Normal, Indent: Left: 0.25", Space After: 10 pt, Line spacing: Multiple 1.15 li, No bullets or numbering

NJDEP Regulatory Limits for CHP Systems

 NOX:
 0.047 lb/MMBtu

 SO2:
 0.0006 lb/MMBtu

 CO:
 0.157 lb/MMBtu

 VOC:
 0.047 lb/MMBtu

 TSP:
 0.01 lb/MMBtu

 PM-10:
 0.038 lb/MMBtu

Emission reductions from any CHP system energy savings, as discussed above, would be treated the same as any other energy savings reported.

Sources

 Simons, George, Stephan Barsun, and Charles Kurnik. 2016. Chapter 23: Combined Heat and Power, The Uniform Methods Project: Methods for Determining Energy-Efficiency Savings for Specific Measures. Golden, CO; National Renewable Energy Laboratory, NREL/SR-7A40-67307. http://www.nrel.gov/docs/fy17osti/67307.pdf.

Sustainable Biomass <u>Biopower</u>

Estimated annual energy generation and peak impacts for sustainable biomass systems will be determined on a case-by-case basis based on the information provided by project applicants and inspection data for verification of -as--installed conditions.

Formatted: Indent: Left: 0.25", Space After: 10 pt, Don't add space between paragraphs of the same style, Line spacing: Multiple 1.15 li, Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto

Formatted: Space Before: 6 pt, After: 6 pt

Formatted: Normal, Space After: 10 pt, Don't add space between paragraphs of the same style, Line spacing: Multiple 1.15 li

Formatted: Normal, Level 3, Space Before: 12 pt, After: 3 pt, Keep with next

Formatted: Normal, Space After: 10 pt, Don't add space between paragraphs of the same style, Line spacing: Multiple 1.15 li

Formatted: Font: 12 pt, Not Bold

Pay for Performance Program

Protocols

The Pay for Performance Program is a comprehensive program targeted at existing commercial and industrial (C&I) buildings that have an average annual peak demand of 200 kW or greater; as well as select multifamily buildings with annual peak demand of 100 kW or greater. -Participants in the Pay for Performance Program are required to identify and implement energy efficiency improvements that will achieve a minimum of 15% reduction in total source energy consumption.savings target.

Energy Savings Requirements

Existing Buildings

Projects For Existing Buildings, projects are required to identify and implement comprehensive energy efficiency improvements that will achieve a minimum of 15% reduction in total source energy consumption as measured from existing energy use. (for existing buildings) and 15% energy cost savings from the current state energy code (for new construction). Further, no more than 50% of the total savings may be derived from lighting measures, Savings may not come from a single measure and no more than 50% of the total savings up to 70% of total projected savings can be considered but the minimum savings required will increase proportionately as demonstrated in the table below For New Construction, including major rehabilitation, projects are required to identify and implement comprehensive energy efficiency measures that achieve a minimum 5% energy cost savings for commercial and industrial buildings, and 15% for multifamily, from the current state energy code.

Existing Buildings projects must include multiple measures, where lighting measures do not exceed 50% of total savings (exceptions apply, see program guidelines). New Construction projects must have at least one measure addressing each envelope, heating, cooling, and lighting systems. Buildings that are not heated (e.g. refrigerated warehouse) or not cooled (e.g. warehouse) will not be required to have a measure addressing the missing building system. Formatted: Font: Bold

Formatted: Centered

Formatted: Space Before: 9 pt, After: 3 pt

Formatted: Space Before: 6 pt, After: 6 pt

Lighting Savings	Minimum Source Energy Target
51%	16%
52%	17%
53%	18%
54%	19%
55%	20%
56%	21%
57%	22%
58%	23%
59%	24%
60%	25%
61%	26%
62%	27%
63%	28%
64%	29%
65%	30%
66%	31%
67%	32%
68%	33%
69%	34%
70%	35%

TheIn both program components, the total package of measures must have at least a 10%, internal rate of return (IRR), and at least 50% of the savings must come from investorowned electricity and/or natural gas. If 50% of the savings does not meet this criteria, then the project must save a minimum of 100,000 kWh or 2,000 therms from investorowned utility accounts.

AnFor Existing Buildings, an exception to the 15% savings requirement will be limited is available to sectors such as manufacturing, pharmaceutical, chemical, refinery, packaging, food/beverage, data center, transportation, mining/mineral, paper/pulp, biotechnology, etc, as well as hospitals. The manufacturing and/or processing loads use should be equal to or greater than approximately 50% of the total metered energy use. Instead of the 15% savings requirement, the project must deliver a minimum energy savings of 100,000 kWh, 350 MMBTU or 4% of total facility consumption, whichever is greater. Exceptions must be pre approved by Market Manager and currently only apply to existing buildings component of program.

New Construction and Gut Rehabilitation

Projects are required to identify and implement energy efficiency improvements that will achieve a minimum of 5% energy cost savings for C&I buildings, and 15% for multifamily, as measured from ASHRAE 90.1–2013 baseline. Equivalent performance targets for *ASHRAE Building Energy Quotient (bEQ) As Designed* and ASHRAE 90.1–2013 with Addendum BM are provided in the program guidelines (see Baseline Conditions below).

Each project must have at least one measure addressing each envelope, heating, cooling, and lighting systems. Buildings that are not heated (e.g. refrigerated warehouse) or not

Formatted: Space Before: 6 pt, After: 6 pt

Formatted: Space Before: 6 pt, After: 6 pt

Formatted: Space Before: 6 pt, After: 6 pt

cooled (e.g. warehouse) will not be required to have a measure addressing the missing building system.

Software Requirements

In order for a project to qualify for incentives under the Pay for Performance Program, the Partner must create a whole-building energy simulation to demonstrate energy savings from recommended energy efficiency measures, as described in detail in the Simulation Guidelines section of the Pay for Performance Program Guidelines. The primary source for developing the Simulation Guidelines is ASHRAE Guideline 14. Simulation software must be compliant with ASHRAE 90.1 -Section 11 or Appendix G. Examples of allowed tools include eQUEST, HAP, EnergyPlus, Trane Trace, DOE 2.1. Approval for use in LEED and Federal Tax Deductions for Commercial Buildings program may serve as the proxy to demonstrate compliance with the requirement.

Formatted: Space Before: 9 pt, After: 3 pt **Baseline Conditions Existing Buildings Existing Buildings** Baseline from which energy savings are measured will be based off the most recent twelve12 months of energy use from all sources. Site energy use is converted to source energy use following EPA's site-to-source conversion factors⁶⁵. New Construction Project may establish building baseline in one of two ways: Path 1 — Under this path, the Partner will develop a single energy model representing the proposed project design using prescribed modeling assumptions that follow ASHRAE Building Energy Quotient (bEQ) As-Designed⁶⁶ simulation requirements. • Path 2 — Under this option the Partner will develop a baseline building using Formatted: Indent: Left: 0.5", No bullets or numberina ASHRAE 90.1-2013 Appendix G modified by Addendum BM⁶⁷. -(for existing buildings) or current state energy code, such as ASHRAE 90.1 2007 (for new construction). Formatted: Space Before: 9 pt, After: 3 pt **Measure Savings** ⁶⁵ https://portfoliomanager.energystar.gov/pdf/reference/Source%20Energy.pdf Formatted: Space Before: 3 pt, After: 3 pt ⁶⁶ http://buildingenergyquotient.org/asdesigned.html ⁶⁷ Addendum BM sets a common baseline building approach that will remain the same for ASHRAE 90.1-2013 and all future iterations of ASHRAE 90.1, and is roughly equivalent to ASHRAE 90.1-2004. -To comply with ASHRAE 90.1-2013, a proposed building has to have energy cost savings of 11-40% from the Addendum BM baseline, depending on the building type and climate zone. New Jersey's Clean Energy Program Page 215 Protocols to Measure Resource Savings

Formatted: Space Before: 9 pt, After: 3 pt
Measures must be modeled to demonstrate proposed energy/energy cost savings according to Pay for Performance program guidelines, including meeting or exceeding Minimum Performance Standards, or current state or local energy code, whichever is more stringent. Minimum Performance Standards generally align with C&I SmartStart Program equipment requirements.

Existing Buildings

Measures must be modeled within the approved simulation software and modeled incrementally to ensure interactive savings are taken into account.

New Construction

Measures must be modeled based on the baseline path chosen:

- *Path 1* Modeled within the same proposed design energy model, but as parametric runs or alternatives downgraded to code compliant parameters.
- *Path 2* Modeled as interactive improvements to the ASHRAE 90.1-2013 Appendix G baseline (with Addendum BM accepted).

In the event that a software tool cannot adequately model a particular measure or component, or in cases where Program Manager permits savings calculations outside of the model, projects are required to use stipulated savings calculations as outlined in the Program Guidelines or within these Protocols as applicable. If stipulated savings do not exist within these documents, the Program Maanger will work with the applicant to establish acceptable industry calculations. **Formatted:** Space Before: 3 pt, After: 3 pt, Add space between paragraphs of the same style

Measurement & Verification

Existing Buildings

The Program metering requirements are based on the 2010 International Performance Measurement and Verifications Protocol ("IPMVP") and the 2008 Federal Energy Management

Program ("FEMP") M&V Guidelines, Version 3.0. All projects must follow Option D, Calibrated Simulation, as defined by the IPMVP. Calibrated simulation involves the use of computer software to predict building energy consumption and savings from energy-efficiency measures. Options A and B, as defined by the IPMVP, may be used as guidelines for data collection to help create a more accurate model. Additionally, for the existing buildings component, Option C is used to measure actual savings using twelve months of post-retrofit utility data.

New Construction

Projects are required to commission all energy efficiency measures. Further, projects are required to complete a benchmark through *EPA's ENERGY STAR Portfolio Manager* to demonstrate operational performance based on the building's first year of operation. Building types not eligible ofor ENERGY STAR Score may demonstrate compliance through *ASHRAE Building Energy Quotient (bEQ) In-Operation.*

Energy Savings Reporting

Committed energy savings are reported upon approval of the Energy Reduction Plan and are based on modeling results of recommended measures as described above. Installed energy savings are reported upon installation of recommended measures and are based on modeling results. Unless significant changes to the scope of work occurred during construction, installed savings will be equal to committed savings. Verified savings are reported at the end of the performance period (for Existing Buildings) and are based on twelve (12) months of post-retrofit utility bills compared to pre-retrofit utility bills used during Energy Reduction Plan development. For New Construction, verified savings are not currently reportedor at the end of the Commissioning process (for new construction) and may vary from committed/installed savingsreported. Note that only installed savings are reported on New Jersey's Clean Energy Quarterly Financial and Energy Savings Reports.

Formatted: Space Before: 12 pt, After: 3 pt Formatted: Font: Not Bold

Formatted: Space Before: 9 pt, After: 3 pt

Direct Install Program

Protocols

This section identifies the protocols for all-measures proposed under the Direct Install Program. This section includes protocols for <u>Several of the</u> measures that are not included in other sections of the Protocols. In addition, for several of the where Direct Install Protocols usesuse algorithms and inputs fromidentical to the "*Commercial and Industrial Energy Efficient Construction*" section of the Protocols, and as such, the user is directed to that section of the Protocols, for the specific protocol. Other measures may have similar algorithms and inputs, but identify different equipment baselines will be used-to reflect the Direct Install includes early retirement. Baseline replacement program where equipment efficiency shown in is replaced as a direct result of the program. For those measures, the applicable baseline tables are included in this section is an estimate of existing equipment efficiency rather than currently available standard efficiency., but the user is directed to the C&I section of the Protocols for algorithms and other inputs.

Electric HVAC Systems

Replacement of existing electric HVAC equipment with high efficiency units is a proposed measure under the <u>Direct Install Program.</u> (See C&I <u>C&I Energy Efficienct</u> <u>Construction Electric HVAC Systems</u> Protocols)... The <u>Direct Install</u> savings protocol will be the same as previously stated in this document with the exception of the assumption for baseline efficiency. For the Direct Install program, the following values will be used for the variable identified as EER_b. These age based efficiencies are used in estimating savings associated with the Direct Install Program because as an early replacement program, equipment is replaced as a direct result of the program.

Default Values for Mechanical System Efficiencies Age-Based

Efficiency baselines are designed to reflect current market practices, which in this case reflect ASHRAE 90.1-2007. For the Direct Install program, the following values will be used for the variable identified as $SEER_b EER_b COP_b IPLV_b$ and $HSPF_b$

<u>HVAC Baseline Table – Direct Install</u>				
SystemEquipment Type	Units <u>Baseline =</u> ASHRAE Std. 90.1-2007 _↓	Pre-1992	, 1992- present	◄
Unitary HVAC / Split Systems				
<= 5.4 tons	SEER	9.10	10.00	
Unitary HVAC/Split Systems and Single Package, Air Cooled . <=5.4 -tons . >5.4 to 11.25 tons . >11.25 to 20 tons	<u>13 SEER</u> <u>11 EER</u> <u>10.8 </u> EER	7.70	<u>8.46</u>	

Formatted: Font: Italic

Formatted: Heading 3

Formatted: Space Before: 6 pt, After: 6 pt

Formatted: Font: Italic

Deleted Cells
Formatted: Table Header
Deleted Cells
Formatted: Table Header, Indent: Left: 0.1"
Formatted Table
Formatted: Font: Arial, 10 pt, Not Bold
Formatted: Font: Arial, 10 pt, Not Bold
Deleted Cells
Deleted Cells
Formatted Table
Formatted: Font: Arial, 10 pt
Formatted: Font: Arial, 10 pt
Formatted: Table Cells
Formatted: Font: Arial, 10 pt
Formatted: Font: Arial, 10 pt
Formatted: Table Cells, Indent: Left: 0.1"

	UnitsBaseline =	Pre-1992	1992. •
SystemEquipment Type	ASHRAE Std. 90.1-2007		present 1
11.25 20 tons	EER	7.56	8.31
Air-Air Heat Pump Systems			
< = 5.4 tons	SEER	9.10	10.00
Air-Air Cooled Heat Pump Systems,		7.56	<u>8.31</u> •
Split System and Single Package			
• <=5.4 - <u>tons</u>	13 SEER. 7.7 HSPF		
• >5.4 to 11.25 tons	10.8 EER, 3.3 heating		
· >11.25 to 20 tons	COP		
	10.4 EER, 3.2 heating		•
	COP		
Packaged Terminal Systems			
< 0.74 tons	EER	8.03	8.50
0.75 1 ton	EER	7.80	8.26
> 1 ton	EER	7.50	7.94
Water Source Heat Pumps			•
All Capacities	<u>12.0</u>	<u>EER</u>	•
All Capacities	EER	9.45	10.00

Deleted Cells Formatted: Table Header **Deleted Cells** Formatted: Table Header, Indent: Left: 0.1" **Formatted Table** Formatted: Font: Arial, 10 pt, Not Bold Formatted: Font: Arial, 10 pt, Not Bold **Deleted Cells Deleted Cells Formatted Table** Formatted: Font: Arial, 10 pt Formatted: Font: Arial, 10 pt Formatted: Font: Arial, 10 pt Formatted: Table Cells, Indent: Left: 0.1" Formatted: Font: Arial, 10 pt Formatted: Table Cells Formatted: Font: Arial, 10 pt Formatted: Font: Arial, 10 pt **Formatted Table** Inserted Cells Formatted: Font: Arial, 10 pt, Underline Formatted: Table Cells, Right: 0.61"

Source: Based on the 2006 Mortgage Industry National Home Energy Ratings Systems Standards, Table 303.7.1(3) Default Values for Mechanical System Efficiencies (Agebased), RESNET.

NOTE The age based efficiencies in the above table have been interpolated from RESNET standards and current baseline figures utilized in NJ C&I Energy Efficiency Rebate programs. With no equivalent resource available specific to small commercial equipment, these combined resources reflect the closest approximation to typical efficiencies of mechanical equipment present in Direct Install project facilities. The Direct Install program is targeted towards small commercial customers. As such, eligible equipment must not exceed a maximum capacity determined to be commonplace in the small C&I sector. In most cases, these capacity ranges correlate well with equipment certified by AHRI under the designation "Residential".

Motors [Inactive 2017, Not Reviewed]

Replacement of existing motors with high efficiency units is a proposed measure under the Direct Install Program. (See C&I Construction Motors Protocols). The savings protocol will be the same as previously stated in this document with the exception of the assumption for baseline efficiency. For the Direct Install program, the following values will be used for the variable identified as η_{base} . These efficiencies are used in estimating savings associated with the Direct Install Program because as an early replacement program, equipment is replaced as a direct result of the program. Formatted: Heading 3

Motor	Baseline
HP	Efficiency
1	0.75
1.5	0.775
2	0.80
3	0.825
5	0.84
7.5	0.845
10	0.85
>10	Use EPAct
	Baseline Motor
	Efficiency
	Table on pg. 72

Source: Opportunities for Energy Savings in the Residential and Commercial Sectors with High-Efficiency Electric Motors, US DOE, 1999, Figure 4-4, page 4-5.

Variable Frequency Drives

Installation of variable frequency motor drive systems is a proposed measure under the Direct Install Program. (See C&ICommercial and Industrial Energy Efficient Construction-Motors Protocols)... Because there is no baseline assumption included in the protocols for this measure, the savings protocol will be exactly the same as previously stated in this document.

Refrigeration Measures

Walk-in Cooler/Freezer Evaporator Fan Control

This measure is applicable to existing walk-in coolers and freezers that have evaporator fans which run continuously. The measure adds a control system feature to automatically shut off evaporator fans when the cooler's thermostat is not calling for cooling. The measurement of energy savings for this measure is based on algorithms with key variables provided by manufacturer data or prescribed herein. These savings take into account evaporator fan shut off and associated savings as a result of less heat being introduced into the walk-in, as well as the savings from the compressor, which is now being controlled through electronic temperature control.

Several case studies have been performed that verify the accuracy of these savings. The algorithms below are based on field-tested approximations of energy savings realized through installation of National Resource Management Inc. (NRM)'s Cooltrol® energy management system.¹

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

Formatted Table

Formatted: Font: Not Bold

Formatted: Heading 3

Formatted: Heading 3

Formatted: Heading 3, None, Space Before: 0 pt, After: 0 pt, Don't keep with next

Formatted: Space Before: 6 pt, After: 6 pt

Algorithms

Gross kWh Savings = kWh Savings _{EL} + kWh Savings _{RH} + kWh Savings _{EC}	Formatted: Indent: First line: 0.25"
$\frac{kWh \ SavingsEF = ((Amps_{EF} * Volts_{EF} * (Phase_{EF})^{\frac{1/2}{2}})/1000) * 0.55 * 8,760 * 35.52\%}{\bullet}$	Formatted: Indent: First line: 0.25"
$\frac{kWh SavingsRH = kWh Savings_{EF} * 0.28 * 1.6}{4}$	Formatted: Indent: First line: 0.25"
$\frac{kWh \ SavingsEC = (((Amps_{CP} * Volts_{CP} * (Phase_{CP})^{1/2})/1000) * 0.85 * ((35\% * WH) + (((Amps_{EP} * Volts_{EP} * (Phase_{EP})^{1/2})/1000) * 0.55 * 8,760 * (35\% * 5\%))$	Formatted: Indent: Left: 0.25"
$\frac{33.32\% - 3\%}{\text{Gross kW Savings} = ((Amps_{EL} * Volts_{EL} * (Phase_{EL})^{\frac{1/2}{2}})/1000) * 0.55 * D $	Formatted: Indent: First line: 0.25"
Definition of Variables	Formatted: Heading 4
<i>kWh Savings_{EF}</i> = Savings due to Installation of the following refrigeration measures are proposed under the Commercial and Industrial Energy Efficient Construction Program. Because there is no baseline assumption included in the protocols for these measures, the savings protocol will be exactly the same as previously stated in this document.	
Walk-in Cooler/Freezer Evaporator Fan being offControl	Formatted: Heading 4, Indent: Left: 0", Space Before: 3 pt, After: 3 pt
Control	
Electric Defrost Control	
Aluminum Night Covers	
Novelty Cooler Shutoff	
Energy Efficient Glass Doors on Open Refrigerated Cases	
ECM on Evaporator Fans	Formatted: Heading 4, Indent: Left: 0",
kWh Savings _{EC} = Savings due to the electronic controls on compressor and evaporator	Space Before: 3 pt, After: 3 pt
Amps _{EF} = Nameplate Amps of Evaporator Fan Volts _{EF} = Nameplate Volts of Evaporator Fan	
Phase _{EF} = Phase of Evaporator Fan	
U.55 = Evaporator Fan Motor power factor.	
$\frac{\partial}{\partial t} = \frac{\partial}{\partial t}$	
Kenngerated Case LED Lignung (Prescriptive Lignting)	
Vending Machine Controls	
This measures outlines the deemed savings for the installation of a gas-fired low intensity infrared heating system in place of unit heater, furnace, or other standard efficiency	
equipment	

A1	gorithms
	gommin

<u>Electric Savings (kWh/yr) = $kW_v * Hrs * SF$ </u>

Peak Demand Savings (kW) = $kW_v * SF$

Definition of Variables

 $kW_{v} = Connected kW of equipment$

<u>Hrs = Operating Hourshours of equipment</u>

35.52% SF = Percent of time Evaporator Fan is turned off.² savings factor of

equipment

0.28 =Conversion from kW to tons (Refrigeration).

1.6 = Efficiency of typical refrigeration system in kW/ton.³

Amps_{CP} = Nameplate Amps of Compressor

Volts_{CP} = Nameplate Volts of Compressor

Phase_{CP} = Phase of Compressor

0.85 =Compressor power factor.

35% = Compressor duty cycle during winter months (estimated)

WH = Compressor hours during winter months (2,195)

55% = Compressor duty cycle during non winter months (estimated)

NWH = Compressor hours during non winter months (6,565)

5% = Reduced run time of Compressor and Evaporator due to electronic controls.⁴

D = 0.228 or Diversity Factor³

Summary of Assumptions

Variable	<u>Type</u>	Value	Source
<u>kW</u> _v	Refrigerated beverage vending machine	<u>0.4 kW</u>	<u>1</u>
	Non-refrigerated snack vending machine	<u>0.085 kW</u>	
	Glass front refrigerated coolers	<u>0.46 kW</u>	
Hrs	Hours of operating of vending machine	Variable, default	Application
		<u>8,760 hours</u>	
<u>SF</u>	Refrigerated beverage vending machine	<u>46%</u>	<u>1</u>
	Non-refrigerated snack vending machine	<u>46%</u>	
	Glass front refrigerated coolers	<u>30%</u>	

Sources:

(1) Several case studies related to NRM's Cooltrol system can be found at:

http://www.nrmine.com/national_resource_management_case_studies_cooltrol_coole r_control_systems.html

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: Level 4, Space After: 6 pt, Keep with next Formatted: Underline, (none)

Page 222

Formatted: Indent: Left: 0", First line: 0.5", Space Before: 3 pt, After: 3 pt

- (2) This value is an estimate by NRM based on hundreds of downloads of hours of use data from the electronic controller. It is an 'average' savings number and has been validated through several 3rd Party Impact Evaluation Studies including study performed by HEC, "Analysis of Walk in Cooler Air Economizers", Page 22, Table 9, October 10, 2000 for National Grid.
- (3)<u>1. Scleet Energy Services, Inc. Cooler Control Measure Impact Spreadsheet User's</u> Manual. 2004.
- (4)<u>1.</u> This percentage has been collaborated by several utility sponsored 3rd Party studies including study conducted by Select Energy Services for NSTAR, March 9, 2004.
- (5) Based on the report "Savings from Walk-In Cooler Air Economizers and Evaporator Fan Controls", HEC, June 28, 1996.

Formatted: Sources, Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0" + Indent at: 0.25"

Formatted: Font: Not Italic

Cooler and Freezer Door Heater Control

This measure is applicable to existing walk-in coolers and freezers that have continuously operating electric heaters on the doors to prevent condensation formation. This measure adds a control system feature to shut off the door heaters when the humidity level is low enough such that condensation will not occur if the heaters are off. This is performed by measuring the ambient humidity and temperature of the store, calculating the dewpoint, and using PWM (pulse width modulation) to control the anti-sweat heaters based on specific algorithms for freezer doors. The measurement of energy savings for this measure is based on algorithms with key variables provided by manufacturer data or prescribed herein.

Several case studies have been performed that verify the accuracy of these savings. -The algorithms below are based on field-tested approximations of energy savings realized through installation of National Resource Management Inc. (NRM)'s Cooltrol® energy management system.⁴

Formatted: Space Before: 18 pt Low Temperature (Freezer) Door Heater Control Algorithms Formatted: Heading 4 $(kW_{DH} * 8,760) - ((40\% * kW_{DH} * 4,000) + (65\% * kW_{DH} * 4,760))$ kWh Savings $kW Savings = kW_{DH} * 46\% * 75\%$ Formatted: Don't allow hanging punctuation, Don't adjust space between Latin and Asian **Definition of Variables** text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline kW_{DH} = Total demand (kW) of the freezer door heaters, based on nameplate volts Formatted: Heading 4 and amps. Formatted: Space Before: 3 pt, After: 3 pt 8.760 = Annual run hours of Freezer Door Heater before controls. 40% = Percent of total run power of door heaters with controls providing maximum reduction.² Formatted: Space Before: 3 pt, After: 3 pt 4,000 = Number of hours door heaters run at 40% power. 65% = Percent of total run power of door heaters with controls providing minimum reduction.² Formatted: Space Before: 3 pt, After: 3 pt 4,760 = Number of hours door heaters run at 65% power. 46% = Freezer Door Heater off time.⁴ 750/ Adjustment factor to account for diversity and coincidence at peak demand time.2 Medium Temperature (Cooler) Door Heater Control

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: Heading 3, None, Space Before: 0 pt, After: 6 pt, Page break before, Don't keep with next

Formatted: Font: Not Italic

Formatted: Space Before: 6 pt, After: 6 pt

Formatted: Font: Bold, Italic, No underline

Algorithms		Formatted: Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline
kWh Savings = (kW _{DH} * 8,760) (60% * kW _{DH} * 3,760)	\backslash	Formatted: Heading 4
		Formatted: No underline
$\frac{1}{100} \text{ kW Savings} = \frac{1}{100} \frac{1}{10$		
Definition of Variables		Formatted: Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline
kW_{DH} = Total demand (kW) of the cooler door heaters, based on nameplate volts	$\overline{)}$	Formatted: Heading 4
and amps.		Formatted: Space Before: 3 pt, After: 3 pt
8,760 = Annual run hours of Cooler Door Heater before controls.		
60% = Percent of total run power of door heaters with controls providing		
minimum reduction. ²		
3,760 = Number of hours door heaters run at 60% power.		Formatted: Space Before: 3 pt, After: 3 pt
$\frac{74\%}{74\%} = \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100}$		
75% – Adjustment factor to account for diversity and coincidence at peak demand		
time. ²		
•	~	Formatted: No underline
Sources:		Formatted: Space After: 10 pt, Line spacing: Multiple 1.15 li
(1) Several case studies related to NRM's Cooltrol system can be found at:		
nttp://www.nrminc.com/national_resource_management_case_studies_cooltrol_coole		
<u>I control systems.num</u>		Earmatted: Space Before: 3 pt After: 3 pt
(2) <u>1. Estimated by NKM based on their experience of monitoring the equipment at</u>		Numbered + Level: 1 + Numbering Style: 1, 2,
Vallous sites.		3, + Start at: 1 + Alignment: Left + Aligned at: 0" + Indent at: 0.25"
(3) <u>1. This value is an estimate by National Resource Management based on hundreds</u>		Formatted: Sources No bullets or pumbering
OF downloads of nours of use data from Door Heater controllers. This supported by		romated. sources, no bullets of humbering
³ Furly Analysis conducted by Select Energy for NSTAK, Cooler Control Measure		
Import Spreadcheat Harra' Manual" Daga 5 March 0, 2004		

Aluminum Night Covers

This measure is applicable to existing open type refrigerated display cases where considerable heat is lost through an opening that is directly exposed to ambient air. These retractable aluminum woven fabric covers provide a barrier between the contents of the case and the outside environment. They are employed during non business hours to significantly reduce heat loss from these cases when contents need not be visible.

Savings approximations are based on the report, "Effects of the Low Emissivity Shields on performance and Power use of a refrigerated display case", by Southern California Edison, August 8, 1997. Southern California Edison (SCE) conducted this test at its state of the art Refrigeration Technology and Test Center (RTTC), located in Irwindale, CA. The RTTC's sophisticated instrumentation and data acquisition system provided detailed tracking of the refrigeration system's critical temperature and pressure points during the test period. These readings were then utilized to quantify various heat transfer and power related parameters within the refrigeration cycle. The results of SCE's test focused on three typical scenarios found mostly in supermarkets: low, medium and high temperature cases.

Algorithms

kWh Savings = W * H * F

Definition of Variables

Electric Defrost Control

This measure is applicable to existing evaporator fans with a traditional electric defrost mechanism. This control system overrides defrost of evaporator fans when unnecessary, reducing annual energy consumption. The estimates for savings take into account savings from reduced defrosts as well as the reduction in heat gain from the defrost process.

Independent Testing was performed by Intertek Testing Service on a Walk in Freezer that was retrofitted with Smart Electric Defrost capability. A baseline of 28 cleetric defrosts

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: Font: Not Bold, Not Italic

Formatted: Heading 3, None, Space Before: 0 pt, After: 6 pt, Page break before, Don't keep with next

Formatted: Allow hanging punctuation, Font Alignment: Auto

Formatted: Underline, (none)

Formatted: Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto

Formatted: Heading 4

Formatted: Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline

Formatted: Heading 4

Formatted: Font: 12 pt

Formatted: Indent: Left: 0.25", Space Before: 3 pt, After: 3 pt, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

Formatted: Heading 3, None, Space Before: 0 pt, After: 0 pt, Don't keep with next

Formatted: Space Before: 6 pt, After: 6 pt

Formatted: Space Before: 12 pt, After: 12

Page 226

per week were established as the baseline for a two week period without the Smart Electric Defrost capability.- With Smart Electric Defrost capability an average skip rate of 43.64% was observed for the following two week period.

Algorithms

 $Gross kWh Savings = kWh Savings_{Defrost} + kWh Savings_{RH}$

 $kWh Savings_{Defrost} = KW_{Defrost} * 0.667 * 4 * 365 * 35\%$

kWh Savings_{RH} = kWh Savings_{Defront} * 0.28 * 1.6

Definition of Variables

kWh SavingsDefrost = Savings due to reduction of defrosts*kWh SavingsDefrost* = Savings due to reduction in refrigeration loadKW_{Defrost} = Nameplate Load of Electric Defrost0.667 = Average Length of Electric Defrost in hours4 = Average Number of Electric Defrosts per day365 = Number of Days in Year35% = Average Number of Defrosts that will be eliminated in year0.28 = Conversion from kW to tons (Refrigeration)

1.6 = Efficiency of typical refrigeration system in kW/ton⁴

Sources:

(1) Select Energy Services, Inc. Cooler Control Measure Impact Spreadsheet User's Manual. 2004.

LED Lighting for Coolers and Freezers

This measure is applicable to existing walk in and reach in coolers and freezers with non-LED lighting. LED lighting is not only more efficient, but also provides higher quality lighting for cooler and freezer displays as they are more suited for cold environments. In addition, LEDs have a longer operating life than fluorescents in cooler and freezer applications, which results in reduced life cycle costs. The estimated savings for this measure take into account both reduced wattage of replacement lighting and reduced refrigeration load from lighting heat loss.

Algorithms

 $kWh Savings = (((Watts_B - Watts_{LED})/1000) * H) * (1 + (0.28 * 1.6))$

kW Savings = ((Watts_B - Watts_{LED})/1000) * (1 + (0.28 * 1.6))

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline

Formatted: (none)

Formatted: Level 4, Keep with next

Formatted: Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline

Formatted: Indent: First line: 0.25", Space Before: 6 pt, After: 6 pt

Formatted: Heading 4

Formatted: Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline

Formatted: No underline

Formatted: Underline, (none) Formatted: Indent: First line: 0.25" Formatted: Level 4, Keep with next Formatted: (none) Formatted: Indent: First line: 0.25"

Page 227

Formatted: Heading 4

Definition of Variables

$$\label{eq:Watts_ED} \begin{split} & \mbox{Watts_ED} = \mbox{Baseline Lighting Wattage} \\ & \mbox{Watts_{LED}} = \mbox{LED Lighting Wattage} \\ & \mbox{1000} = \mbox{Conversion from W to kW} \\ & \mbox{H} = \mbox{Lighting Operating Hours} \end{split}$$

0.28 = Conversion from kW to tons (Refrigeration) $1.6 = \text{Efficiency of typical refrigeration system in kW/ton^{68}$

⁶⁸ Select Energy Services, Inc. Cooler Control Measure Impact Spreadsheet User's Manual. 2004.

Novelty Cooler Shutoff

This measure is applicable to existing reach in novelty coolers which run continuously. The measure adds a control system feature to automatically shut off novelty coolers based on pre-set store operating hours. Based on programmed hours, the control mechanism shuts off the cooler at end of business, and begins operation on reduced eycles. Regular operation begins the following day an hour before start of business. The measurement of energy savings for this measure is based on algorithms with key variables provided by manufacturer data or prescribed herein.

Several case studies have been performed that verify the accuracy of these savings. -The algorithms below are based on field tested approximations of energy savings realized through installation of National Resource Management Inc. (NRM)'s Cooltrol® energy management system.⁴

Algorithms

 $\frac{\text{kWh Savings} = (((Amps_{NC} * \text{Volts}_{NC} * (Phase_{NC})^{1/2})/1000) * 0.85) * ((0.45 * ((CH - 1) * 91)) + (0.5 * ((CH - 1) * 274)))}{(0.5 * ((CH - 1) * 274)))}$

Definition of Variables

Amps_NC = Nameplate Amps of Novelty Cooler $Volts_{NC}$ = Nameplate Volts of Novelty CoolerPhase_NC = Phase of Novelty Cooler0.85 = Novelty Cooler power factor²0.45 = Duty cycle during winter month nights³CH = Closed Store hours91 = Number of days in winter months0.5 = Duty cycle during non winter month nights³274 = Number of days in non-winter months

I. Massachusetts Technical Reference Manual, October 2015.

Sources:

- (1) Several case studies related to NRM's Cooltrol system can be found at: <u>http://www.nrminc.com/national_resource_management_case_studies_cooltrol_coole</u> <u>r_control_systems.html</u>
- (2)<u>1. Estimated by NRM based on their experience of monitoring the equipment at various sites.</u>
- (3) Duty Cycles are consistent with 3rd Party study done by Select Energy for NSTAR"Cooler Control Measure Impact Spreadsheet Users' Manual", page 5, March 9, 2004.

Formatted: No underline, (none)

Formatted: Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline

Formatted: No underline

Formatted: Sources, Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0" + Indent at: 0.25"

Formatted: Heading 3

New Jersey's Clean Energy Program Protocols to Measure Resource Savings **Formatted:** Heading 3, None, Space Before: 0 pt, After: 0 pt, Page break before, Don't keep with next

Formatted: Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto

Formatted: Heading 4

Formatted: Heading 4

Gas Space and Water Heating Measures

Gas Furnaces and Boilers

Replacement of existing gas, oil, or propane furnaces and and propane water heaters with high efficiency units is a proposed measure under the C&I Energy Efficienct Construction GasHVAC Systems Protocols. The Direct Install savings protocol will be the same as previously stated in this document with the baselines designed to reflect current market practices, which in this case reflect ASHRAE 90.1-2007. These tables are included in the C&I Protocol.

Gas Space Heating Measures

Boilers

<u>Replacement of existing gas, oil, and propane</u> boilers with high efficiency units is a proposed measure under the <u>Direct Install Program.</u> (See C&I <u>Energy Efficienct</u> Construction <u>GasGasHVAC Systems</u> Protocols)... The <u>Direct Install</u> savings protocol will be the same as previously stated in this document with the exception of the assumption for baseline efficiency. For the Direct Install program, the following values will be used for the variable identified as AFUE_b. These age-based efficiencies are used in estimating savings associated with the Direct Install Program because as an early replacement program, equipment is replaced as a direct result of the program.

Default Values for Mechanical System Efficiencies – Age-Based

Efficiency baselines are designed to reflect current market practices, which in this case reflect ASHRAE 90.1-2007. For the Direct Install program, the following values will be used for the variable identified as Eff_b.

Ba	senne Boner	Efficiencies (Eff	<u>b)</u>	
System<u>Boiler</u> <u>Type</u>	Units <u>Size</u> Category (kBtu input)	Pre- 1992<u>Standard</u> <u>90.1-2007</u>	, 1992- presei	1t
<u>Hot Water –</u>	<u>< 300</u>	80% AFUE	0.73	0.78
Gas or	> 300 and	<u>75% Et</u>		
Propane	< 2,500			
Furnace fired				
<u>Hot Water –</u>	<u>< 300</u>	<u>80% A</u>	FUE	
Oil fired	> 300 and	<u>78%</u>	Et	
	<u>< 2,500</u>			
<u>Steam –</u> Gas	< 300	75% AFUE	0.70	0.80
or Propane				

Formatted: Space Before: 6 pt, After: 6 pt

1	Deleted Cells
Α	Formatted: Table Header
(Formatted Table
(Formatted: Table Header
1	Deleted Cells
	Formatted: Table Cells
\neg	Inserted Cells
(Formatted: Table Cells
Å	Formatted: Table Cells
//	Formatted Table
//	Inserted Cells
\square	Formatted: Table Cells
	Deleted Cells
\neg	Deleted Cells

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Page 230

<u>Steam, all</u> except natural draft	> <u>300 and</u> < 2,500	<u>75%</u>	<u>Et</u>	
<u>Steam, natural</u> <u>draft</u>	<u>> 300 and</u> <u>< 2,500</u>	<u>75%</u>	<u>Et</u>	
<u>Steam – Oil</u>	<u>< 300</u>	80% AFUE	0.77	0.80
Furnace or Boiler <u>fired</u>	<u>> 300 and</u> < 2,500	<u>78% Et</u>		

Source: 2006 Mortgage Industry National Home Energy Ratings Systems Standards, Table 303.7.1(3) Default Values for Mechanical System Efficiencies (Age-based), RESNET.

NOTE The age based efficiencies in the above table have been interpolated from RESNET standards and current baseline figures utilized in NJ C&I Energy Efficiency Rebate programs. With no equivalent resource available specific to small commercial equipment, these combined resources reflect the closest approximation to typical efficiencies of mechanical equipment present in Direct Install project facilities. The Direct Install program is targeted towards small commercial customers. As such, eligible equipment must not exceed a maximum capacity determined to be commonplace in the small C&I sector. In most cases, these capacity ranges correlate well with equipment certified by AHRI under the designation "Residential".

Small Commercial Boilers [Inactive 2017, Not Reviewed]

This section will apply only for boilers that are closed loop and for space heating.

For Boilers that are under 5000 MBtuH use the calculator from the Federal Energy Management Program at: http://www1.eere.energy.gov/femp/technologies/eep_boilers_calc.html

Gas, Oil, and Propane Infrared HeatingFurnaces

Replacement of existing atmospherically vented heating with gas or, oil, and propane infrared heating is an available measure under the Direct Install Program. (See C&I Construction Gas Protocols).

Gas Water Heating

Replacement of existing gas furnaces and boilers-with gas high efficiency units is a proposed measure under the Direct Install Program. (See C&I Energy Efficienct Construction Gas <u>HVAC Systems</u> Protocols)... The Direct Install savings protocol will be

-(Formatted: Table Cells
\neg	Deleted Cells
Y	Formatted Table
$\left(\right)$	Deleted Cells
Ì	Inserted Cells
Y	Formatted: Table Cells
1	Formatted: Font: Not Bold, Not Italic

Formatted: Font: Not Bold, Not Italic
Formatted: Heading 3

Formatted: Heading 3

Formatted: Space Before: 6 pt, After: 6 pt

the same as previously stated in this document with the exception of the assumption for baseline efficiency. For the Direct Install program, the following values will be used for the variable identified as EFF_b. These age-based efficiencies are used in estimating savings associated with the Direct Install Program because as an early replacement program, equipment is replaced as a direct result of the program.

Default Values for Water Heating System Efficiencies – Age-Based

Efficiency baselines are designed to reflect current market practices, which in this case reflect ASHRAE 90.1-2007. For the Direct Install program, the following values will be used for the variable identified as Eff_b.

Baseline Furnace Efficiencies (Effb)						
		<u>UnitsSiz</u>			,1992-present	
		<u>e</u>				
		Categor	Pr	e-		
₩a	ater	Y	1992	<u>Stan</u>		
Heater	r <u>Furna</u>	<u>(kBtu</u>	da	rd		
<u>ce</u>]	Гуре	<u>input)</u>	<u>90.1-</u> 2	<u>2007</u>		
Gas	Fired	<u>EF<225</u>	0.53 7	7 <u>8%</u>	0.56	
Oil	Fired	<u>EF<225</u>	0.5 7	8%	0.56	
	EF	0.87	•	0.88		•

tted: Table H	eader		
tted Table			
tted: Table H	eader		
tted: Table Co	ells		
tted: Table Co	ells		
tted: Table Co	ells		
tted: Table Co	ells		
tted: Table Co	ells		
	atted: Table C atted: Table C atted: Table C atted: Table C atted: Table C	atted: Table Cells atted: Table Cells atted: Table Cells atted: Table Cells atted: Table Cells atted: Table Cells	atted: Table Cells atted: Table Cells atted: Table Cells atted: Table Cells atted: Table Cells

Source: 2006 Mortgage Industry National Home Energy Ratings Systems Standards, Table 303.7.1(3) Default Values for Mechanical System Efficiencies (Age-based), RESNET.

NOTE The age based efficiencies in the above table have been interpolated from RESNET standards and current baseline figures utilized in NJ C&I Energy Efficiency Rebate programs. With no equivalent resource available specific to small commercial equipment, these combined resources reflect the closest approximation to typical efficiencies of mechanical equipment present in Direct Install project facilities. The Direct Install program is targeted towards small commercial customers. As such, eligible equipment must not exceed a maximum capacity determined to be commonplace in the small C&I sector. In most cases, these capacity ranges correlate well with equipment certified by AHRI under the designation "Residential".

Food

Electric

Infrared Heating

Replacement of existing atmospherically vented heating with infrared heating is is a proposed measure under *Commercial and Industrial Energy Efficient Construction*. Because this is a deemed savings measure the protocol will be exactly the same as previously stated in this document.

Programmable Thermostats

This measure provides savings algorithms for programmable thermostats installed through the direct install program in commercial buildings. The baseline for this measure is manual thermostats that require occupant adjustment to change the space temperature. Non-communicating programmable thermostats achieve energy savings over manual thermostats by automatically setting temperatures back in the winter, or up in the summer, per a factory default schedule, or a user modified schedule. Setback/set up schedules achieve heating fuel savings in the winter, and cooling electric savings in the summer.

The savings factors for this measure come from the Michigan Energy Measures Database (MEMD), which shows deemed cooling and heating savings per 1,000 square feet of building space. The MEMD savings values for programmable thermostats were determined through measurement and verification of installed thermostats in a variety of commercial building types. For this measure, values for the Detroit airport locale are used because the ambient temperatures are closest to those for the New Jersey locale, and results are averaged across HVAC equipment types.

There are no peak demand savings for this measure, and motel and auto repair space types are excluded from this measure.

Algorithms

Fuel Savings (MMBtu/yr) = SQFT₁₀₀₀ * SF_{heat}

Energy Savings (kWh/yr) = SQFT₁₀₀₀ * SF_{cool}

Definition of VariablesService Measures

Energy efficient electric or natural gas cooking equipment of the following listed types utilized in commercial food service applications which have performance rated in accordance with the listed ASTM standards:

- Electric combination and convection ovens ASTM 1639 F
- Gas combination and convection ovens ASTM 1639 F
- Gas conveyor and rack ovens ASTM 1817 F
- Electric and gas small vat fryers ASTM 1361 F
- Electric and gas large vat fryers ASTM 2144-F
- Electric and gas steamers ASTM 1484-F

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: (none)

Formatted: Right: -0.38", Space Before: 6 pt, After: 6 pt

• Electric and gas griddles ASTM 1275-F

Hot food holding cabinets ATM F2140-11

Electric and Gas Combination Oven/Steamer

The measurement of energy savings for this measure is based on algorithms with key variables provided by manufacturer data or prescribed herein.

Algorithms •		Formatted: Heading 4
<u>ــــــــــــــــــــــــــــــــــــ</u>	~	Formatted: (none)
Annual Energy Savings (kWh or Therms) = $D^*(E_p + E_{is} + E_{ee} + E_{es})$ Demand Savings (kW) = kWh Savings/(D*H)		Formatted: Level 4, Keep with next, Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline
$\frac{\text{Preheat Savings}^{\dagger} : \mathbf{E}_{p} = \mathbf{P}^{*}(\mathbf{P}\mathbf{E}_{p} - \mathbf{P}\mathbf{E}_{q})}{\bullet}$		Formatted: Indent: First line: 0.25"
· · · · · · · · · · · · · · · · · · ·		Formatted: Indent: First line: 0.25"
$\frac{\text{Convection Mode Idle Savings}}{I_{eq}/PC_{eq}} \stackrel{\text{Convection Mod Idle Savings}}{I_{eq}/PC_{eq}} \stackrel{\text{Convection Mod Idle Savings}}{I_{eq}/PC_{eq}} \stackrel{\text{Convection Mod Idle Savings}}{I_{eq}/PC_{eq}} \stackrel{\text{Convection Mod Idle Savings}}{I_{eq}/PC_{eq}} \text{Conv$		Formatted: Indent: Left: 0.25"
Steam Mode Idle Savings [‡] : $\underline{E}_{ss} = (\underline{I}_{sb} - \underline{I}_{sq})^* ((\underline{H} - (\underline{P^*P_t})) - (\underline{I}_{sb}/\underline{PC}_{sb} - \underline{I}_{sq})^* \underline{Lbs})^* S_t$	(Formatted: Indent: First line: 0.25"
$\frac{\text{Convection Mode Cooking Savings: } E_{ee} = \text{Lbs}^{*}(1-S_{t})^{*}\text{Heat}_{e}^{*}(1/\text{Eff}_{eb} = 1/\text{Eff}_{eq})/C} \bullet$	(Formatted: Indent: First line: 0.25"
Steam Mode Cooking Savings: $E_{es} = Lbs*S_t*Heat_s*(1/Eff_{sb} - 1/Eff_{sq})/C$	(Formatted: Indent: First line: 0.25"
+ For gas equipment, convert these intermediate values to therms by dividing the result by 100,000 Btu/therm		
Definition of Variables (See tables of values below for more information)	(Formatted: (none)
D = Operating Days per Year PSOFT ₁₀₀₀ = Number of Preheats per Daythousands of square feet of building space ⁶⁹ ← PE _b = Baseline Equipment Preheat Energy PE _q = Qualifying Equipment Preheat Energy I _{eb} = Baseline Equipment Convection Mode Idle Energy Rate I _{eq} = Qualifying Equipment Convection Mode Idle Energy Rate H = Daily Operating Hours P _t = Preheat Duration PC := Baseline Equipment Convection Mode Production Capacity		Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt, Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline

⁶⁹ For example, a 5,000 ft² building would have a SQFT₁₀₀₀ value of 5

PC_{eet} = Qualifying Equipment Convection Mode Production Capacity

Lbs = Total Daily Food Production

 S_t = Percentage of Time in Steam Mode

I_{sb} = Baseline Equipment Steam Mode Idle Energy Rate

I_{sq} = Qualifying Equipment Steam Mode Idle Energy Rate

PC_{sb} = Baseline Equipment Steam Mode Production Capacity

PC_{sq} = Qualifying Equipment Steam Mode Production Capacity

Heat_e = Convection Mode Heat to Food

Eff_{cb} = Baseline Equipment Convection Mode Cooking Efficiency

Eff_{eq} = Qualifying Equipment Convection Mode Cooking Efficiency

C = Conversion Factor from Btu to kWh or Therms

Heat_s = Steam Mode Heat to Food

Eff_{sb} = Baseline Equipment Steam Mode Cooking Efficiency

Eff_{sq} = Qualifying Equipment Steam Mode Cooking Efficiency

Table 1: Electric Combination Oven/Steamers						
Variable	Baseline			Qualifying		
variable	<15 Pans	15-28 Pans	>28 Pans	<15 Pans	15-28 Pans	>28 Pans
D - Operating Days per Year	Table 3	Table 3	Table 3	Table 3	Table 3	Table 3
P - Number of Preheats per Day	1	1	1	1	1	1
PE _b & PE _q - Preheat Energy (kWh)	3.00	3.75	5.63	1.50	2.00	3.00
I_{cb} & I_{cq} - Convection Mode Idle Energy Rate (kW)	3.00	3.75	5.25	Application	Application	Application
H - Operating Hours per Day	Table 3	Table 3	Table 3	Table 3	Table 3	Table 3
P _t - Preheat Duration (hrs)	0.25	0.25	0.25	0.25	0.25	0.25
PC _{cb} & PC _{cq} - Convection Mode Prod. Capacity (lbs/hr)	80	100	275	100	125	325
Lbs - Total Daily Food Production (lbs)	200	250	400	200	250	400
St - Percentage of Time in Steam Mode	50%	50%	50%	50%	50%	50%
I_{sb} & I_{sq} - Steam Mode Idle Energy Rate (kW)	10.0	12.5	18.0	Application	Application	Application
PC _{sb} & PC _{sq} - Steam Mode Prod. Capacity (lbs/hr)	100	150	350	120	200	400
Heat _c - Convection Heat to Food (Btu/lb)	250	250	250	250	250	250
Eff _{cb} & Eff _{cq} - Convection Mode Cooking Efficiency	65%	65%	65%	Application	Application	Application
C - Btu/kWh	3,412	3,412	3,412	3,412	3,412	3,412
Heat _s - Steam Heat to Food (Btu/lb)	105	105	105	105	105	105
Eff _{sb} & Eff _{sq} - Steam Mode Cooking Efficiency	40%	40%	40%	Application	Application	Application

Table 2: Gas Combination Oven/Steamers						
Variable	Baseline			Qualifying		
variable	<15 Pans	15-28 Pans	>28 Pans	<15 Pans	15-28 Pans	>28 Pans
D - Operating Days per Year	Table 3	Table 3	Table 3	Table 3	Table 3	Table 3
P - Number of Preheats per Day	1	1	1	1	1	1
PE _b & PE _q - Preheat Energy (Btu)	18,000	22,000	32,000	13,000	16,000	24,000
I _{cb} & I _{cq} - Convection Mode Idle Energy Rate (Btu/h)	15,000	20,000	30,000	Application	Application	Application
H - Operating Hours per Day	Table 3	Table 3	Table 3	Table 3	Table 3	Table 3
P _t - Preheat Duration (h)	0.25	0.25	0.25	0.25	0.25	0.25
PC _{cb} & PC _{cq} - Convection Mode Prod. Capacity (lbs/h)	80	100	275	100	125	325
Lbs - Total Daily Food Production (lbs)	200	250	400	200	250	400
St - Percentage of Time in Steam Mode	50%	50%	50%	50%	50%	50%
I _{sb} & I _{sq} - Steam Mode Idle Energy Rate (kW)	45,000	60,000	80,000	Application	Application	Application
PC _{sb} & PC _{sq} - Steam Mode Prod. Capacity (lbs/h)	100	150	350	120	200	400
Heat _c - Convection Heat to Food (Btu/lb)	250	250	250	250	250	250
Eff _{cb} & Eff _{cq} - Convection Mode Cooking Efficiency	35%	35%	35%	Application	Application	Application
C - Btu/Therm	100,000	100,000	100,000	100,000	100,000	100,000
Heat _s - Steam Heat to Food (Btu/lb)	105	105	105	105	105	105
Eff _{sb} & Eff _{sq} - Steam Mode Cooking Efficiency	20%	20%	20%	Application	Application	Application

Table 3: Operating Days/Hours by Building Type					
Building Type	Days/Year	Hours/Day			
Education - Primary School	180	8			
Education - Secondary School	210	11			
Education - Community College	237	16			
Education - University	192	16			
Grocery	364	16			
Medical - Hospital	364	24			
Medical - Clinic	351	12			
Lodging Hotel (Guest Rooms)	229	5			
Lodging Motel	364	24			
Manufacturing - Light Industrial	330	13			
Office - Large	234	12			
Office - Small	234	12			
Restaurant - Sit-Down	364	12			
Restaurant - Fast-Food	364	17			
Retail - 3-Story Large	355	12			
Retail - Single-Story Large	364	12			
Retail - Small	364	11			
Storage Conditioned	330	13			
Storage Heated or Unconditioned	330	13			
Warehouse	325	12			
Average = Miscellaneous	303	14			

Sources:

Savings algorithm, baseline values, assumed values and lifetimes developed from information on the Food Service Technology Center program's website, <u>www.fishnick.com</u>, by Fisher Nickel, Inc. and funded by California utility customers and administered by Pacific Gas and Electric Company under the auspices of the California Public Utility Commission.

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: No underline

Page 236

Electric and Gas Convection Ovens, Gas Conveyor and Rack Ovens, Steamers, Fryers, and Griddles

The measurement of energy savings for these measures are based on algorithms with key variables provided by manufacturer data or prescribed herein.

Algorithms

Annual Energy Savings<u>SF_{heat} = Heating savings factor (MMBtu per 1,000 ft² of building space)</u>

<u>SF_{cool} = Cooling savings factor</u> (kWh or Therms) = $D * (E_p + E_t + E_e)$

Demand Savings (kW) = kWh Savings / (D * H)

Preheat Savings[‡]: $E_p = P * (PE_b - PE_q)$

 $\frac{\text{Idle Savings}^{\ddagger}: E_{\mu} = (I_{b} - I_{q}) * ((H - (P^{*}P_{t})) - (I_{b}/PC_{b} - I_{q}/PC_{q}) * Lbs)}{(I_{b}/PC_{b} - I_{q}/PC_{q}) * Lbs}$

Cooking Savings: $E_e = Lbs * Heat * (1/Eff_e - 1/Eff_e) / C$

For gas equipment, convert these intermediate values to therms by dividing the result by 100,000 Btu/therm

Definition of Variables (See tables of values below for more information)

 $\begin{array}{l} D = Operating Days per Year \\ P = Number of Preheats-per Day \\ PE_b = Baseline Equipment Preheat Energy \\ PE_q = Qualifying Equipment Preheat Energy \\ I_b = Baseline Equipment Idle Energy Rate \\ I_q = Qualifying Equipment Idle Energy Rate \\ H = Daily Operating Hours \\ P_t = Preheat Duration \\ PC_b = Baseline Equipment Production Capacity \\ PC_q = Qualifying Equipment Production Capacity \\ Lbs = Total Daily Food Production \\ Heat = Heat to Food \\ Eff_b = Baseline Equipment Convection Mode Cooking Efficiency \\ Eff_q = Qualifying Equipment Convection Mode Cooking Efficiency \\ Eff_q = Qualifying Equipment Convection Mode Cooking Efficiency \\ Eff_q = Qualifying Equipment Convection Mode Cooking Efficiency \\ Eff_q = Conversion Factor from Btu to kWh or Therms \\ \end{array}$

 Formatted: Heading 4, Space Before: 6 pt

 Formatted: Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline

 Formatted: Indent: First line: 0.25"

 Formatted: Indent: First line: 0.25"

Formatted: Indent: First line: 0.25"

Formatted: Indent: First line: 0.25"

Formatted: No underline

Table 1: Electric Convection Ovens					
Variable	Base	Baseline		fying	
Variable	Full Size	Half Size	Full Size	Half Size	
D - Operating Days per Year	Table 11	Table 11	Table 11	Table 11	
P - Number of Preheats per Day	1	1	1	1	
PE _b & PE _q - Preheat Energy (kWh)	1.50	1.00	1.00	0.90	
I _b & I _q - Idle Energy Rate (kW)	2.00	1.50	Application	Application	
H - Operating Hours per Day	Table 11	Table 11	Table 11	Table 11	
P _t - Preheat Duration (hrs)	0.25	0.25	0.25	0.25	
PC _b & PC _q - Production Capacity (lbs/hr)	70	45	82	53	
Lbs - Total Daily Food Production (lbs)	100	100	100	100	
Heat - Heat to Food (Btu/lb)	250	250	250	250	
Eff _b & Eff _q - Heavy Load Cooking Efficiency	65%	65%	Application	Application	
C - Btu/kWh	3,412	3,412	3,412	3,412	

Table 2: Gas Convection Ovens						
Variable	Baseline		Qualifying			
Variable	Full Size	Half Size	Full Size	Half Size		
D - Operating Days per Year	Table 11	Table 11	Table 11	Table 11		
P - Number of Preheats per Day	1	1	1	1		
PE _b & PE _q - Preheat Energy (Btu)	19,000	13,000	11,000	7,500		
I _b & I _q - Idle Energy Rate (Btu/h)	18,000	12,000	Application	Application		
H - Operating Hours per Day	Table 11	Table 11	Table 11	Table 11		
P _t - Preheat Duration (hrs)	0.25	0.25	0.25	0.25		
PC _b & PC _q - Production Capacity (lbs/hr)	70	45	83	55		
Lbs - Total Daily Food Production (lbs)	100	100	100	100		
Heat - Heat to Food (Btu/lb)	250	250	250	250		
Eff _b & Eff _q - Heavy Load Cooking Efficiency	30%	30%	Application	Application		
C - Btu/Therm	100,000	100,000	100,000	100,000		

Table 3: Gas Conveyor Ovens					
Variable	Baseline	Qualifying			
D - Operating Days per Year	Table 11	Table 11			
P - Number of Preheats per Day	1	1			
PE _b & PE _q - Preheat Energy (Btu)	35,000	18,000			
I _b & I _q - Idle Energy Rate (Btu/hr)	70,000	Application			
H - Operating Hours per Day	Table 11	Table 11			
P _t - Preheat Duration (hrs)	0.25	0.25			
PC _b & PC _q - Production Capacity (lbs/hr)	114	167			
Lbs - Total Daily Food Production (lbs)	190	190			
Heat - Heat to Food (Btu/lb)	250	250			
Eff _b & Eff _q - Heavy Load Cooking Efficiency	20%	Application			
C - Btu/Therm	100,000	100,000			

Table 4: Gas Rack Ovens						
Variable	Base	line	Qualifying			
variable	Double Rack	Single Rack	Double Rack	Single Rack		
D - Operating Days per Year	Table 11	Table 11	Table 5	Table 5		
P - Number of Preheats per Day	1	1	1	1		
PE _b & PE _q - Preheat Energy (Btu)	100,000	50,000	85,000	44,000		
I _b & I _q - Idle Energy Rate (Btu/h)	65,000	43,000	Application	Application		
H - Operating Hours per Day	Table 11	Table 11	Table 5	Table 5		
P _t - Preheat Duration (hrs)	0.33	0.33	0.33	0.33		
PC _b & PC _q - Production Capacity (lbs/hr)	250	130	280	140		
Lbs - Total Daily Food Production (lbs)	1200	600	1200	600		
Heat - Heat to Food (Btu/lb)	235	235	235	235		
Eff _b & Eff _q - Heavy Load Cooking Efficiency	30%	30%	Application	Application		
C - Btu/Therm	100,000	100,000	100,000	100,000		

Table 5: Electri		
Variable	Baseline	Qualifying
D - Operating Days per Year	Table 11	Table 11
P - Number of Preheats per Day	1	1
PE _b & PE _q - Preheat Energy (kWh)	1.50	1.50
$I_b \& I_q$ - Idle Energy Rate (kW)	0.167 x No. of Pans	Application
H - Operating Hours per Day	Table 11	Table 11
P _t - Preheat Duration (hrs)	0.25	0.25
PC _b & PC _q - Production Capacity (lbs/hr)	11.7 x No. of Pans	14.7 x No. of Pans
Lbs - Total Daily Food Production (lbs)	100	100
Heat - Heat to Food (Btu/lb)	105	105
Eff _b & Eff _q - Heavy Load Cooking Efficiency	26%	Application
C - Btu/kWh	3,412	3,412

Table 6: Gas Steamers					
Variable	Baseline	Qualifying			
D - Operating Days per Year	Table 11	Table 11			
P - Number of Preheats per Day	1	1			
PE _b & PE _q - Preheat Energy (Btu)	20,000	9,000			
I _b & I _q - Idle Energy Rate (Btu/h)	2,500 x No. of Pans	Application			
H - Operating Hours per Day	Table 11	Table 11			
P _t - Preheat Duration (hrs)	0.25	0.25			
PC _b & PC _q - Production Capacity (lbs/hr)	23.3 x No. of Pans	20.8 x No. of Pans			
Lbs - Total Daily Food Production (lbs)	100	100			
Heat - Heat to Food (Btu/lb)	105	105			
Eff _b & Eff _q - Heavy Load Cooking Efficiency	15%	Application			
C - Btu/Therm	100,000	100,000			

Table 7: Electric Fryers					
Variable	Baseline	Qualifying			
D - Operating Days per Year	Table 11	Table 11			
P - Number of Preheats per Day	1	1			
PE _b & PE _q - Preheat Energy (kWh)	2.40	1.90			
$I_b \& I_q$ - Idle Energy Rate (kW)	1.2	Application			
H - Operating Hours per Day	Table 11	Table 11			
P _t - Preheat Duration (hrs)	0.25	0.25			
PC _b & PC _q - Production Capacity (lbs/hr)	71	71			
Lbs - Total Daily Food Production (lbs)	150	150			
Heat - Heat to Food (Btu/lb)	570	570			
Eff _b & Eff _q - Heavy Load Cooking Efficiency	75%	Application			
C - Btu/kWh	3,412	3,412			

Table 8: Gas Fryers					
Variable	Baseline	Qualifying			
D - Operating Days per Year	Table 11	Table 11			
P - Number of Preheats per Day	1	1			
PE _b & PE _q - Preheat Energy (Btu)	18,500	16,000			
I _b & I _q - Idle Energy Rate (Btu/h)	17,000	Application			
H - Operating Hours per Day	Table 11	Table 11			
P _t - Preheat Duration (hrs)	0.25	0.25			
PC _b & PC _q - Production Capacity (lbs/hr)	75	75			
Lbs - Total Daily Food Production (lbs)	150	150			
Heat - Heat to Food (Btu/lb)	570	570			
Eff _b & Eff _q - Heavy Load Cooking Efficiency	35%	Application			
C - Btu/Therm	100,000	100,000			

Table 9: Electric Griddles				
Variable	Baseline	Qualifying		
D - Operating Days per Year	Table 11	Table 11		
P - Number of Preheats per Day	1	1		
PE _b & PE _q - Preheat Energy (kWh)	1.3 x Griddle Width (ft)	0.7 x Griddle Width (ft)		
$I_b \& I_q$ - Idle Energy Rate (kW)	0.8 x Griddle Width (ft)	Application		
H - Operating Hours per Day	Table 11	Table 11		
P _t - Preheat Duration (hrs)	0.25	0.25		
PC _b & PC _q - Production Capacity (lbs/hr)	11.7 x Griddle Width (ft)	13.3 x Griddle Width (ft)		
Lbs - Total Daily Food Production (lbs)	100	100		
Heat - Heat to Food (Btu/lb)	475	475		
Eff _b & Eff _q - Heavy Load Cooking Efficiency	60%	Application		
C - Btu/kWh	3,412	3,412		

Table 10: Gas Griddles				
Variable	Baseline	Qualifying		
D - Operating Days per Year	Table 11	Table 11		
P - Number of Preheats per Day	1	1		
PE _b & PE _q - Preheat Energy (Btu)	7,000 x Griddle Width (ft)	5,000 x Griddle Width (ft)		
I _b & I _q - Idle Energy Rate (Btu/h)	7,000 x Griddle Width (ft)	Application		
H - Operating Hours per Day	Table 11	Table 11		
P _t - Preheat Duration (hrs)	0.25	0.25		
PC _b & PC _q - Production Capacity (lbs/hr)	8.3 x Griddle Width (ft)	15 x Griddle Width (ft)		
Lbs - Total Daily Food Production (lbs)	100	100		
Heat - Heat to Food (Btu/lb)	475	475		
Eff _b & Eff _q - Heavy Load Cooking Efficiency	30%	Application		
C - Btu/Therm	100,000	100,000		

Table 11: Operating Days/Hours by Building Type				
Building Type	Days/Year	Hours/Day		
Education - Primary School	180	8		
Education - Secondary School	210	11		
Education - Community College	237	16		
Education - University	192	16		
Grocery	364	16		
Medical - Hospital	364	24		
Medical - Clinic	351	12		
Lodging Hotel (Guest Rooms)	229	5		
Lodging Motel	364	24		
Manufacturing - Light Industrial	330	13		
Office - Large	234	12		
Office - Small	234	12		
Restaurant - Sit-Down	364	12		
Restaurant - Fast-Food	364	17		
Retail - 3-Story Large	355	12		
Retail - Single-Story Large	364	12		
Retail - Small	364	11		
Storage Conditioned	330	13		
Storage Heated or Unconditioned	330	13		
Warehouse	325	12		
Average = Miscellaneous	303	14		

Sources:

Savings algorithm, baseline values, assumed values and lifetimes developed from information on the Food Service Technology Center program's website, <u>www.fishnick.com</u>, by Fisher Nickel, Inc. and funded by California utility customers and administered by Pacific Gas and Electric Company under the auspices of the California Public Utility Commission. Formatted: No underline

Insulated Food Holding Cabinets

The measurement of energy savings for this measure is based on algorithms with key variables provided by manufacturer data or prescribed herein.

Algorithms

Annual Energy Savings (kWh) = $D * H * (I_b - I_q)$

Demand Savings (kW) = $I_b - I_q$

Definition of Variables (See tables of values below for more information)

D = Operating Days per Year

H = Daily Operating Hours

- H_b = Baseline Equipment Idle Energy Rate
- I_e = Qualifying Equipment Idle Energy Rate

Table 1: Insulated Food Holding Cabinets						
Variable		Baseline Qualifying				
Variable	Full Size	3/4 Size	1/2 Size	Full Size	3/4 Size	1/2 Size
D - Operating Days per Year	Table 2	Table 2	Table 2	Table 2	Table 2	Table 2
I _b & I _q - Idle Energy Rate (kW)	1.00	0.69	0.38	Application	Application	Application
H - Operating Hours per Day	Table 2	Table 2	Table 2	Table 2	Table 2	Table 2

Table 2: Operating Days/Hours by Building Type				
Building Type	Days/Year	Hours/Day		
Education - Primary School	180	8		
Education - Secondary School	210	11		
Education - Community College	237	16		
Education - University	192	16		
Grocery	364	16		
Medical - Hospital	364	24		
Medical - Clinic	351	12		
Lodging Hotel (Guest Rooms)	229	5		
Lodging Motel	364	24		
Manufacturing - Light Industrial	330	13		
Office - Large	234	12		
Office - Small	234	12		
Restaurant - Sit-Down	364	12		
Restaurant - Fast-Food	364	17		
Retail - 3-Story Large	355	12		
Retail - Single-Story Large	364	12		
Retail - Small	364	11		
Storage Conditioned	330	13		
Storage Heated or Unconditioned	330	13		
Warehouse	325	12		
Average = Miscellaneous	303	14		

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: Tab stops: 1.03", Left

Formatted: Heading 4

Sources:		Formatted: No underline
Savings algorithm baseline values assumed values and lifetimes developed from		
information on the Food Service Technology Conter program's website		
unuu fishnick com by Eisher Nickel Inc. and funded by California utility systemers and		
www.fishinek.com, by Fisher Nickel, nic. and funded by Camorina utility customers and		
administered by Pacific Gas and Electric Company under the auspices of the California		
Public Utility Commission.		
Occupancy Controlled Thermostats		
The program has received a large amount of custom electric applications for the		
installation of Occupancy Controlled Thermostats in hotels, motels, and, most recently,		
university dormitories. Due to the number of applications, consistent incentive amounts		
(\$75 per thermostat) and predictable savings of the technology TRC recommends that a		
prescriptive application be created for this technology.		
		Formatted: Space Before: 6 pt, After: 6
Sumard practice today is thermostatis which are manuary controlled by occupants to		
regulate temperature within a facility. An occupancy controlled thermostat is a		
thermostat paired with a sensor and/or door detector to identify movement and determine		
if a room is occupied or unoccupied. If occupancy is sensed by the sensor, the thermostat		
goes into an occupied mode (i.e. programmed setpoint) If a pre programmed time		
frame elapses (i.e. 30 minutes) and no occupancy is sensed during that time, the		
frame elapses (i.e. 30 minutes) and no occupancy is sensed during that time, the thermostat goes into an unoccupied mode (e.g., setback setpoint or off) until occupancy is	è	
frame elapses (i.e. 30 minutes) and no occupancy is sensed during that time, the thermostat goes into an unoccupied mode (e.g., setback setpoint or off) until occupancy i sensed again. This type of thermostat is often used in hotels to conserve energy.	÷	
frame elapses (i.e. 30 minutes) and no occupancy is sensed during that time, the thermostat goes into an unoccupied mode (e.g., setback setpoint or off) until occupancy i sensed again. This type of thermostat is often used in hotels to conserve energy.	÷	
frame elapses (i.e. 30 minutes) and no occupancy is sensed during that time, the thermostat goes into an unoccupied mode (e.g., setback setpoint or off) until occupancy i sensed again. This type of thermostat is often used in hotels to conserve energy. The occupancy controlled thermostat reduces the consumption of electricity and/or gas	÷	
frame elapses (i.e. 30 minutes) and no occupancy is sensed during that time, the thermostat goes into an unoccupied mode (e.g., setback setpoint or off) until occupancy i sensed again. This type of thermostat is often used in hotels to conserve energy. The occupancy controlled thermostat reduces the consumption of electricity and/or gas by requiring less heating and/or cooling when a room or a facility is vacant or	÷	
frame elapses (i.e. 30 minutes) and no occupancy is sensed during that time, the thermostat goes into an unoccupied mode (e.g., setback setpoint or off) until occupancy i sensed again. This type of thermostat is often used in hotels to conserve energy. The occupancy controlled thermostat reduces the consumption of electricity and/or gas by requiring less heating and/or cooling when a room or a facility is vacant or unoccupied.	Ť	
frame elapses (i.e. 30 minutes) and no occupancy is sensed during that time, the thermostat goes into an unoccupied mode (e.g., setback setpoint or off) until occupancy i sensed again. This type of thermostat is often used in hotels to conserve energy. The occupancy controlled thermostat reduces the consumption of electricity and/or gas by requiring less heating and/or cooling when a room or a facility is vacant or unoccupied.	÷	Formatted: Underline
frame elapses (i.e. 30 minutes) and no occupancy is sensed during that time, the thermostat goes into an unoccupied mode (e.g., setback setpoint or off) until occupancy i sensed again. This type of thermostat is often used in hotels to conserve energy. The occupancy controlled thermostat reduces the consumption of electricity and/or gas by requiring less heating and/or cooling when a room or a facility is vacant or unoccupied.	÷	Formatted: Underline Formatted: Allow hanging punctuation, A
frame elapses (i.e. 30 minutes) and no occupancy is sensed during that time, the thermostat goes into an unoccupied mode (e.g., setback setpoint or off) until occupancy i sensed again. This type of thermostat is often used in hotels to conserve energy. The occupancy controlled thermostat reduces the consumption of electricity and/or gas by requiring less heating and/or cooling when a room or a facility is vacant or unoccupied.	•	Formatted: Underline Formatted: Allow hanging punctuation, Ar space between Latin and Asian text, Adjust
frame elapses (i.e. 30 minutes) and no occupancy is sensed during that time, the thermostat goes into an unoccupied mode (e.g., setback setpoint or off) until occupancy is sensed again. This type of thermostat is often used in hotels to conserve energy. The occupancy controlled thermostat reduces the consumption of electricity and/or gas by requiring less heating and/or cooling when a room or a facility is vacant or unoccupied. Algorithms Cooling Energy Savings (kWh) = (((T_e * (H+5) + S_e * (168 - (H+5)))/168) T_e) *	•	Formatted: Underline Formatted: Allow hanging punctuation, Ar space between Latin and Asian text, Adjust space between Asian text and numbers, Fo Alignment: Auto
frame elapses (i.e. 30 minutes) and no occupancy is sensed during that time, the thermostat goes into an unoccupied mode (e.g., setback setpoint or off) until occupancy is sensed again. This type of thermostat is often used in hotels to conserve energy. The occupancy controlled thermostat reduces the consumption of electricity and/or gas by requiring less heating and/or cooling when a room or a facility is vacant or unoccupied. Algorithms Cooling Energy Savings (kWh) = (((Te.* (H+5) + Se.* (168 - (H+5)))/168) Te) * (Pe.* Caphp.* 12 * EFLHe/EERhp)	*	Formatted: Underline Formatted: Allow hanging punctuation, Ar space between Latin and Asian text, Adjust space between Asian text and numbers, Fo Alignment: Auto Formatted: Underline
frame clapses (i.e. 30 minutes) and no occupancy is sensed during that time, the thermostat goes into an unoccupied mode (e.g., setback setpoint or off) until occupancy is sensed again. This type of thermostat is often used in hotels to conserve energy. The occupancy controlled thermostat reduces the consumption of electricity and/or gas by requiring less heating and/or cooling when a room or a facility is vacant or unoccupied. Algorithms Cooling Energy Savings (kWh) = (((Te.* (H+5) + Se.* (168 - (H+5)))/168) Te) * (Pe.* Caphp.* 12 * EFLHe/EERhp)	*	Formatted: Underline Formatted: Allow hanging punctuation, Ard space between Latin and Asian text, Adjust space between Asian text and numbers, For Alignment: Auto Formatted: Underline Formatted: Allow hanging punctuation, Ard
frame clapses (i.e. 30 minutes) and no occupancy is sensed during that time, the thermostat goes into an unoccupied mode (e.g., setback setpoint or off) until occupancy is sensed again. This type of thermostat is often used in hotels to conserve energy. The occupancy controlled thermostat reduces the consumption of electricity and/or gas by requiring less heating and/or cooling when a room or a facility is vacant or unoccupied. Algorithms Cooling Energy Savings (kWh) = (((Te.* (H+5) + Se.* (168 - (H+5)))/168) Te) * (Pe.* Caphp.* 12 * EFLHe/EERhp) Heating Energy Savings (kWh) = (((Th.* (H+5) + Sh.* (168 - (H+5)))/168) Th) *	*	Formatted: Underline Formatted: Allow hanging punctuation, Ar space between Latin and Asian text, Adjust space between Asian text and numbers, Fo Alignment: Auto Formatted: Underline Formatted: Allow hanging punctuation, Ar space between Latin and Asian text, Adjust
frame elapses (i.e. 30 minutes) and no occupancy is sensed during that time, the thermostat goes into an unoccupied mode (e.g., setback setpoint or off) until occupancy is sensed again. This type of thermostat is often used in hotels to conserve energy. The occupancy controlled thermostat reduces the consumption of electricity and/or gas by requiring less heating and/or cooling when a room or a facility is vacant or unoccupied. Algorithms Cooling Energy Savings (kWh) = (((T _e * (H+5) + S _e * (168 - (H+5)))/168) T _e)* (P _e * Cap _{hp} * 12* EFLH _e /EER _{hp}) Heating Energy Savings (kWh) = ((((T _h * (H+5) + S _h * (168 - (H+5)))/168) T _h)* (P _h * Cap _{hp} . * 12* EFLH _h /EER _{hp})	•	Formatted: Underline Formatted: Allow hanging punctuation, Ar space between Latin and Asian text, Adjust space between Asian text and numbers, Fo Alignment: Auto Formatted: Underline Formatted: Allow hanging punctuation, Ar space between Latin and Asian text, Adjust space between Asian text and numbers, Fo Alignment: Auto
frame elapses (i.e. 30 minutes) and no occupancy is sensed during that time, the thermostat goes into an unoccupied mode (e.g., setback setpoint or off) until occupancy is sensed again. This type of thermostat is often used in hotels to conserve energy. The occupancy controlled thermostat reduces the consumption of electricity and/or gas by requiring less heating and/or cooling when a room or a facility is vacant or unoccupied. Algorithms Cooling Energy Savings (kWh) = (((Te*(H+5) + Se*(168 - (H+5)))/168) Te)* (Pe* Caphp*12*EFLHe/EERhp) Heating Energy Savings (kWh) = ((((Th*(H+5) + Sh*(168 - (H+5)))/168) Th))* (Ph*Caphp*12*EFLHe/EERhp) Heating Energy Savings (therms) = (Th - (Th*(H+5) + Sh*(168 - (H+5)))/168) *	•	Formatted: Underline Formatted: Allow hanging punctuation, Ar space between Latin and Asian text, Adjust space between Asian text and numbers, Fo Alignment: Auto Formatted: Underline Formatted: Allow hanging punctuation, Ar space between Latin and Asian text, Adjust space between Asian text and numbers, Fo Alignment: Auto Formatted: Indent: First line: 0.25", Spar Referent 2 at Aftern 2 at
frame elapses (i.e. 30 minutes) and no occupancy is sensed during that time, the thermostat goes into an unoccupied mode (e.g., setback setpoint or off) until occupancy is sensed again. This type of thermostat is often used in hotels to conserve energy. The occupancy controlled thermostat reduces the consumption of electricity and/or gas by requiring less heating and/or cooling when a room or a facility is vacant or unoccupied. Algorithms Cooling Energy Savings (kWh) = (((Te.* (H+5) + Se.* (168 - (H+5)))/168) Te)* (Pe.* Caphp.* 12 * EFLHe/EERhp) Heating Energy Savings (kWh) = (((The * (H+5) + She * (168 - (H+5)))/168) The) * (Ph.* Caphp.* 12 * EFLHe/EERhp) Heating Energy Savings (therms) = (The - (The * (H+5) + She * (168 - (H+5)))/168) The) * (Ph.* Caphp.* EFLHh/EERhp)	•	Formatted: Underline Formatted: Allow hanging punctuation, Ar space between Latin and Asian text, Adjust space between Asian text and numbers, Fo Alignment: Auto Formatted: Underline Formatted: Allow hanging punctuation, Ar space between Latin and Asian text, Adjust space between Asian text and numbers, Fo Alignment: Auto Formatted: Indent: First line: 0.25", Spar Before: 3 pt, After: 3 pt
frame elapses (i.e. 30 minutes) and no occupancy is sensed during that time, the thermostat goes into an unoccupied mode (e.g., setback setpoint or off) until occupancy is sensed again. This type of thermostat is often used in hotels to conserve energy. The occupancy controlled thermostat reduces the consumption of electricity and/or gas by requiring less heating and/or cooling when a room or a facility is vacant or unoccupied. Algorithms Cooling Energy Savings (kWh) = (((Te*(H+5) + Se*(168 - (H+5)))/168) Te)* (Pe* Caphp* 12* EFLHe/EERhp) Heating Energy Savings (kWh) = (((Th*(H+5) + Sh*(168 - (H+5)))/168) Th)* (Ph*Caphp* 12* EFLHe/EERhp) Heating Energy Savings (kWh) = (((Th*(H+5) + Sh*(168 - (H+5)))/168) Th)* (Ph*Caphp* 12* EFLHe/EERhp) Beating Energy Savings (Therms) = (Th-(Th*(H+5) + Sh*(168 - (H+5)))/168) * (Ph*Caphp* EFLHe/AEERhp) DefinitionSummary of VariablesInputs	•	Formatted: Underline Formatted: Allow hanging punctuation, Arspace between Latin and Asian text, Adjust space between Asian text and numbers, For Alignment: Auto Formatted: Underline Formatted: Underline Formatted: Allow hanging punctuation, Arspace between Latin and Asian text, Adjust space between Asian text and numbers, For Alignment: Auto Formatted: Indent: First line: 0.25", Spar Before: 3 pt, After: 3 pt Formatted: English (U.S.)
frame elapses (i.e. 30 minutes) and no occupancy is sensed during that time, the thermostat goes into an unoccupied mode (e.g., setback setpoint or off) until occupancy is sensed again. This type of thermostat is often used in hotels to conserve energy. The occupancy controlled thermostat reduces the consumption of electricity and/or gas by requiring less heating and/or cooling when a room or a facility is vacant or unoccupied. Algorithms Cooling Energy Savings (kWh) = (((Te*(H+5) + Se*(168 - (H+5)))/168) Te)* (Pe*Caphp*12*EFLHe/EERhp) Heating Energy Savings (kWh) = (((Th*(H+5) + Sh*(168 - (H+5)))/168) Th)* (Ph*Caphp*12*EFLHe/EERhp) Heating Energy Savings (kWh) = (((Th*(H+5) + Sh*(168 - (H+5)))/168) Th)* (Ph*Caphp*12*EFLHe/EERhp) Beating Energy Savings (Therms) = (Th - (Th*(H+5) + Sh*(168 - (H+5)))/168) * (Ph*Caphp*EFLHh/AFUEh/1001,000 ft ² of building space) DefinitionSummary_of VariablesInputs	•	Formatted: Underline Formatted: Allow hanging punctuation, Ar space between Latin and Asian text, Adjust space between Asian text and numbers, Fo Alignment: Auto Formatted: Underline Formatted: Allow hanging punctuation, Ar space between Latin and Asian text, Adjust space between Asian text and numbers, Fo Alignment: Auto Formatted: Indent: First line: 0.25", Spa- Before: 3 pt, After: 3 pt Formatted: English (U.S.)
frame elapses (i.e. 30 minutes) and no occupancy is sensed during that time, the thermostat goes into an unoccupied mode (e.g., setback setpoint or off) until occupancy is sensed again. This type of thermostat is often used in hotels to conserve energy. The occupancy controlled thermostat reduces the consumption of electricity and/or gas by requiring less heating and/or cooling when a room or a facility is vacant or unoccupied. Algorithms Cooling Energy Savings (kWh) = (((Te.* (H+5) + Se.* (168 - (H+5)))/168) Te) * (Pe.* Caphp.* 12 * EFLHe/EERhp) Heating Energy Savings (kWh) = (((Th.* (H+5) + Sh.* (168 - (H+5)))/168) Th) * (Ph.* Caphp.* 12 * EFLHe/EERhp) Heating Energy Savings (kWh) = (((Th.* (H+5) + Sh.* (168 - (H+5)))/168) Th) * (Ph.* Caphp.* 12 * EFLH_h/EERhp) DefinitionSummary_of VariablesInputs The caph Season Facility Temp. (°F)	•	Formatted: Underline Formatted: Allow hanging punctuation, Ar space between Latin and Asian text, Adjust space between Asian text and numbers, Fo Alignment: Auto Formatted: Underline Formatted: Allow hanging punctuation, Ar space between Latin and Asian text, Adjust space between Asian text and numbers, Fo Alignment: Auto Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt Formatted: English (U.S.)
frame elapses (i.e. 30 minutes) and no occupancy is sensed during that time, the thermostat goes into an unoccupied mode (e.g., setback setpoint or off) until occupancy is sensed again. This type of thermostat is often used in hotels to conserve energy. The occupancy controlled thermostat reduces the consumption of electricity and/or gas by requiring less heating and/or cooling when a room or a facility is vacant or unoccupied. Algorithms Cooling Energy Savings (kWh) = (((T_e * (H+5) + S_e * (168 – (H+5)))/168) T_e) * (P_e * Cap _{hp} * 12 * EFLH_e/EER _{hp}) Heating Energy Savings (kWh) = (((T_h * (H+5) + S_h * (168 – (H+5)))/168) T_h) * (P_h * Cap _{hp} * 12 * EFLH_e/EER _{hp}) Heating Energy Savings (Therms) = (T_h – (T_h * (H+5) + S_h * (168 – (H+5)))/168) * (P_h * Cap _h * EFLH_e/AFUE_h/1001,000 ft ² of building space) DefinitionSummary of VariablesInputs T_h = Heating Season Facility Temp. (°F) T_a = Cooling Season Facility Temp. (°F)	•	Formatted: Underline Formatted: Allow hanging punctuation, Ar space between Latin and Asian text, Adjust space between Asian text and numbers, Fo Alignment: Auto Formatted: Underline Formatted: Allow hanging punctuation, Ar space between Latin and Asian text, Adjust space between Asian text and numbers, Fo Alignment: Auto Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt Formatted: English (U.S.)

S_e = Cooling Season Setup Temp. (°F)

H = Weekly Occupied Hours

Cap_{hp} = Connected load capacity of heat pump/AC (Tons) – Provided on Application.

Cap_h = Connected heating load capacity (Btu/hr) – Provided on Application.

 $EFLH_{e} = Equivalent full load cooling hours$

EFLH_h = Equivalent full load heating hours

 P_{h} = Heating season percent savings per degree setback

 $P_e = Cooling season percent savings per degree setup$

AFUE_h = Heating equipment efficiency Provided on Application.

EER_{hp} = Heat pump/AC equipment efficiency Provided on Application

12 = Conversion factor from Tons to kBtu/hr to acquire consumption in kWh.

168 = Hours per week.

5 = Assumed weekly hours for setback/setup adjustment period (based on 1 setback/setup per day, 5 days per week).

Occupancy Controlled Thermostats

Formatted: Heading 3, Left, Don't keep with next

Programmable Thermostat Assumptions

Component	Туре	Value	Source 🔸
<u>SQFT₁₀₀₀</u>	<u>Variable</u>	Customer specified	Application
<u>SF_{heat}</u>	Fixed	<u>1.68 MMBtu / 1,000 ft²</u>	<u>1</u>
<u>SF_{cool}</u>	Fixed	<u>74.7 kWh / 1,000 ft²</u>	<u>1</u>

Formatted Table	
Formatted: Table Header, Left	
with next	
Formatted: Table Header, Left, Don't keep	

Sources

Ŧ _h	Variable		Application
Ŧ _e	Variable		Application
S _h	Fixed	T _h -5°	
S e	Fixed	$T_e + 5^{\circ}$	
H	Variable		Application; Default
			of 56 hrs/week
Cap _{hp}	Variable		Application 🔸
Cap _h	Variable		Application 🔸
EFLH _c	Fixed	381	1
EFLH _h	Fixed	900	PSE&G
₽ _⊨	Fixed	3%	<u>2</u> •
₽ _e	Fixed	6%	⊋ ◆
AFUE ₊	Variable		Application •
EER _{hp}	Variable		Application •

Formatted: Table Cells
Formatted: Table Cells, Left
Formatted: Table Cells
Formatted: Table Cells
Formatted: Table Cells, Left
Formatted: Table Cells
Formatted: Table Cells
Formatted: Table Cells, Left
Formatted: Table Cells
Formatted: Table Cells
Formatted: Table Cells, Left
Formatted: Table Cells
Formatted: Table Cells
Formatted: Table Cells, Left
Formatted: Table Cells
Formatted: Table Cells
Formatted: Table Cells, Left
Formatted: Table Cells
Formatted: Table Caption

Sources:

JCP&L metered data from 1995-1999
 ENERGY STAR Products website

Dual Enthalpy Economizers

Dual enthalpy economizers are used to control a ventilation system's outside air intake in order to reduce a facility's total cooling load. An economizer monitors the outside air to ensure that its temperature (sensible heat) and humidity (latent heat) are low enough to utilize outside air to provide cooling in place of the cooling system's compressor. This reduces the demand on the cooling system, lowering its usage hours, saving energy.

The measurement of energy savings associated with dual enthalpy economizers is based on algorithms with key variables provided through DOE 2 simulation modeling and ClimateQuest's economizer savings calculator. Savings are calculated per ton of connected cooling load. The baseline conditions are fixed damper for equipment under 5.4 tons and dry bulb economizer otherwise.

Algorithms

Energy Savings (kWh) = OTF * SF * Cap / Eff

Demand Savings (kW) = Savings/Operating Hours

 Michigan Public Service Commission. 2017 Michigan Energy Measures Database (MEMD) with Weather Sensitive Weighting Tool. Available for download at: http://www.michigan.gov/mpsc/0,4639,7-159-52495_55129----,00.html Formatted: Table Caption

Formatted: Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto

Formatted: Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto

Boiler Reset Controls

The following algorithm detail savings for installation of boiler reset control on commercial boilers. Energy savings are realized through a better control on boiler water temperature. Through the use of software settings, boiler reset controls use outside or return water temperature to control boiler firing and in turn the boiler water temperature.

The input values are based on data supplied by the utilities and customer information on the application form, confirmed with manufacturer data. Unit savings are deemed based on study results.

<u>Algorithms</u>

Fuel Savings (MMBtu/yr) = (% Savings) * (EFLH_h * Cap_{in}/hr) / 1,000 kBtu/MMBtu

Definition of Variables

OTF = Operational Testing Factor

SF = Approximate savings factor based on regional temperature bin data (assume 4576 for equipment under 5.4 tons where a fixed damper is assumed for the baseline and 3318 for larger equipment where a dry bulb economizer is assumed for the baseline). (Units for savings factor are in kWh x rated EER per ton of cooling or kWh*EER/Ton)

Cap = Capacity of connected cooling load (tons)

Eff = Cooling equipment energy efficiency ratio (EER)

Operating Hours = 4,438 = Approximate number of economizer operating hours

Duel Enthalpy Economizers

<u>% Savings</u>	= Estimated percentage reduction in heating load due to boiler reset				
-	controls (5%)				
EFLH _h	= The Equivalent Full Load Hours of operation for the average unit				
during the heating season					
Cap _{in}	<u>= Input capacity of qualifying unit in kBtu/hr</u>				

Summary of Inputs

Boiler Reset Control Assumptions

Component	Туре	Value	Source •	 Formatted: Don't keep with next
OTF	Fixed	1.0 when operational testing is		Formatted Table
		performed, 0.8 otherwise		
SF		4576 for equipment under 5.4	1	
		tons, 3318 otherwise		

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: Underline, (none) Formatted: Normal, Level 4, Keep with next

Page 246

Component	Туре	Value		Source 🔸
Cap	Variable		A	pplication
Eff	Variable		A	pplication
Operating Hours	Fixed	4 ,438	2	
<u>% Savings</u>	Fixed	<u>5%</u>		<u>1</u>
<u>EFLH_h</u>	Variab	e <u>See Table Below</u>		<u>2</u>
<u>Cap</u> in	Variab	<u>e</u>		Application

Formatted: Don't keep with next

Formatted Table

Small Commercial EFLH_h

Building	<u>EFLH_h</u>
Assembly	<u>603</u>
Auto Repair	<u>1910</u>
Fast Food Restaurant	<u>813</u>
Full Service Restaurant	<u>821</u>
Light Industrial	<u>714</u>
Motel	<u>619</u>
Primary School	<u>840</u>
Religious Worship	<u>722</u>
Small Office	<u>431</u>
Small Retail	<u>545</u>
<u>Warehouse</u>	<u>452</u>
Other	<u>681</u>

Multi-family EFLH_h by Vintage

Facility Type	<u>Prior to 1979</u>	<u>From 1979 to</u> <u>2006</u>	<u>From 2007</u> <u>through</u> <u>Present</u>
Low-rise, Heating	<u>757</u>	<u>723</u>	<u>503</u>
High-rise, Heating	<u>526</u>	<u>395</u>	<u>219</u>

Sources:

3. DOE-2 Simulation Modeling

4. ClimateQuest Economizer Savings Calculator

Sources

- 1. GDS Associates, Inc. Natural Gas Energy Efficiency Potential in Massachusetts, 2009, p. 38 Table 6-4.
- 2. New York State Joint Utilities, *New York Standard Approach for Estimating Energy* Savings from Energy Efficiency Programs, V6, April 2018. Appendix G – Equivalent

New Jersey's Clean Energy Program Protocols to Measure Resource Savings **Formatted:** Indent: Left: 0.5", Space Before: 3 pt, After: 3 pt, Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto Full-Load Hours (EFLH), For Heating and Cooling. Page 535-540. EFLH values for NYC due to proximity to NJ.

Dual Enthalpy Economizers

Installation of Dual Enthalpy Economizers is a proposed measure under the Commercial and Industrial Energy Efficient Construction. Because there is no baseline assumption included in the protocols for this measure, the savings protocol will be exactly the same as previously stated in this document.

Electronic Fuel-Use Economizers (Boilers, Furnaces, AC)

These devices are microprocessor-based fuel-saving controls for commercial HVAC. They optimize energy consumption by adjusting burner or compressor run patterns to match the system's load. They can be used to control gas or oil consumption for any type of boiler or forced air furnace system. There are also fuel use economizers available that control the electric consumption for commercial air conditioning and refrigeration units by optimizing compressor cycles to maximize energy efficiency.⁴Installation of variable Fuel Use Economizers is a proposed measure under the Commercial and Industrial Energy Efficient Construction. Because there is no baseline assumption included in the protocols for this measure, the savings protocol will be exactly the same as previously stated in this document.

Formatted: Heading 3, Space Before: 18 pt

Demand-Controlled Ventilation Using CO2 Sensors

Maintaining acceptable air quality requires standard ventilation systems designers to determine ventilation rates based on maximum estimated occupancy levels and published CFM/occupant requirements. During low occupancy periods, this approach results in higher ventilation rates than are required to maintain acceptable levels of air quality. This excess ventilation air must be conditioned and therefore results in wasted energy.

Building occupants exhale CO_2 , and the CO_2 concentration in the air increases in proportion to the number of occupants. The CO_2 concentration provides a good indicator of overall air quality. Demand control ventilation (DCV) systems monitor indoor air CO_2 concentrations and use this data to automatically modulate dampers and regulate the amount of outdoor air that is supplied for ventilation. DCV is most suited for facilities where occupancy levels are known to fluctuate considerably.

A recent study of Fuel use economizer controls by the New York State Energy Research and Development Authority (NYSERDA) in conjunction with Brookhaven National Laboratories (BNL) found that the typical energy savings for these devices generally varies between 10.08% and 19.15%, when used under normal operating conditions and normalized for typical annual degree-days in the New York metro area.² The NYSERDA study tested at each of the different models of fuel use economizers manufactured by *Intellidyne, LLC*, (under the brand name *IntelliCon*). Operational data was recorded for various commercial heating, cooling, and refrigeration systems (of different sizes and fuel types) with and without the *IntelliCon* fuel use economizers added. The average energy savings across all system and fuel types and operational conditions was found to be 13%. Another study of *IntelliCon* fuel use economizers by Consolidated Edison, Inc. (ConEd) found a similar range of savings for the devices when the devices were studied as a control option for commercial refrigeration units at supermarkets in New York City and the surrounding area.³

Test results in both studies showed a very good payback for the devices across all applications studied. However, no discernable pattern was evident to determine which installations are most likely to yield the highest savings. Though actual savings will vary somewhat from project to project, it is reasonable to assume that program wide energy savings across all approved fuel use economizers measures will likely be close to the average savings found in the NYSERDA study. Annual energy savings for each approved fuel use economizer installation (for any *IntelliCon* brand or equivalent devices) can be estimated as simply 13% of the expected annual energy usage for the HVAC (or refrigeration) system without the device.

The magnitude of energy savings associated with DCV is a function of the type of facility, hours of operation, occupancy schedule, ambient air conditions, space temperature set points, and the heating and cooling system efficiencies. Typical values representing this factors were used to derive deemed savings factors per CFM of the

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: Space After: 10 pt, Line spacing: Multiple 1.15 li, Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto design ventilation rate for various space types. These deemed savings factors are utilized in the following algorithms to predict site specific savings.

<u>Algorithms</u>	
<u>Algorithms</u>	

Electric Energy Savings (kWh) = (AEU * 0.13)/yr) = CESF * CFM

Peak Demand Savings (kW) = CDSF * CFM

Fuel Savings (MMBtu) = (AFU * 0.13)/yr) = HSF * CFM

Definition of Variables

AFU = Annual Fuel Usage for an uncontrolled (gas, oil, propane) HVAC unit (MMBtu or gallons)

<u>CESF = Cooling</u>Sources:

(1) Some examples of the different types of fuel use economizer controls available on the market can be found at: <u>http://www.intellidynellc.com/02_prods.htm</u>

(2) NYSERDA (2007) "A Technology Demonstration and Validation Project for Intellidyne Energy Saving Controls".

(3) ConEd Solutions (2000) "Report Energy Savings Factor (kWh/CFM)

<u>CDSF</u> = Cooling Demand Savings Factor (kW/CFM)

<u>HSF</u> = Heating Savings Factor (MMBtu/CFM)

<u>CFM</u> = Baseline Design Ventilation Rate of Controlled Space (CFM)

Summary of Inputs

Demand Controlled Ventilation Using <u>CO</u> ₂ SensorsComponent	<u>Type</u>	<u>Value</u>	<u>Source</u>
CESF	<u>Fixed</u>	0.0484 MMBtu/CFM See Table 2	<u>1</u>
<u>CDSF</u>	Fixed		<u>1</u>
HSF	Fixed		<u>1</u>
<u>CFM</u>	Variable		Application

Formatted: (none)

Formatted: Indent: First line: 0.25", Space After: 10 pt, Line spacing: Multiple 1.15 li, Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto

Formatted: Subscript

Formatted: Indent: First line: 0", Space After: 10 pt, Line spacing: Multiple 1.15 li, Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font

Formatted: Font: +Body (Calibri), 11 pt

Formatted: English (U.S.)

Formatted: No underline

Savings Factors for Demand-Controlled Ventilation Using CO ₂ Sensors				
Component	CESF	<u>CDSF</u>	<u>HSF</u>	
Assembly	<u>2.720</u>	<u>0.0014</u>	<u>0.074</u>	
<u>Auditorium –</u> <u>Community Center</u>	<u>1.500</u>	<u>0.0015</u>	<u>0.043</u>	
<u>Gymnasium</u>	<u>2.558</u>	<u>0.0013</u>	<u>0.069</u>	
Office Building	<u>2.544</u>	<u>0.0013</u>	<u>0.068</u>	
Elementary School	<u>1.079</u>	<u>0.0013</u>	<u>0.029</u>	
High School	<u>2.529</u>	<u>0.0015</u>	<u>0.072</u>	
Shopping Center	<u>1.934</u>	<u>0.0012</u>	<u>0.050</u>	
Other	<u>2.544</u>	<u>0.0013</u>	<u>0.068</u>	

Sources on Intellidyne Unit Installation at Six Key Food Supermarkets".

1. ERS spreadsheet derivation of deemed savings factors for demand control ventilation. DCV Deemed savings Analysis. Based on DOE-2 default space occupancy profiles and initially developed for NYSERDA in 2010, revised to reflect typical New Jersey weather data.

Formatted: No underline
				•	Formatted: Heading 3, Page break before		
	Low Flow Devices	<u>Faucet Aerators, Shov</u>	verheads, and Pre-rinse Spray Valves				
	Low The following	<u>g algorithm details savi</u>	ngs for low-flow showerheads , and fau	cet	Formatted: Space Before: 6 pt, After: 6 pt		
	aerators <u>in resident</u>	<u>tial, multi-family,</u> and <mark>f</mark>	ore rinse spray valves some public sector	ors.			
l	These devices save	e water heating energy	by reducing the total flow rate from hot	water			
1	sources.						
					Formatted: Space Before: 6 pt After: 6 pt		
	The measurement	of energy savings assoc	ciated with <u>these</u> low- <u>-</u> flow devices is ba	ased on			
	algorithms with ke	y variables <u>obtained from</u>	om analysis by the Federal Energy Man	ter			
	conservations stud	ies, and customer infor	mation provided through Fisher Nickel	<u>'s Life</u>			
	Cycle cost calculat	tors. on the application	form. The energy values are in Btu for	natural			
	gas fired water hea	tters or kWh for electric	c water heaters.		Formatted: Font: 12 pt, Not Bold, Underline,		
	Low Flow Faucet	Aerators and Showerhe	pads		Font color: Auto, (none), Not Small caps		
	Algorithm				Eormatted: English (U.S.)		
	Aigonum				Formatted: Heading 4 Space After: 6 nt		
	<u>Btu or KWh Fuel</u>						
	Algoriums						
	Savings/ $yr = N$	Г х (60 х * Н х * D х (F ь	$F_{acc} = F_{acc} + F_{a$	(1/Eff / ←	Formatted: Indent: First line: 0.25"		
	<u>EFF</u>)/ C			` -			
	Definition of Varia	ables			Formatted: Underline, (none)		
	60N – Number	offixtures			Formatted: Normal, Level 4, Keep with next		
	$\frac{\partial \Theta_{1N} - \text{INUMBER OF BALLES}}{\partial \Theta_{1N} + \partial \Theta_{1N}}$						
	D = Days per vegr of device usage						
	$\underline{D} = Days per y$	levice flow rate (gel/m)					
	$\underline{\Gamma}_{\underline{b}} = \underline{Dasenne C}$	device flow rate (gai/iii)					
	$\frac{\Gamma_{\rm q}}{\Gamma_{\rm q}} = 1.0 \text{ M How}$	device now rate (gai/ii	<u>1)</u> //2E>				
	$\frac{8.33 = \text{Heat content of water (Btu/gal/°F)}}{(BD)}$						
	DT = DTT = DTT = DTT	<u>ce in temperature (°F) t</u>	serveen cold intake and output				
	EFF = Efficiency of water heating equipment						
	\underline{C} = Conversion factor from hours Btu to minutes therms or kWh = (100,000 for gas water heating (Therms) 3.413 for electric water heating (LWh)						
	water nearing (<u>1 Herms), 3,415 IOI Elev</u>	the water heating (KWII)		· · · · · · · · · · · · · · · · · · ·		
	Summary of Inputs	<u>8</u>					
		Low Flow Faucet A	erators and Showerheads				
	Component	<u>Type</u>	Value	Source			
	<u>N</u>	Variable		Application			

Aerators

30 minutes

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

<u>Fixed</u>

<u>H</u>

<u>1</u>

			Shower heads		
			20 minutes		
			Aerators		
	D	Fixed	<u>260 days</u>	1	
	<u>D</u>	<u>rixeu</u>	Shower heads		
			<u>365 days</u>		
			Aerators		
	F	Fired	<u>2.2 gpm</u>		
	<u>r</u> <u>b</u>	<u>rixeu</u>	Showerhead		
			<u>2.5 gpm</u>		
			Aerators		
		<u>Fixed</u>	<=1.5 gpm (kitchen)	<u>2,3,4</u>	
	<u>F</u> _q		<=0.5 gpm (public restroom)		
			<=1.5 gpm (private restroom)		
			Showerheads	4	
			<u><=2 gpm</u>	<u>4</u>	
			Aerators	5	
	DT	Fired	<u>25°F</u>	<u> </u>	
		<u>rixeu</u>	Showerheads	6	
			<u>50°F</u>	<u>6</u>	
	FFF	Fixed	97% electric	7.8	
	<u>LTT'</u>	<u>T'IACU</u>	<u>80% natural gas</u>	<u>7,0</u>	

Sources

- <u>1. FEMP Cost Calculator; located at: https://energy.gov/eere/femp/energy-cost-</u> calculator-faucets-and-showerheads-0#output.
- 2. EPA WaterSense requirements for faucet aerators; available at: https://www.epa.gov/watersense/bathroom-faucets.
- 3. Department of Energy, Best Management Practice #7, Faucets and Showerheads; available at: https://energy.gov/eere/femp/best-management-practice-7-faucets-andshowerheads
- <u>4. EPA WaterSense requirements for showerheads; available at:</u> <u>https://www.epa.gov/watersense/showerheads.</u>
- 5. New York State Joint Utilities, New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs, V6, April 2018. Calculated using T_{shower} and T_{main} for Faucet – Low-flow aerator measure in NYC. Values for both T_{faucet} and T_{main} found on p. 81.
- 6. New York State Joint Utilities, New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs, V6, April 2018. Calculated using T_{sh} and T_{main} for Showerhead – Low-flow measure in NYC. Values for both T_{shower} and T_{main} found on p. 92.

- 7. New York State Joint Utilities, New York Standard Approach for Estimating Energy
Savings from Energy Efficiency Programs, V6, April 2018. From "Baseline
Efficiencies from which Savings are Calculated section with table on p. 88.
- 8. ASHRAE Standards 90.1-2007. Energy Standard for Buildings Except Low Rise Residential Buildings; available at: https://www.ashrae.org/standards-research-technology/standards--guidelines.

Low Flow Pre-rinse Spray Valves

Algorithm

Btu or KWh Fuel Savings/yr = $N * H * D * (F_b - F_q) * (8.33 * DT / EFF) / C$

Definition of Variables

Formatted: Indent: First line: 0.25", Space N = Number of fixtures Before: 3 pt, After: 3 pt Formatted: Indent: First line: 0.25", Space H = Hours per day of device usage Before: 3 pt, After: 3 pt D = Days per year of facility operation device usage Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt Formatted: Indent: First line: 0.25", Space \mathbf{F}_{base} - \mathbf{F}_{b} = Baseline device flow rate (gal/m) Before: 3 pt, After: 3 pt Formatted: Indent: First line: 0.25", Space $\mathbf{F}_{\text{eff}} \mathbf{F}_{\mathbf{a}} = \text{Low flow device flow rate (gal/m)}$ Before: 3 pt, After: 3 pt Formatted: Not Superscript/ Subscript 8.33 = Heat content of water (Btu/gal/°F-) Formatted: Indent: First line: 0.25", Space Before: 3 pt, After: 3 pt Formatted: Indent: First line: 0.25", Space DT = Difference in temperature (°F) between cold intake and output Before: 3 pt, After: 3 pt Formatted: Indent: First line: 0.25", Space Eff = Percent efficiency of water heating equipment Before: 3 pt, After: 3 pt Formatted: Indent: Left: 0.25", Space C = Conversion factor from Btu to Therms or kWh = (100,000 for gas water heating Before: 3 pt, After: 3 pt (Therms), 3,413 for electric water heating (kWh))

Summary of Inputs

Low Flow Devices Pre-Rinse Spray Valves

Component	Туре	Value	Source •
Ň	Variable		Application
Н	Fixed	3 for pre-rinse spray valves1.06 hours	1
<u>D</u>	<u>Fixed</u>	<u>344 days</u>	<u>1</u>
<u>₩<u>F</u>_b</u>	Fixed	20 minutes for showerheads 30 minutes for aerators <u>1.6</u> gpm	2
Ð	Variable		Application
F _{base}	Variable		Application
F _{eff} Fq	Variable	Max of 1.0 gpm for lavatory aerators, 2.2 for kitchen aerators and 2.0 gpm for showerheads per EPA's Water Sense Label<=1.28 gpm	Application3
DT	Fixed	50°F for showerheads and faucet aerators, 70°F for pre- rinse spray valves75°F	
Eff	Variable	default of97% electric 80% for_natural gas water heaters and 95% for electric water heaters	Application 5, 6

Sources:

1. Fisher Nickel Life Cycle cost calculator

2. FEMP Cost Calculator located at

http://www1.eere.energy.gov/femp/technologies/eep_faucets_showerheads_cale.html

Demand Control Ventilation Using CO2 Sensors

Demand control ventilation (DCV) monitors indoor air CO₂ content as a result of occupancy production levels and uses this data to regulate the amount of outdoor air that is permitted for ventilation. In order to ensure adequate air quality, standard ventilation systems permit outside air based on estimated occupancy levels in CFM/occupant. However, during low occupancy hours, the space may become over ventilated due to decreased CO₂ levels. This air must be conditioned and, therefore, unnecessary ventilation results in wasted energy. DCV reduces unnecessary outdoor air intake by

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: Font: Not Bold Formatted: Left, Don't keep with next

Formatted: Table Header, Left, Don't keep with next
Formatted Table
Formatted: Table Header, Left
Formatted: Table Cells
Formatted: Table Cells, Left
Formatted: Table Cells
Formatted: Table Cells, Left
Formatted: Table Cells
Formatted: Table Cells
Formatted: Table Cells
Formatted Table
Formatted: Table Cells, Left
Formatted: Table Cells
Formatted: Table Cells, Left
Formatted: Table Cells
Formatted Table
Formatted: Table Cells
Formatted: Table Cells, Left
Formatted: Table Cells
Formatted: Table Cells
Formatted: Table Cells, Left
Formatted: Table Cells
Formatted: Table Cells
Formatted: Font: Bold
Formatted: Centered, Keep with next
Formatted: Heading 4, Space After: 6 pt

Formatted: Space After: 10 pt, Line spacing: Multiple 1.15 li, Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto regulating ventilation based on actual CO₂ levels, saving energy. -DCV is most suited for facilities where occupancy levels are known to fluctuate considerably.

The measurement of energy savings associated with DCV is based on hours of operation, occupancy schedule, return air enthalpy, return air dry bulb temperature, system air flow, outside air reduction, cooling system efficiency, and other factors. As a conservative simplification of complex algorithms, DCV is assumed to save 5% of total facility HVAC load in appropriate building types based on FEMP DCV documentation.

Algorithms					Formatted: Underline, (none)
Electric Savings (k	Wh) = 0.05	* HVAC _E			Formatted: Underline, (none)
Gas Savings (Ther	ms) = 0.05 *	HVAC _G			
Definition of Varia	bles		4		Formatted: Don't keep with next, Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between
HVAC _E = Total ek	ectric HVAC	C consumpt	on (kWh)		Asian text and numbers, Font Alignment: Auto
HVAC _G = Total ga	is HVAC co	Therms)			
	Demand Co	o <mark>ntrol Ven</mark>	tilation Using CO ₂ Sensors		
Component	Type	Value	Source 4		Formatted: Space After: 1 pt, Don't keep
HVAC	Variable Variable		Application	$\langle \rangle$	Formatted Table
HVACG	v ariable		Application		Formatted: Space After: 1 pt

Pipe Insulation

Un-insulated hot water carrying pipes lose considerable heat to outside air due to high thermal conductivity.- In order to reduce this heat loss, pipes can be covered with a layer of fiberglass insulation, which will reduce source heating demand, resulting in significant energy savings.

The measurement of energy savings associated with pipe insulation is based on the length of the supply pipe, pipe diameter, relative thermal conductivity of bare and insulated piping and the temperature difference between supplied water and outside air temperature as indicated in the EPRI report referenced below. The baseline case is un insulated copper pipe and the default proposed case is 0.5" of fiberglass insulation.

Algorithms

Energy Savings (kWh) = $(L * (HLC_{base} - HLC_{ee}) / C) * \Delta T * 8,760$

Formatted: Underline

Definition of Variables

L = Length of pipe from water heating source to hot water application (ft)

HLC_{base} = Pipe heat loss coefficient by pipe diameter (baseline) (BtuH -°F-ft)

<u>HLC_{ee} = Pipe heat loss coefficient by pipe diameter (proposed) (BtuH $^{\circ}F$ ft) C = Conversion from Btu to kWh or Therms (3,413 for kWh (Electric Water Heating), 100,000 for Therms (Gas Water Heating)</u>

 ΔT = Average temperature difference between supplied water and outside air temperature (°F)

8,760 = Hours per year

- <u>1. EPA WaterSense Specification for Commercial Pre-Rinse Spray Valves Supporting</u> Statement, September 19, 2013, Appendix A, Page 7.
- 2. EPA Energy Policy Act of 2005, p. 40, Title I, Subtitle C.
- 3. EPA WaterSense Specification for Commercial Pre-Rinse Spray Valves, available at: <u>https://www.epa.gov/watersense/pre-rinse-spray-valves.</u>
- 4. NY, Standard Approach for Estimating Energy Savings, V4, April 2016. Calculated using T_{heater} and T_{main} for Low-flow Pre-rinse spray valve measure. Values for both T_{sh} and T_{main} found on p. 184, Table 1 and p. 184, Table 2, respectively.
- 5. NY, Standard Approach for Estimating Energy Savings, V4, April, p. 177, Table 1.
- 6. ASHRAE Standards 90.1-2007, *Energy Standard for Buildings Except Low Rise* <u>Residential Buildings</u>; available at: https://www.ashrae.org/standards-research-technology/standards--guidelines.

Pipe Insulation

This measure applies to insulation installed on previously bare hot water distribution piping located in unconditioned spaces. Deemed savings factors were derived using the North American Insulation Manufacturers Association, 3E Plus Version 4.1 heat loss calculation tool. The savings factors represent average values for copper or steel pipe with mineral fiber or polyolefin tube pipe insulation. Savings are a function of pipe size and insulation thickness. A table of savings factors for nominal pipe size ranging from ¹/₂ inch to 4 inches, with insulation ranging from ¹/₂ inch to 2 inches thick is provided.

The savings factors are based on a fluid temperature of 180°F, and an ambient temperature of 50°F, resulting in a temperature differential of 130°F. If the actual temperature differential varies significantly from this value, the reported savings should be scaled proportionally.

The default value for annual operating hours represents the average annual hours when space heating is required. For non-space heating applications, the value should be adjusted to reflect the annual hours when the hot fluid is circulated.

<u>Algorithms</u>

Fossil Fuel Source:

Fuel Savings (MMBtu/yr) = SF * L * Oper Hrs / EFF

Electric Source:

Energy Savings (kWh/yr) = SF * L * Oper Hrs / EFF / C

<u>Scaling</u>: Only applicable if differential between the fluid temperature and space temperature is significantly different than 130°F. If this is the case, the fuel or electric savings calculated with the above formulas should be multiplied by the resulting scaling factor deroived as:

Scaling Factor (unitless) = (FT - ST)/130

<u>Fuel or electric savings calculated using the derived savings factors should be multiplied</u> by the acaling factor.

Scaled Savings (MMBtu/year or kWh/yr) = Calculated Savings * Savings Factor

Definition of Variables

<u>SF</u> = Savings factor derived from #E Plus Version 4.1 tool, Btu/hr-ft see table below

<u>L</u> = Length of pipe from water heating source to hot water application, ft Oper Hrs = hours per year fluid flows in pipe, hours

New Jersey's Clean Energy Program Protocols to Measure Resource Savings **Formatted:** Heading 3, Left, Page break before, Don't keep with next

Page 258

<u>EFF</u> = Efficiency of equipment providing heat to the fluid

<u>C</u> = Conversion factor from Btu to kWh = 3,413 for electric water heating

<u>(kWh)</u>

<u>FT</u> = Fluid Temperature ($^{\circ}$ F)

<u>ST = Space temperature ($^{\circ}$ F)</u>

Summary of Inputs

Pipe Insulation Component Value Source Туре See Table Below <u>SF</u> Fixed 1 Application Variable L HLC_{base}Oper Hrs Fixed 4,282 hrs/year (default value 2 reflects average heating season hours)See Table Below HLC_{ee}EFF Fixed 97% electric <u>3, 4</u> 80% natural gas See Table Below Default is 65°F **EPRI** $\Delta T FT$ Variable StudyApplication <u>ST</u> Variable **Application**

Pipe Heat Loss Coefficient Table

Pipe Diam. (in.)	HLC _{base}	HLC _{ee}
0.75	0.43	0.25
1.00	0.54	0.29
1.25	0.64	0.33
1.50	0.76	0.36
2.00	0.94	0.42
2.50	1.00	0.48
3.00	1.30	0.56
4.00	1.70	0.69

Formatted: Table Header, Left, Don't keep with next
Formatted: Table Header, Left
Formatted: Table Cells
Formatted: Table Cells, Left
Formatted: Table Cells
Formatted: Table Cells
Formatted: Table Cells, Left
Formatted: Table Cells
Formatted: Table Cells
Formatted: Table Cells
Formatted: No underline, Font color: Auto
Formatted: Table Cells, Left
Formatted: Table Cells
Formatted: Table Cells, Left
Formatted: Table Cells
Formatted: Space After: 10 pt, Line spacing: Multiple 1.15 li, Allow hanging punctuation, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Font Alignment: Auto

Savings Factor						
		Savings, Btu/hr-ft				
Nominal						
Pipe Size,	0.5"	1.0"	1.5"	2.0"		
Inches	Insulation	Insulation	Insulation	Insulation		
0.50	47	53	56	57		
0.75	58	64	68	70		
1.00	72	82	85	87		
1.25	89	100	107	108		
1.50	100	115	120	125		
2.00	128	143	148	153		
2.50	153	171	182	185		
3.00	195	221	230	236		
3.50	224	241	248	253		
4.00	232	263	274	281		

Sources:

Engineering Methods for Estimating the Impacts of Demand Side Management Programs, Volume 2, EPRI, 1993

- 1. North American Insulation Manufacturers Association, 3E Plus, Version 4.1, heat loss calculation tool, August 2012.
- 2. NOAA, Typical Meteorological Year (TMY3) weather data Newark, Trenton, and <u>Atlantic City averaged.</u>
- 3. ASHRAE Standards 90.1-2007. Energy Standard for Buildings Except Low Rise Residential Buildings; available at: https://www.ashrae.org/standards-research-technology/standards--guidelines.
- <u>4. New York State Joint Utilities, New York Standard Approach for Estimating Energy</u> Savings from Energy Efficiency Programs, V6, April 2018. From "Baseline Efficiencies from which Savings are Calculated section with table on p. 88.

Formatted: Heading 4, Space After: 6 pt

Lighting and Lighting Controls

For lighting and lighting control projects performed by Direct Install programs, use the C&I prescriptive lighting tables for the lighting types identified within those tables. For any fixtures not listed on the table, go to the source table for that fixture. If the fixture is not on the source table, then use manufacture cut sheets for replacement kW to calculate the savings.

Eligible measures include:

Prescriptive Lighting T8 T5 CFL Screw-In LED Screw-In LED Linear Tubes LED Hard-Wired Fixtures Lighting Controls

Occupancy Sensors High-Bay Occupancy Sensors Photocell with Dimmable Ballast Formatted: Page break before

Formatted: Space Before: 6 pt, After: 6 pt

C&I Large Energy Users Incentive Program

The purpose of the program is to foster self-investment in energy-efficiency, and combined heat and power projects while providing necessary financial support to large commercial and industrial utility customers in New Jersey.

Protocols

Please refer to the Pay for Performance Existing Buildings protocols to calculate demand and energy savings for the Large Energy Users Program. -If a project addresses a specific end-use technology, protocols for that technology should be used.

C&I Customer-Tailored Energy Efficiency Pilot Program

The purpose of the program is to better serve the needs of specific commercial and industrial customers whose usage is too large for them to qualify for the Direct Install program, but too low for the Large Energy Users Program.

Protocols

Please refer to the Pay for Performance Existing Buildings protocols to calculate demand and energy savings for the Large Energy Userscomprehensive projects in the Customer <u>Tailored Pilot</u> Program.- If a project addresses a specific end-use technology, protocols for that technology should be used. Formatted: Indent: Left: 0"

Formatted: Indent: Left: 0"

Renewable Energy Program Protocols

SREC Registration Program (SRP)

The energy and demand impacts for customer sited solar PV generation systems participating in the program are based on fixed assumptions which are applied to the total project system capacity. The annual electricity generation is derived by multiplying the estimated annual production factor of 1,200 kWh per kW by the total system capacity (kW) to yield the estimated annual output (kWh).⁷⁰ The combined values for all projects participating in a specified period are then summed up and converted to MWh for reporting purposes.

Renewable Non-SRP

Renewable Electric Storage

The impact of Renewable Electric Storage, if any on net renewable energy generation will be analyzed over the coming year based upon quarterly performance reporting that is required of participants in this program.

T

⁷⁰ Estimated annual production factor is based on combined average calculation of the PV Watts estimated annual output for the Newark and Atlantic City weather stations.

Appendix A Measure Lives

NEW JERSEY STATEWIDE ENERGY-EFFICIENCY PROGRAMS Measure Lives Used in Cost-Effectiveness Screening April 2012

If actual measure lives are available through nameplate information or other manufacturing specifications with proper documentation, those measure lives should be utilized to calculate lifetime savings.- In the absence of the actual measure life, Protocol measure lives <u>listed below</u> should be utilized. <u>Measure life values listed below are from</u> the California Database of Energy Efficient Resources⁷¹ (DEER) unless otherwise noted.

ROGRAM/Measure **Measure Life** Formatted: Font color: Black Residential ProgramsSector • Formatted: Left, Space After: 1 pt Energy Star AppliancesLighting End Use •\ Formatted: Space After: 1 pt ES Refrigerator post 2001CFL 125 **Deleted Cells** ES Refrigerator 2001LED 1215 -₩ Formatted: Font: Not Italic, No underline HVAC End Use Formatted Table Central Air Conditioner (CAC) 15 Formatted: No underline CAC QIV <u>15</u> ir Source Heat Pump (ASHP) 15 Formatted: Centered, Space After: 1 pt Mini-Split (AC or HP) 17 Formatted: Space After: 1 pt Ground Source Heat Pumps (GSHP) <u>25</u> Formatted: Font: Bold, Font color: Auto Furnace High Efficiency Fan <u>15</u> Formatted: Font color: Auto Heat Pump Hot Water (HPHW) 10 Formatted: Indent: First line: 0 ch, Space Furnaces 20 After: 1 pt **Boilers** 20 Formatted: Font: 10 pt, Font color: Auto Combination Boilers <u>20</u> Formatted: Centered, Space After: 1 pt **Boiler Reset Controls** 10 Formatted: Font: 10 pt Heating and Cooling Equipment Maintenance Repair/Replacement 10 Formatted: Indent: First line: 0 ch, Space After: 1 pt Thermostat Replacement 11 Hot Water End-Use Formatted: Font: 10 pt, Font color: Auto Storage Water Heaters 11 Formatted: Centered, Space After: 1 pt Instantaneous Water Heaters <u>20</u> Formatted: Font: 10 pt uilding Shell End-Use

⁷¹ http://www.deeresources.com/

New Jersey's Clean Energy Program Protocols to Measure Resource Savings Formatted: Left

Formatted: Space Before: 6 pt, After: 6 pt

PROGRAM/Measure	Measure Life	
Air Sealing	<u>15⁷²</u>	
Duct Sealing and Repair	<u>18</u>	
Insulation Upgrades	<u>20</u>	

Formatted: Left, Space After: 1 pt	
Formatted: Font color: Black	
Formatted: Space After: 1 pt	

⁷² Mid-Atlantic TRM V7, http://www.neep.org/mid-atlantic-technical-reference-manual-v7 and NY TRM V6, http://www3.dps.ny.gov/W/PSCWeb.nsf/All/72C23DECFF52920A85257F1100671BDD

Appliances/Electronics End-Use	_	
ES Refrigerator	<u>14</u>	
ES Freezer	11	•/
ES Dishwasher	10 11	4
ES Clothes washer	11	1
ES Dehumidifier		4
ES RAC	10 9	•
ES Air Purifier	9 <u>73</u>	•
ES Set Top Box	4 <u>4⁵⁹</u>	•
ES Sound Bar	10 10 ⁵⁹	•
Advanced Power Strips	4 <u>8</u>	4
ES Clothes Dryer	12	-
Refrigerator Retirement	<u>5</u>	
Freezer Retirement	4	
Commercial Sector		
Lighting End Use		
Energy StarPerformance Lighting	-15	•
CFL-Prescriptive Lighting	5 15	•
LED Refrigerated Case LED Lights	15 16	•
Energy Star Windows Specialty LED Fixtures (Signage)	2016	-
WIN-heat pumpLighting Controls	208	-
WIN-gas heat/CACHVAC End Use	20	4
WIN gas No CAC Electronically Commutated Motors for Refrigeration	2015	+
Electric HVAC Systems	15	
Fuel Use Economizers	<u>15</u>	
Dual Enthalpy Economizers	10	
Occupancy Controlled Thermostats	<u>11</u>	
WIN-oil heat/CACElectric Chillers	20	•
Gas Chillers	<u>25 (ERS)</u>	
WIN-oil No CACPrescriptive Boilers	20	•
Win-elec No AC Prescriptive Furnaces	20	•
Commercial Small Motors (1-10 HP)	15	T
Commercial Small Motors (11-75 HP)	15	1
Commercial Small Motors (76-200 HP)	15	1
Win-elec ACSmall Commercial Gas Boiler	20	•
Infrared Heaters	<u>17⁷⁴</u>	
Programmable Thermostats	<u>11</u>	
Demand-Controlled Ventilation Using CO2 Sensors	15	
Boiler Reset Controls	10	
VFDs End Use		

 ⁷³ ENERGY STAR® Savings Calculator for ENERGY STAR® Qualified Appliances (last updated October 1, 2016) https://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx
 ⁷⁴ NY TRM V6, http://www3.dps.ny.gov/W/PSCWeb.nsf/All/72C23DECFF52920A85257F1100671BDD

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

Formatted (... Formatted (... **Formatted Table** (... Formatted (... Formatted (... Formatted (... Formatted (... Formatted ... Formatted (... Formatted (... Formatted (... Formatted (... Formatted ĺ ... Formatted (... Formatted (... **Formatted Table** <u>...</u> Formatted (... Formatted (... Formatted (... Formatted (... Formatted (... Formatted (... Formatted (... Formatted (<u>...</u> Formatted (... Formatted (... Formatted (... Formatted (... Formatted (... Formatted <u>[...</u> Formatted <u>[...</u> Formatted (... Formatted (... Formatted (... Formatted (... Formatted Formatted (... Formatted ... Formatted (... Formatted [... **Formatted Table** (... Formatted (... Formatted (... Formatted (... Formatted Formatted (... Formatted (... Formatted (... Formatted <u>...</u> Formatted Formatted (... Formatted (... Formatted (... Formatted (... Formatted (... Formatted (... Formatted

Page 266

Variable Frequency Drives	<u>15</u>
New and Retrofit Kitchen Hoods with Variable Frequency Drives	<u>15 (ERS)</u>
Refrigeration End Use	
Energy Efficient Glass Doors on Vertical Open Refrigerated Cases	<u>12</u>
Aluminum Night Covers	5
RefrigeratorWalk-in Cooler/Freezer RetirementEvaporator Fan	•
Control	- <u>16</u>
Refrigerator/Cooler and Freezer retirementDoor Heater Control	<u>812</u> ◀
Residential New Construction Electric Defrost Control	- <u>10 (ERS)</u>
SF gas w/CAC<u>Novelty Cooler Shutoff</u>	<u>205</u>
SF gas w/o CACVending Machine Controls	20 5 •
SF oil w/CAC <mark>Food Service Equipment End-Use</mark>	20
SF all electric Electric and Gas Combination Oven/Steamer	20<u>12</u> •
TH gas w/CACElectric and Gas Convection Ovens, Gas Conveyor	<u>2012</u>
and Rack Ovens, Steamers, Fryers, and Griddles	
TH gas w/o CACInsulated Food Holding Cabinets	<u>2012</u> ◀
TH oil w/CACCommercial Dishwashers	20 15 •
TH all electricCommercial Refrigerators and Freezers	<u>2012</u> •
MF gas w/ACCommercial Ice Machines	<u>2010</u> •
MF gas w/o AC <mark>Hot Water End-Use</mark>	20
MF oil w/CAC	20
Tank Style (Storage) Water Heaters	<u>15</u>
MF all electric Instantaneous Gas Water Heaters	20 🖣
ES Clothes washer Low Flow Faucet Aerators and Showerheads	20 10 •
Recessed Can Fluor FixtureLow Flow Pre-rinse Spray Valves	205 •
Pipe Insulation	11
Fixtures Renewable and Other	20
Efficient Ventilation Fans w/TimerFuel Cell	<u>1015⁷⁵</u> ◀

PROGRAM/Measure	Measure Life
Residential Programs	-
Residential Electric HVAC	=
CAC 13	15
CAC 14	15
ASHP 13	15
ASHP 14	15
CAC proper sizing/install	15
CAC QIV	15
CAC Maintenance	7
CAC duct sealing	15
ASHP proper sizing/install	15
E-Star T-stat (CAC)	15

⁷⁵ LBNL Report "A Total Cost of Ownership Model for Solid Oxide Fuel Cells in Combined Heat and Power and Power-Only Applications" December 2015

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

Formatted	
Formatted Table	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	<u></u>)
Formatted	
Formatted	<u> </u>
Formatted	
Formatted	
rormatted	
Formatted	<u> </u>
Formatted	
Formatted Table	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted)
Formatted	
Formatted	<u>_</u>
Formatted	<u> </u>
Formatted	
	<u> (</u>
Formatted	

Page 267

E-etar T-etat (HD)	
GSHP	2
CAC 15	1
ASHP 15	1
Residential Gas HVAC	_
High Efficiency Furnace	2
High Efficiency Boiler	2
High Efficiency Gas DHW	4
E-Star T-stat	1
Boiler Reset Controls	
Low-Income Program	_
Air sealing electric heat	ę
Duct Leak Fossil Heat & CAC	4
typical fossil fuel heat	4
typical electric DHW pkg	-
typical fossil fuel DHW pkg	4
screw-in CFLs	6
high-performance fixtures	2
fluorescent torchieres	4
TF 14	2
TF 16	ź
TF 18	:
SS 20	:
TF 21	:
SS 22	:
TF 25	:
audit fees	;
Attic Insulation- ESH	;
Duct Leak - ESH	<u>-</u>
T-Stat-ESH	
HP charge air flow	
electric arrears reduction	
gas arrears reduction	
Home Performance with ENERGY STAR	-
Blue Line Innovations – PowerCost MonitorTM	
PROGRAM/Measure	Measure Lif
Non-Residential Programs	-
C&I Construction	_

Remodel/Replacement

New Jersey's Clean Energy Program Protocols to Measure Resource Savings

Commercial Lighting

Commercial Lighting - New

I

I

15

15

Commercial Lighting Controls — Remodel/Replacement	18
Commercial Custom New	18
Commercial Chiller Optimization	18
Commercial Unitary HVAC — New - Tier 1	15
Commercial Unitary HVAC — Replacement - Tier 1	15
Commercial Unitary HVAC New - Tier 2	15
Commercial Unitary HVAC — Replacement Tier 2	15
Commercial Chillers - New	25
Commercial Chillers — Replacement	25
Commercial Small Motors (1-10 HP) - New or Replacement	20
Commercial Medium Motors (11-75 HP) New or Replacement	20
Commercial Large Motors (76-200 HP) - New or Replacement	20
Commercial VSDs — New	45
Commercial VSDs — Retrofit	15
Commercial Air Handlers Units	20
Commercial Heat Exchangers	24
Commercial Burner Replacement	20
Commercial Bailers	25
Commercial Controls (electric/electronic)	15
Commercial Controls (Pneumatic)	10
Commercial Comprehensive New Construction Design	18
Commercial Custom — Replacement	18 18
Industrial Lighting — New	15
Industrial Lighting — Remodel/Replacement	15
Industrial Unitary HVAC — New - Tier 1	15
Industrial Unitary HVAC — Replacement - Tier 1	15
Industrial Unitary HVAC New - Tier 2	15
Industrial Unitary HVAC — Replacement Tier 2	15
Industrial Chillers — New	25
Industrial Chillers — Replacement	25
Industrial Small Motors (1-10 HP) — New or Replacement	20
Industrial Medium Motors (11-75 HP) — New or Replacement	20
Industrial Large Motors (76-200 HP) - New or Replacement	20
Industrial VSDs — New	15
Industrial VSDs — Retrofit	15
Industrial Custom - Non-Process	18
Industrial Custom Process	10
Industrial Air Handler Units	20
Industrial Heat Exchangers	20
Industrial Burner Replacements	20
Small Commercial Gas Furnace — New or Replacement	20

۱L	Infrared Heating	47
۱L	Small Commercial Gas Boiler — New or Replacement	20
	Small Commercial Gas DHW New or Replacement	10
۱L	C&I Gas Absorption Chiller — New or Replacement	25
	C&I Gas Custom — New or Replacement (Engine Driven Chiller)	25
	C&I Gas Custom — New or Replacement (Gas Efficiency Measures)	18

PROGRAM/Measure	Measure Life
Non-Residential Programs	-
Building O&M	_
O&M savings	3
Compressed Air	_
Compressed Air (GWh participant)	8
Refrigeration	_
Evaporator Fan Control	10
Cooler and Freezer Door Heater Control	10
Polyethylene Strip Curtains	4
Food Service	-
Fryers	12
Steamers	10
Griddles	12
Ovens	12

Measure	
Life	
25	
/ ⁷⁶ 15	•
V ^{//} 20	•
20	•
	25 15 12 20 20

* For custom applications, projects will be evaluated upon industry/manufacturer data but not to exceed value in above table unless authorized by the Market Manager. Reported savings will be calculated per measure life indicated in this table.

Formatted: Font color: Black
Formatted: Space After: 1 pt
Formatted Table
Formatted: Space After: 1 pt
Formatted: Font color: Black
Formatted: Space After: 1 pt
Formatted: Space After: 1 pt Formatted: Font color: Black
Formatted: Space After: 1 pt Formatted: Font color: Black Formatted: Font color: Black
Formatted: Space After: 1 pt Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black
Formatted: Space After: 1 pt Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black
Formatted: Space After: 1 pt Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black Formatted: Font color: Black
Formatted: Space After: 1 pt Formatted: Font color: Black Formatted: Space After: 1 pt

⁷⁶ Size of individual prime-mover, not the overall system. For example, a project with three 75kW internal

combustion engines should be assigned a 17-year measure life for small systems. ⁷⁷ Size of individual prime-mover, not the overall system. For example, a project with three 75kW internal combustion engines should be assigned a 17-year measure life for small systems.