GREEN BUILDING DESIGN

Leading the way to a more sustainable future.

Walt Kanzler Architect Director of Architecture and Design

Licensed Architect » NJ AIO15559 NY 029459 CA A27346 NCARB Registered Member A.I.A. LEED 2.0 Accredited Professional NJHEPS Green Design Team

Career Background

Port Authority of NY/NJ Carrier Johnson Wu Ehrlich Rominger Frank O. Gehry & Assoc. Safdie Rabines Architects Montclair State University M. Alfieri Company

Current Projects incorporating Sustainable Design Strategies

- University Hall
- Recreation Center
- John J. Cali School of Music
- Finley Hall Renovations
- School of Environmental Science
- School of Business
- BTS-1

University Hall

January 2006

University Hall

January 2006

Firm Selection 'Green' Experience

- SLAM Architects, PC
- Original RFQ included limited "sustainable design" scope
- SLAM prepared a feasibility study used to convince Administration of viability of "Green" design.
- Feasibility was not highly detailed, based on LEED point system.

- 150 person firm
- 50 Registered Architects
- 5 LEED certified
 Architects
- Materials Research
- Specification Editing

SLAM Architects, PC LEED Design Team

SLAM LEED Project Coordinator

- Ø Dan Harazim
- SLAM Landscape Architect
 - Henry Thomas
- Vanderweil Engineers
 - Thomas Sandford
- Dome-tech Engineering
 - Bruce Curtis
- Yu and Associates
- MSU Project Manager

General Contractor Terminal Construction Corp. Construction Phase LEED Consultant The Chrisner Group

Apply Whole Design Approach

- Site context within the campus, community, and the world.
- Consider the interrelationship of building siting, design elements, energy and resources, building systems and building function.
- Programmatic and Functional goals.
- Sustainable Design integration.

Process

Vision statement Establish Green building goals Develop Green design criteria Set Priorities Develop a building program Owner's expectations and needs Ø Budget Schedule

Components of Green Architecture

Building envelope "skin"
 Windows
 Insulation
 Air infiltration

Orientation of openings

Daylighting

Operable Windows

HVAC, Electrical, and Plumbing Systems

- Indoor Air Quality
- Acoustics
- Materials
- Landscape Selections

LEED Project Checklist

- Identify possible
 Sustainable Design strategies
- Review each point for appropriateness to the specific project.
- Evaluate potential strategies in relationship to the project as a whole.

- Track cost associated with point
- Update checklist at each phase of design.
- Assign responsibility for each point as required.
- Coordinate with LEED letter templates.

Designing for LEED

What Level of LEED?

7 7 1 6	Susta	nable Sites	Cost	4	6	2	5	Nateri	als & Resources	Co
CS?N	1			С	s	?	N			
YY	Prereq 1	Erosion & Sedimentation Control	N/C	Y	Y		P	rereq 1	Storage & Collection of Recyclables	N/0
1 1	Credit 1	Site Selection	N/C					redit 1.1	Building Reuse, Maintain 75% of Existing Shell	~
1	Credit 2	Urban Redevelopment	~				1 C	redit 1.2		~
1	Credit 3	Brownfield Redevelopment	~				1 C	redit 1.3	Building Reuse, Maintain 100% Shell & 50% Non-Shell	~
1 1	Credit 4.1	Alternative Transportation, Public Transportation Access	N/C	1	1		С	redit 2.1	Construction Waste Management, Divert 50%	N/0
1	Credit 4.2	Alternative Transportation, Bicycle Storage & Changing Rooms	~		1				Construction Waste Management, Divert 75%	N/0
1	Credit 4.3	Alternative Transportation, Alternative Fuel Refueling Stations	~				1 c	redit 3.1	Resource Reuse, Specify 5%	~
1	Credit 4.4	Alternative Transportation, Parking Capacity	N/C						Resource Reuse, Specify 10%	~
1 1	Credit 5.1	Reduced Site Disturbance, Protect or Restore Open Space	N/C	1	1		С	redit 4.1	Recycled Content, Specify 25%	N/
1	Credit 5.2	Reduced Site Disturbance, Development Footprint	~			1	С	redit 4.2	· · · ·	ТВ
1 1	Credit 6.1	Stormwater Management, Rate and Quantity	N/C	1	1		С	redit 5.1	Local/Regional Materials, 20% Manufactured Locally	N/
1 1	Credit 6.2	Stormwater Management, Treatment	\$35K		1		С	redit 5.2	Local/Regional Materials, of 20% Above, 50% Harvested Locally	TE
1 1	Credit 7.1	Landscape & Exterior Design to Reduce Heat Islands, Non-F				1		redit 6	Rapidly Renewable Materials	N/
1	Credit 7.2	Landscape & Exterior Design to Reduce Heat Islands, Roof	~	1	1		С	redit 7	Certified Wood	N/
1 1	Credit 8	Light Pollution Reduction	N/C							
		5		7	10	2	3	ndoor	r Environmental Quality	
3 4 1	Water	Efficiency		c	S	?	N			
CS?N		,		Y	Y		Р	rereg 1	Minimum IAQ Performance	N
1 1	Credit 1.1	Water Efficient Landscaping, Reduce by 50%	N/C	Y	_			rereq 2	Environmental Tobacco Smoke (ETS) Control	N
1 1	_	Water Efficient Landscaping, No Potable Use or No Irrigation	N/C	-	1			redit 1	Carbon Dioxide (CO ₂) Monitoring	\$50
	Credit 2	Innovative Wastewater Technologies	~		-			redit 2	Increase Ventilation Effectiveness	N
1 1	Credit 3.1	Water Use Reduction, 20% Reduction	\$11K	1	1		C	redit 3.1	Construction IAQ Management Plan, During Construction	
1		Water Use Reduction, 30% Reduction	\$120K	1				redit 3.2	Construction IAQ Management Plan, Before Occupancy	
			\$1201	1			_	redit 4.1	Low-Emitting Materials, Adhesives & Sealants	N
5 6 1 10	Enera	y & Atmosphere		1				redit 4.2	Low-Emitting Materials, Paints	N/
CS?N		, a rancephere		1			_	redit 4.3	Low-Emitting Materials, Carpet	N
YY	Prereg 1	Fundamental Building Systems Commissioning	\$375K	1					Low-Emitting Materials, Composite Wood	N
YY	Prereq 2	Minimum Energy Performance	N/C		1		_	redit 5	Indoor Chemical & Pollutant Source Control	\$10
YY	Prereg 3	CFC Reduction in HVAC&R Equipment	N/C	-	· ·			redit 6.1	Controllability of Systems, Perimeter	N
22	Credit 1.1	Optimize Energy Performance, 20% New / 10% Existing	N/C				1 C	redit 6.2	Controllability of Systems, Non-Perimeter	N
	Credit 1.2	Optimize Energy Performance, 30% New / 20% Existing	~		1				Thermal Comfort, Comply with ASHRAE 55-1992	N
	Credit 1.3	Optimize Energy Performance, 40% New / 30% Existing	~ ~		1				Thermal Comfort, Permanent Monitoring System	N
	Credit 1.4	Optimize Energy Performance, 50% New / 40% Existing	~		· ·	1			Daylight & Views, Daylight 75% of Spaces	N
	Credit 1.5	Optimize Energy Performance, 60% New / 50% Existing	~			1			Daylight & Views, Views for 90% of Spaces	N
1	Credit 2.1	Renewable Energy, 5%	\$500K						[/	
	Credit 2.2	Renewable Energy, 10%	~	1	1	4		nnova	ation & Design Process	
	Credit 2.3	Renewable Energy, 20%	~	Ċ	_	?	N			
11	Credit 3	Additional Commissioning	\$20K	-	-	1		redit 1.1	Innovation in Design: Specific Title	Т
1 1	Credit 4	Ozone Depletion	N/C			1			Innovation in Design: Specific Title	T
1	Credit 5	Measurement & Verification	\$500K			1			Innovation in Design: Specific Title	Т
1 1	Credit 6	Green Power	N/C			1			Innovation in Design: Specific Title	T
	orodit o		14/0	1	1	- ·		redit 2	LEED™ Accredited Professional	N
							C	reuit 2		
TM	TING SYS	STEM							TOTAL PROJECT SCORE - NEW ACADEMIC BUILDING	
FED'" PA	26 to 32			27					NUMBER OF POINTS FOR PROPOSED CERTIFIED RATING	
	20 10 02				34				NUMBER OF POINTS FOR PROPOSED SILVER RATING	
Certified	33 to 38	DOIDTS								
	33 to 38 39 to 51					10			POINTS FOR POSSIBLE CONSIDERATION	

28 Pts	LEED Cer	tified	
Design / Administration Fees	\$143,000		
Comissioning / IAQ Management	\$295,000		
Construction Hard Costs		\$596,000	
NJ Smart Start Credits	\$ (16,000)	\$ (100,000)	
Total	\$422,000	\$496,000	
Total (Hard & Soft Costs)		\$918,000	

			d l	
DOL	an	ind	tor	LEED
631		IN IO		
	9			

Estimated Cost / Benefit

34 pts	LEED Silv	er		
Design / Administration Fees			\$205,000	
Comissioning / IAQ Management			\$295,000	
Construction Hard Costs				\$1,316,000
NJ Smart Start Credits			\$ (16,000)	\$ (100,000)
Total			\$484,000	\$1,216,000
Total (Hard & Soft Costs)				\$1,700,000

S/L/A/M Architects, P

Demonstrate Value

Energy efficiency Heating and cooling 20%-35% Lighting T-5 lamps 50% Daylighting Water efficiency 20%-30% Fixtures No Irrigation system Native plants Storm Water quality Ø Decreased run-off Removal of solids and pollutants

Waste reduction
 Recycling
 Divert 50%
 Construction Waste

IAQ

- Improved attendance
- Increased performance

Evaluate cost and ROI

Life Cycle Cost Analysis

- 20 points and 6 prerequisites at no additional cost.
- Remaining 6-8 points design and construction
- Estimated initial cost \$843,000 incl. soft cost
- Actual cost significantly less
- Payback period 9 years conservative estimate
- Utility Incentives
- Improved Quality HP Building

Estimated Hard Costs

					Payback	5	Savings over
			First Cost	Savings/Ye	a <mark>r Period</mark>		20 Years
<u> </u>	Hard Costs						
			\sim	Improved			
				water quali			
			(downstream			
	Stormwater Management (SS Credit 6.	2\$	35,000	from Camp	I N/A		N/A
						\sum	
ľ	Water Use Reduction (WE Credit 3.1) 🛝	\$	11,000	\$ 18,40	06 yrs	\$	368,000
(Optimizing Energy Performance						
	(EA Credit 1.1)	\$	500,000				
	Credit from New Jersey SmartStart for						
	Credit 1.1	\$	(100,000)			
	Subtotal for EA Credit 1.1 /	\$	400,000	\$ 70,00	0 5.7 yrs	\$	1,400,000
				Improved			
				indoor air			
	Carbon Dioxide Monitoring (IE Credit 1)	\$	50,000	quality	N/A		N/A
			/				
	Total	\$	496,000	\$ 88,40	0 5.6 yrs	\$	1,768,00

Point Goal:

Points with no expected
 increase in construction cost: 20

28

7

4

Points with no expected
 increase in design fee: 10

Prerequisites:

- Prerequisites with no expected increase in construction cost: 6
- Prerequisites with no expected increase in design fee:

Designing for LEED

University Hall Montclair State University Costs of LEED[™] Certification

	Firs	st Cost	Savings/Yea	Payt r Peri			vings over 0 Years
Hard and Soft Costs						(
						Ì	
Hard Costs (From Table Above)	\$ 4	496,000					
Soft Costs	\$	347,000					
Total	\$	843,000	\$ 88,400	9.5	yrs	\$ 1	,768,00

Construction Budget	\$ 54,881,600	
LEED costs as percentage of Construc		
Budget	1.54%	

S/L/A/M Architects, P.

Actual Costs

\$117,	000*	/	
\$ 54,	881,600		0.21% < ¼ of 1 %

30 Pts		LEED Certified		
	Soft Costs Estimated	Hard Costs Estimated	Actual	
Design Fees	\$143,000		\$117,000 / \$(0.00)*	
Commissioning	\$295,000	1	\$175,000	
Construction Hard Cost		\$546,000	\$0.00	
NJ Smart Start	\$ (16,000)	\$(100,000)	\$(175,000)	
Total	\$422,000	\$446,000	\$(0.00)*	
		\$918,000	\$117,000 / \$(0.00)*	

Examples of Points Readily Achievable

Prerequisite 1 Erosion and Sediment
 SS1 Site Selection
 SS4.1 Alternative Transport
 WE3.2 Water Use Reduction 30%
 SS6.2 Stormwater Management
 EA 1.1 Optimize Energy Performance 20%
 SS 7.1 Landscape Reduce Heat Island
 SS 8 Light Pollution

"Costing Green" Davis Langdon Point by Point Analysis

Smart Start Incentives

- PSEG brainstorming session
- Design assistance
- K-12 commissioning assistance
- Energy Efficiency Measures
- Up to \$100K per measure

- Energy AnalysisTrace 700
- Early Submittals
- Follow up on paperwork
- Actual value of incentives between \$100k and \$200k

Commissioning

Pre-requisite

- Primary cost hurdle \$\$
- Demonstrate Value to stakeholders
- ASHRAE 90.1 requires commissioning on buildings greater than 50,000 S.F.
- DCA does not require commissioning

- Develop RFQ
- Interview and evaluate
- Incorporate commissioning specifications into Bid Documents
- Review project during design.

Review scope of work

- Determine who is responsible for each point.
- Track progress through design and construction.
- Assess scope of work related to contract.
- Insure contract language supports the design process.

- Track cost associated with point through design.
- Review contract documents for content as it relates to all LEED requirements.
- Require LEED
 Consultant or team
 member for General
 Contractor.

Submit final documentation to USGBC for LEED Certification

FED-Online: Scorecard and Statu

0	Θ	Sustainable Site	s			F	ossible Points:	14
No	55	Prerequisite 1	C	Erosion & Sedimentation Control	Project Team Administrator	1	Attempted	0
۵	SS	Credit 1	٠	Site Selection	Project Team Administrator	1	Attempted	1
	ss	Credit 2	٠	Urban Redevelopment	Credit Not Attempted			1
	ss	Credit 3	1	Brownfield Redevelopment	Credit Not Attempted			1
0	SS	Credit 4.1	1	Alternative Transportation, Public Transportation Access	Project Team Administrator	1	Attempted	1
1	SS	Credit 4.2	4	Alternative Transportation, Bicycle Storage & Changing Rooms	Credit Not Attempted			1
	ss	Credit 4.3	,	Alternative Transportation, Alternative Fuel Refueling Stations	Credit Not Attempted			1
	ss	Credit 4.4	٠	Alternative Transportation, Parking Capacity	Credit Not Attempted			1
0	ss	Credit 5.1		Reduced Site Disturbance, Protect or Restore Open Space	Project Team Administrator	1	Attempted	1
	ss	Credit 5.2		Reduced Site Disturbance, Development Footprint	Credit Not Attempted			1
	ss	Credit 6.1	1	Stormwater Management, Rate or Quantity	Credit Not Attempted			1
0	ss	Credit 6.2	1	Stormwater Management, Treatment	Project Team Administrator	1	Attempted	1
0	ss	Credit 7.1	c	Landscape & Exterior Design to Reduce Heat Islands, Non-Roof	Project Team Administrator	1	Attempted	1
	ss	Credit 7.2	4	Landscape & Exterior Design to Reduce Heat Islands, Roof	Credit Not Attempted			1
0	ss	Credit 8		Light Pollution Reduction	Project Team Administrator	1	Attempted	1
0	Ð	Water Efficiency				P	ossible Points:	5
0	Ð	Energy & Atmos	pher	8		P	ossible Points:	17
0	Ð	Materials & Reso	ource	s		F	ossible Points:	13
0	D	Indoor Environm	nenta	I Quality		F	ossible Points:	15
0	D	Innovation & De	sign	Process		F	ossible Points:	5
yrigh	e © 20	06 U.S. Green Bu	ildin	g Cauncil Powere	d by Adobe LiveCycle		LEED-Online Ve	rsion 1

http://leedonline.usgbc.org/Project/Scorecard.asj

Green architecture is one way to make a difference.

